期刊文献+
共找到138篇文章
< 1 2 7 >
每页显示 20 50 100
Design of a type of strike-slip active fault container for shaking table tests
1
作者 Wenkai Feng Lianjie Yang +4 位作者 Chunlei Xin Zhao Wang Xinyuan Yu Yixin Shuai Yuxin Tian 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第12期7711-7735,共25页
Fault container and shaking table tests are crucial for studying co-seismic dislocation in cross-fault tunnels,with the design and functionality of the container significantly affecting the accuracy of dynamic respons... Fault container and shaking table tests are crucial for studying co-seismic dislocation in cross-fault tunnels,with the design and functionality of the container significantly affecting the accuracy of dynamic response analyses of tunnel linings.This research introduces a fault container developed as part of a significant active fault-crossing tunnel project in the high-intensity seismic zone of western China.The container is designed to simulate both strike-slip and dip-slip fault characteristics with adjustable fault angles.Extensive testing,including shaking table tests under strong seismic conditions,three-dimensional(3D)finite element numerical simulations,and hammer tests,were conducted to evaluate the modal characteristics of the container under various conditions.The study highlights the resonance characteristics of the soil-container system,the signal consistency across different dislocations,and the dynamic response patterns both with and without pulse-like seismic motions and varying intensities.The results indicate that the natural frequencies of the container and the model soil,determined through white noise scanning,are 23.74 Hz and 6.355 Hz,respectively,suggesting no resonance in the model soil-container structure.The dynamic response characteristics of the empty container show good integrity and versatility under various seismic excitations.The consistency of the free-field time history curve confirms that the newly developed fault container effectively simulates the continuity and boundary conditions of the free-field.Time domain analysis conducted before and after fault dislocation demonstrates the capability of the container to accurately replicate the coupling effects of fault and seismic motions. 展开更多
关键词 shaking table tests Fault container Modal analysis Hammer test Strike-slip fault
在线阅读 下载PDF
Seismic stability analysis of sandy slope with anti-slide pipe piles through shaking table tests and finite element
2
作者 SALEH ASHEGHABADI Mohsen XU Jianmin +2 位作者 JIA Yuyue LIU Junwei WANG Yulin 《Journal of Mountain Science》 2025年第10期3744-3768,共25页
Seismic-induced landslides critically threaten infrastructure and human safety,especially in sandy slopes where conventional stabilization methods often fail under dynamic loading.This study evaluates circular open-en... Seismic-induced landslides critically threaten infrastructure and human safety,especially in sandy slopes where conventional stabilization methods often fail under dynamic loading.This study evaluates circular open-ended anti-slide pipe piles embedded in a two-layer sandy slope with differing geotechnical properties.Ten physical models,including five freefield and five pile-reinforced slopes,were tested on a shaking table.Key seismic responses—acceleration,soil displacement,and bending moments—were monitored using accelerometers,strain gauges,and Digital Image Correlation(DIC).Complementary numerical simulations using Abaqus with a Mohr–Coulomb model validated experimental results.Soil displacement in free-field models under 0.25g shaking was about 3.5 times greater than in reinforced slopes.Bending moments increased with seismic intensity,peaking at depths around five times the pile diameter.Limitations including simplified two-layer soil representation,idealized seismic inputs,and boundary effects inherent to laboratory models restrict direct field application but enable controlled analysis.By combining physical experiments with numerical modeling,the study provides a robust and validated framework for seismic slope stabilization.This integrated approach enhances understanding of soil–pile interaction under seismic loads and offers targeted insights for developing safer and more reliable geotechnical design strategies in earthquake-prone areas. 展开更多
关键词 Anti-slide piles shaking table tests Sloping lands Soil-pile models Free-field models
原文传递
Experimental and analytical investigations of the dynamic characteristics of a mold transformer with rotary friction dampers based on shaking table tests
3
作者 Seung-Jae Lee Ji-Eon Lee +1 位作者 Ngoc Hieu Dinh Kyoung-Kyu Choi 《Earthquake Engineering and Engineering Vibration》 2025年第2期451-472,共22页
In this study, shaking table tests were performed to investigate the dynamic characteristics of a mold transformer. Based on the test results, rotary friction dampers were developed to mitigate the excessive lateral d... In this study, shaking table tests were performed to investigate the dynamic characteristics of a mold transformer. Based on the test results, rotary friction dampers were developed to mitigate the excessive lateral displacement that occurred along the direction of the weak stiffness axis of the mold transformer. In addition, shaking table tests were performed by attaching friction dampers to both sides of the mold transformer. Based on the shaking table test results, the natural frequency, mode vector, and damping ratio of the mold transformer were derived using the transfer function and half-power bandwidth. The test results indicated that the use of friction dampers can decrease the displacement and acceleration response of the mold transformer. Finally, dynamic structural models were established considering the component connectivity and mass distribution of the mold transformer. In addition, a numerical strategy was proposed to calibrate the stiffness coefficients of the mold transformer, thereby facilitating the relationship between generalized mass and stiffness. The results indicated that the analytical model based on the calibration strategy of stiffness coefficients can reasonably simulate the dynamic behavior of the mold transformer using friction dampers with regard to transfer function, displacement, and acceleration response. 展开更多
关键词 mold transformer dynamic characteristics shaking table test rotary friction dampers dynamic structural model stiffness calibration
在线阅读 下载PDF
Effects of weak interlayers on seismic performance of bedding slopes based on shaking table tests
4
作者 Hailong Yang Xiangjun Pei +2 位作者 Shenghua Cui Zhihao He Jin Lei 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第10期6517-6529,共13页
Weak interlayers play a crucial role in the seismic performance of bedding slopes;however,the effects of structural surface development within these layers remain underexplored.This study presents two scaled models of... Weak interlayers play a crucial role in the seismic performance of bedding slopes;however,the effects of structural surface development within these layers remain underexplored.This study presents two scaled models of bedding slopes,each with different weak interlayers:one with a homogeneous weak layer and another with discontinuous interfaces.Shaking table tests were conducted to compare their seismic performance.The results show that the peak ground acceleration(PGA)values above the weak interlayer in model A were significantly higher than those in model B,with the differences increasing as the input wave amplitude increased.The peak earth pressure(PEP)values at the tensile failure boundary at the rear edge of model A were also higher,whereas those within the weak layer at the toe of model A were lower than those in model B.Deformation analysis revealed that the maximum principal strain in model A initially appeared at the upper part of the tensile failure boundary,while the maximum shear strain was concentrated near the rear edge within the weak layer.In contrast,model B exhibited the opposite strain distribution.These findings provide insight into the impact of weak interlayers on the dynamic response and deformation of bedding slopes,highlighting the importance of considering this factor in seismic landslide investigations and failure mode predictions. 展开更多
关键词 Dynamic response Seismic deformation Bedding slopes Weak interlayer shaking table test
在线阅读 下载PDF
Rail displacement measurement in shaking table tests via a method integrating KLT feature tracker and extended Kalman filter
5
作者 WANG Huan CHEN Ruoxi +2 位作者 YE Shanshan CHEN Zeqi ZHAO Fei 《Journal of Southeast University(English Edition)》 2025年第2期207-214,共8页
Shaking table tests are widely used to evaluate seismic effects on railway structures,but accurately measuring rail displacement remains a significant challenge owing to the nonlinear characteristics of large displace... Shaking table tests are widely used to evaluate seismic effects on railway structures,but accurately measuring rail displacement remains a significant challenge owing to the nonlinear characteristics of large displacements,ambient noise interference,and limitations in displacement meter installation.In this paper,a novel method that integrates the Kanade-Lucas-Tomasi(KLT)feature tracker with an extended Kalman filter(EKF)is presented for measuring rail displacement during shaking table tests.The method employs KLT feature tracker and a random sample consensus algorithm to extract and track key feature points,while EKF optimally estimates dynamic states by accounting for system noise and observation errors.Shaking table test results demonstrate that the proposed method achieves an acceleration root mean square error of 0.300 m/s^(2)and a correlation with accelerometer data exceeding 99.7%,significantly outper-forming the original KLT approach.This innovative method provides a more efficient and reliable solution for measuring rail displacement under large nonlinear vibrations. 展开更多
关键词 shaking table test rail displacement computer vision Kanade-Lucas-Tomasi(KLT)feature tracker extended Kalman filter(EKF)
在线阅读 下载PDF
Seismic response analysis of buried pipelines with varying stiffness by shaking table tests
6
作者 Chen Hongyu Cui Jie +3 位作者 Li Yadong Ouyang Zhiyong Huang Xiangyun Shan Yi 《Earthquake Engineering and Engineering Vibration》 2025年第2期583-594,共12页
The relative stiffness between underground structures and surrounding soil may significantly influence the dynamic response of such structures.In this study,two underground pipelines were fabricated using rubber joint... The relative stiffness between underground structures and surrounding soil may significantly influence the dynamic response of such structures.In this study,two underground pipelines were fabricated using rubber joints with varying stiffness,and the corresponding dynamic response was evaluated.Model soils were prepared based on similarity ratios.Next,reduced-scale shaking table tests were conducted to investigate the impact of circular underground structures with varying stiffness joints on the amplification of ground acceleration,dynamic response,and deformation patterns of the underground pipelines.The comparative analysis showed that structures with lower stiffness exert less constraint on the surrounding soil,resulting in a higher amplification factor of ground acceleration.The seismic response of less stiff structures is generally 1.1 to 1.3 times the response of the stiffer structures.Therefore,the seismic response of the variable stiffness pipeline exhibits pronounced characteristics.Rubber joints effectively reduce the seismic response of underground structures,demonstrating favorable isolation effects.Consequently,relative stiffness plays a crucial role in the seismic design of underground structures,and the use of rubber materials in underground structures is advantageous. 展开更多
关键词 shaking table test underground pipeline variable stiffness joint pipeline seismic response
在线阅读 下载PDF
Study on dynamic response of embedded long span corrugated steel culverts using scaled model shaking table tests and numerical analyses 被引量:12
7
作者 车爱兰 IWATATE Takahiro 葛修润 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2006年第3期430-435,共6页
A series of scaled-model shaking table tests and its simulation analyses using dynamic finite element method were performed to clarify the dynamic behaviors and the seismic stability of embedded corrugated steel culve... A series of scaled-model shaking table tests and its simulation analyses using dynamic finite element method were performed to clarify the dynamic behaviors and the seismic stability of embedded corrugated steel culverts due to strong earth-quakes like the 1995 Hyogoken-nanbu earthquake. The dynamic strains of the embedded culvert models and the seismic soil pressure acting on the models due to sinusoidal and random strong motions were investigated. This study verified that the cor-rugated culvert model was subjected to dynamic horizontal forces (lateral seismic soil pressure) from the surrounding ground, which caused the large bending strains on the structure; and that the structures do not exceed the allowable plastic deformation and do not collapse completely during strong earthquake like Hyogoken-nanbu earthquake. The results obtained are useful for design and construction of embedded long span corrugated steel culverts in seismic regions. 展开更多
关键词 Embedded corrugated steel culverts shaking table tests Hyogoken-nanbu earthquake Dynamic analyses
在线阅读 下载PDF
Shaking table tests and dynamic analyses of masonry wall buildings with frame-shear walls at lower stories 被引量:4
8
作者 Xiong Lihong David Xiong +1 位作者 Wu Ruifeng Xia Jingqian 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2008年第3期271-283,共13页
This paper describes shaking table tests of three eight-story building models: all are masonry structures in the upper stories, with or without frame-shear walls of one- or two- stories at the bottom. The test result... This paper describes shaking table tests of three eight-story building models: all are masonry structures in the upper stories, with or without frame-shear walls of one- or two- stories at the bottom. The test results of damage characteristics and seismic responses are provided and compared. Then, nonlinear response analyses are conducted to examine the reliability of the dynamic analysis. Finally, many nonlinear response analyses are performed and it is concluded that for relatively hard sites under a certain lateral stiffness ratio (i.e., the ratio of the stiffness of the lowest upper masonry story to that of the frame- shear wall story), the masonry structure with one-story frame-shear wall at the bottom performs better than a structure built entirely of masonry, and a masonry structure with frame-shear wall of two stories performs better than with one-story frame- shear wall. In relatively soft soil conditions, all three structures have similar performane. In addition, some suggestions that could be helpful for design of masonry structures with ground story of frame-shear wall structure in seismic intensity region VII, such as the appropriate lateral stiffness ratio, shear force increase factor of the frame-shear wall story, and permissible maximum height of the building, are proposed. 展开更多
关键词 masonry structure soft story seismic performance shaking table test nonlinear time history analysis
在线阅读 下载PDF
Shaking table tests on a cantilever retaining wall with reinforced and unreinforced backfill 被引量:3
9
作者 Ming WEI Qiang LUO +2 位作者 Gui-shuai FENG Teng-fei WANG Liang-wei JIANG 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2022年第11期900-916,共17页
Physical modelling of cantilever retaining walls with and without backfill reinforcement was conducted on a 1g shaking table to evaluate the mitigation effect of reinforcement on system dynamics(g denotes the accelera... Physical modelling of cantilever retaining walls with and without backfill reinforcement was conducted on a 1g shaking table to evaluate the mitigation effect of reinforcement on system dynamics(g denotes the acceleration of gravity).The model wall has a height of 1.5 m with a scale ratio of 1/4 and retains dry sand throughout.The input motions are amplified to three levels of input peak base acceleration,0.11g,0.24g,and 0.39g,corresponding to minor,moderate,and major earthquakes,respectively.Investigation of the seismic response of the retaining walls focuses on acceleration and lateral displacement of the wall and backfill,dynamic earth pressures,and tensile load in the reinforcements(modeled by phosphor-bronze strips welded into a mesh).The inclusion of reinforcement has been observed to improve the integrity of the wall-soil system,mitigate vibration-related damage,and reduce the fundamental frequency of a reinforced system.Propagation of acceleration from the base to the upper portion is accompanied by time delay and nonlinear amplification.A reinforced system with a lower acceleration amplification factor than the unreinforced one indicates that reinforcement can reduce the amplification effect of input motion.Under minor and moderate earthquake loadings,reinforcement allows the inertia force and seismic earth pressure to be asynchronous and decreases the seismic earth pressure when inertia forces peak.During major earthquake loading,the wall is displaced horizontally less than the backfill,with soil pushing the wall substantially;the effect of backfill reinforcement has not been fully mobilized.The dynamic earth pressure is large at the top and diminishes toward the bottom. 展开更多
关键词 Cantilever retaining wall Backfill reinforcement Seismic response shaking table test Dynamic earth pressure Phase shift
原文传递
Shaking Table Tests of Four-Bucket Jacket Foundation for Offshore Wind Turbines 被引量:3
10
作者 DING Hong-yan LI Jing-yi +2 位作者 LE Cong-huan PAN Chen ZHANG Pu-yang 《China Ocean Engineering》 SCIE EI CSCD 2022年第6期849-858,共10页
As the offshore wind turbine foundation,the four-bucket jacket foundation has a large stiffness and the structure is difficult to be damaged under seismic load.Nevertheless,the saturated subsoil of the four-bucket jac... As the offshore wind turbine foundation,the four-bucket jacket foundation has a large stiffness and the structure is difficult to be damaged under seismic load.Nevertheless,the saturated subsoil of the four-bucket jacket foundation tends to be liquefied under earthquake,which greatly affects the safety of offshore wind turbine.Therefore,the seismic performance of four-bucket jacket foundation is mainly reflected in the anti-liquefaction capacity of foundation soil.In this paper,the liquefaction resistance of sandy soil of four-bucket jacket foundation for offshore wind turbine is studied.The liquefaction and dynamic response of sandy soil foundation of four-bucket jacket foundation under seismic load are obtained by carrying out the shaking table test,and the influence mechanism of four-bucket jacket foundation on the liquefaction resistance of sandy soil foundation is analyzed. 展开更多
关键词 four-bucket jacket foundation sand liquefaction shaking table test seismic response
在线阅读 下载PDF
Property estimation of free-field sand in 1-g shaking table tests 被引量:3
11
作者 Xu Chengshun Jiang Zhiwei +2 位作者 Du Xiuli Deng Lijun Li Zheng 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2022年第3期591-604,共14页
Experimental data taken from free-field soil in 1-g shaking table tests are valuable for seismic studies on soil-structure interaction.But the available data from medium-to large-scale shaking table tests were not abu... Experimental data taken from free-field soil in 1-g shaking table tests are valuable for seismic studies on soil-structure interaction.But the available data from medium-to large-scale shaking table tests were not abundant enough to cover a large variety of types and conditions of the soil.In the study,1-g shaking table tests of a 3-m-height sand column were conducted to provide seismic experimental data about sand.The sand was directly collected in-situ,with the largest grain diameter being 2 cm and containing a water content of 6.3%.Properties of the sand were estimated under the influence of white noise plus pulse and earthquake motions,including the settlement,the dynamic properties of the sand column,and the three soil layers′shear modulus degradation relationships.The estimated properties were then indirectly verified by means of finite element analysis.Results show that the estimated parameters were effective and could be used in numerical modeling to reproduce approximate seismic responses of the sand column. 展开更多
关键词 1-g shaking table test seismic sand response dynamic soil properties free-field sand
在线阅读 下载PDF
An isolated similarity design method for shaking table tests on reinforced slopes 被引量:1
12
作者 WANG Zhi-jia FAN Gang +1 位作者 CAO Li-cong CHANG Jin-yuan 《Journal of Mountain Science》 SCIE CSCD 2021年第9期2460-2474,共15页
Physical model test is an effective way to unveil the dynamic response of a slope under seismic condition.The similarity design is the key of physical model test.An isolated similarity design method for shaking table ... Physical model test is an effective way to unveil the dynamic response of a slope under seismic condition.The similarity design is the key of physical model test.An isolated similarity design method for shaking table tests was proposed and verified in this work.In this method,the relevant physical quantities were divided into several subsystems and subcharacteristic equations for each subsystem were then established based on the Buckingham similarity theory.Large-scale shaking table tests on a reinforced slope were adopted herein to illustrate the application of the proposed isolated similarity design method.The similarity system for the studied slope was divided into four parts in the process of similarity design.The geometrical dimension L,densityρand gravity g were selected as fundamental quantities for the similarity design,and four subcharacteristic equations were established for each subsystem.The dynamic responses of the recorded acceleration and axis force show that the seismic waves propagate well in the model slope.The proposed isolated similarity design method solves the conflict between the similarity requirement for all relevant physical quantities and the difficulty of test model fabrication to satisfy all similarity relations. 展开更多
关键词 Similarity design shaking table test SLOPE ACCELERATION Axial force
原文传递
Evaluation of the effects of EPS composite soil replacement on the dynamic performance of caisson structure using shaking table tests 被引量:1
13
作者 Gao Hongmei Ji Zhanpeng +3 位作者 Zhang Xinlei Zhang Shushan Wang Zhihua Shen Guangming 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第4期829-843,共15页
The seismic performance of a caisson structure under two types of models with a saturated sandy foundation(CSS)and an expanded polystyrene(EPS)composite soil foundation(CES)are studied using shaking table tests.The ma... The seismic performance of a caisson structure under two types of models with a saturated sandy foundation(CSS)and an expanded polystyrene(EPS)composite soil foundation(CES)are studied using shaking table tests.The macro phenomena of the two different foundation models are described and analyzed.The effects of the replacement of EPS composite soil on seismic-induced liquefaction of backfill and the dynamic performance of a caisson structure are evaluated in detail.The results show that the excess pore water pressure generation in the CES is significantly slower than that in the CSS during the shaking.The dynamic earth pressure acting on the caisson has a triangular shape.The response of horizontal acceleration,displacement,settlement,and rotation angle of the caisson in the CES is smaller than that in the CSS,which means the caisson in the CES has a better seismic performance.Furthermore,the out-of-phase phenomenon between dynamic earth thrust and inertial force in the CES is more obvious than that in the CSS,which is beneficial to reduce the lateral force and improve the stability of the caisson structure. 展开更多
关键词 EPS composite soil foundation Caisson-type quay wall shaking table test phase difference rotation angle
在线阅读 下载PDF
Shaking Table Tests and Seismic Response of Three-Bucket Jacket Foundations for Offshore Wind Turbines 被引量:1
14
作者 DING Hongyan PAN Chen +2 位作者 ZHANG Puyang WANG Le XU Yunlong 《Journal of Ocean University of China》 SCIE CAS CSCD 2022年第3期719-736,共18页
The seismic response characteristics of three-bucket jacket foundations for offshore wind turbines(OWTs)and the liquefaction of the surrounding soil are particularly important for the development and application of th... The seismic response characteristics of three-bucket jacket foundations for offshore wind turbines(OWTs)and the liquefaction of the surrounding soil are particularly important for the development and application of this type of structure for offshore use.Using the shaking table test and three-dimensional finite element analysis,different magnitudes of simulated earthquake waves were used as inputs to the shaking table to model seismic excitations.The resulting changes in the excess pore water pressure and acceleration response of the soil under horizontal earthquake are compared in this paper.Calculations of the anti-liquefaction shear stress and equivalent shearing stress during the earthquake,determination of the areas prone to liquefaction,and identification of the effect of the three-bucket jacket foundation on the soil liquefaction resistance were conducted by developing a soil-structure finite element model.The development law of the soil’s amplification effect on seismic acceleration and the seismic response of the foundation soil under various magnitude earthquake waves were also discussed.Results indicate that liquefying the soil inside the bucket of the foundation is more difficult than that outside the bucket during the excitation of seismic waves due to the large upper load and the restraint of the surrounding hoop.This finding confirms the advantages of the three-bucket jacket foundations in improving the liquefaction resistance of the soil inside the bucket.However,the confinement has a barely noticeable impact on the nearby soil outside the skirt.The phenomenon of soil liquefaction at the bottom of the skirt occurred earlier than that in other positions during the seismic excitation,and the excess pore water pressure slowly dissipated.The acceleration amplification coefficient of the sand outside the bucket increases with depth,but that of the sand inside the bucket is substantially inhibited in the height range of the bucket foundation.This result proves the inhibition effects of the three-bucket jacket foundations on the seismic responses of soils.The liquefied soil layer has a significant effect in absorbing a certain amount of seismic wave energy and reducing the amplification effect.The numerical simulation results are consistent with the phenomenon and data measured during the shaking table test.The current study also verifies the feasibility of the excess pore water pressure ratio and the anti-liquefaction shear stress method for judging soil liquefaction. 展开更多
关键词 three-bucket jacket foundation seismic response shaking table test liquefaction analysis
在线阅读 下载PDF
Dynamic Behavior of Gravity Retaining Walls with Coral Sand Backfill Under Earthquakes:Shaking Table Tests
15
作者 ZHANG Yan-ling WANG Cheng-long +1 位作者 DING Xuan-ming WU Qi 《China Ocean Engineering》 SCIE EI CSCD 2022年第6期839-848,共10页
The retaining walls in coral sand sites are inevitably threatened by earthquakes. A series of shaking table tests were carried out to study the seismic stability of gravity retaining walls with coral sand backfill. Pa... The retaining walls in coral sand sites are inevitably threatened by earthquakes. A series of shaking table tests were carried out to study the seismic stability of gravity retaining walls with coral sand backfill. Parallel tests with quartz sand were performed to compare and discuss the special dynamic properties of coral sand sites. The results show that the acceleration difference between the retaining wall and the coral sand backfill is 76%-92% that of the quartz sand,which corresponds to the larger liquefaction resistance of coral sand compared with the quartz sand. However, the horizontal displacement of the retaining walls with coral sand backfill reaches 79% of its own width under 0.4g vibration intensity. The risk of instability and damage of the retaining walls with coral sand backfill under strong earthquakes needs attention. 展开更多
关键词 coral sand seismic response LIQUEFACTION shaking table test gravity retaining walls
在线阅读 下载PDF
Shaking table tests and numerical simulation of dynamic properties of underground structures
16
作者 ZHOU Lincong ZHENG Yifeng PAN Shunchun 《Global Geology》 2009年第3期168-173,共6页
It is considered thai the damage of the underground structures caused by earthquakes is minor for a long time. However, the catastrophic damages induced by several recent earthquakes (e. g. Kobe earthquake in 1995 )... It is considered thai the damage of the underground structures caused by earthquakes is minor for a long time. However, the catastrophic damages induced by several recent earthquakes (e. g. Kobe earthquake in 1995 ) revealed that the study on the dynamic properties of the underground structures is indispensable. The dynamic behavior and damage mechanism of underground structure are analyzed by using shaking table tests ( both shallow-and deep-buried) and numerical simulation (3D FEM) including horizontal and vertical input motions, individually and simultaneously. From the results, the underground structure collapsed due to strong horizontal forces although vertical deformation is not negligible. The vertical excitation increases the response of structure, especially the stress and shear stress at the upper section; the soil influenced the property of soilstructure system. In the same excitation, the response in shallow-buried test is larger than deep case. Both overburden and vertical earthquake play important roles in the response of structure and those are two critical aspects in the design of the large-span underground structures, such as subway stations. 展开更多
关键词 underground structures EARTHQUAKE shaking table test SIMULATION
在线阅读 下载PDF
Experimental evaluation of high performance concrete cladding based on shaking table tests
17
作者 Wang Yanhua Zhang Mingzhou +2 位作者 He Junze Jin Yihan Xu Yang 《Earthquake Engineering and Engineering Vibration》 2026年第1期111-122,共12页
Severe failures of nonstructural components have occurred during previous earthquakes.Claddings are one of the most widely used nonstructural component and are installed in many modern buildings;therefore,an evaluatio... Severe failures of nonstructural components have occurred during previous earthquakes.Claddings are one of the most widely used nonstructural component and are installed in many modern buildings;therefore,an evaluation of their seismic performance is important and cannot be ignored.To investigate the seismic performance of large-sized high performance concrete cladding(HPCC),a series of full-scale experimental tests were conducted using a unidirectional shaking table.A steel supporting frame was used to install the HPCCs and reproduce the effects of the building under earthquake.The tests were divided into two parts:in-plane(IP)testing and out-plane(OP)testing.Three recorded accelerograms,one artificial accelerogram,and one sinusoidal accelerogram were used to conduct the shaking table tests.The results show that the maximum recorded IP responses of acceleration and interstory drift ratio were 1.04 g and 1/97,while the OP responses were 1.02 g and 1/51.The HPCCs functioned well throughout the entire experimental protocol.The fundamental frequency of the HPCCs systems rarely changed after the tests. 展开更多
关键词 nonstructural components high performance concrete cladding seismic performance shaking table tests
在线阅读 下载PDF
Investigation of dynamic response of municipal solid waste landfill with a drainage system and a composite liner using shaking table tests
18
作者 Haoyu LIN Haijian XIE +4 位作者 Junchao LI Abdelmalek BOUAZZA Zhehui ZHAO Jianqun JIANG Yunmin CHEN 《Science China(Technological Sciences)》 2025年第10期380-391,共12页
This study investigated the dynamic response of the landfill with a drainage system and composite liner under various earthquake magnitudes using large-scale shaking table tests.The tests indicated that the peak groun... This study investigated the dynamic response of the landfill with a drainage system and composite liner under various earthquake magnitudes using large-scale shaking table tests.The tests indicated that the peak ground acceleration(PGA)amplification factor increased with the increase of height in the vertical direction.There was a significant variation in the unit amplification capability of different layers of the landfill,with the drainage system exhibiting the strongest unit amplification capability.Under 0.3g and 0.4g,the spectral response began to display a multi-peak condition.The degree of damage to the municipal solid waste(MSW)increased nonlinearly with the load of earthquakes.The pattern of damage at the interface closely resembled the shear stress-strain curve of the interface.At 0.3g,there was a sudden change in the relative displacement between the MSW and the drainage system,with the foot of the slope reaching its maximum displacement.At 0.5g,the positive and negative displacements at the middle and foot of the slope reached their maximum values.Inconsistent movements were observed at different interfaces of the landfill.Rough geomembrane performs better in resisting shear strain under earthquake by numerical analysis.This research has significant implications for modern sanitary landfills'dynamic stability and long-term sustainability. 展开更多
关键词 LANDFILL composite liner large-scale shaking table tests dynamic response INTERFACE
原文传递
Series of centrifuge shaking table tests study on seismic response of subway station structures in soft soil sites
19
作者 Guanyu Yan Chengshun Xu +2 位作者 Zihong Zhang Xuelai Wang Xiuli Du 《Underground Space》 2025年第2期232-251,共20页
Due to the planning of the subway route, it is difficult to avoid crossing soft soil site conditions at subway stations. The seismic response of subway station structures is closely related to the surrounding soil sit... Due to the planning of the subway route, it is difficult to avoid crossing soft soil site conditions at subway stations. The seismic response of subway station structures is closely related to the surrounding soil site. In this paper, centrifuge shaking table tests were designed and carried out for subway station structures at three typical soft soil sites (all-clay site, liquefiable interlayer site, and fully liquefiable site). The test results are as follows. The structure is most severely damaged in all-clay site, while the damage is low in liquefiable interlayer site and fully liquefiable site. For liquefiable sites, site liquefaction results in a lower soil-structure stiffness ratio. Thus liquefiable interlayer site and fully liquefiable site provide a natural seismic isolation system for structures compared to all-clay site. The limits of the inter-story drift ratio of the structure were used to evaluate the post-earthquake performance stages of the model structure in the three sites. In all-clay site, the structure is in the “immediately operational” stage after the loading condition of 0.1g and 0.32g, and in the “reparable operational” stage after the loading condition of 0.52g and 0.72g. In the liquefiable interlayer site and full liquefiable site, the underground structure is in the “normal operational” stage after the loading condition of 0.1g and in the “immediately operational” stage after the loading condition of 0.32g–0.72g. 展开更多
关键词 Soft soil site Subway station structure Seismic response Centrifuge shaking table test
在线阅读 下载PDF
Shaking table tests on the liquefaction-induced uplift displacement of circular tunnel structure 被引量:1
20
作者 Saber Nokande Yaser Jafarian Abdolhosein Haddad 《Underground Space》 SCIE EI CSCD 2023年第3期182-198,共17页
Underground structures are susceptible to float and move upward during earthquakes when located in a liquefiable soil deposit.There are examples of this phenomenon in past major earthquake events.In this study,the upl... Underground structures are susceptible to float and move upward during earthquakes when located in a liquefiable soil deposit.There are examples of this phenomenon in past major earthquake events.In this study,the uplift of circular tunnels in a liquefiable sand layer was investigated with a series of shaking table tests.The research has focused on the buried depth of the tunnel,tunnel diameter,tunnel weight,liquefaction extent,uplift mechanism,and factor of safety against liquefaction-induced uplift.According to the test results,the shallow buried depth,larger diameter,and lower weight can intensify the tunnel uplift,so the displacement in post-liquefaction time continues at the same rate as during the shaking time.Due to the shear-induced dilation,pore water pressure generation around the tunnel was reduced compared with that of the free field.The excess pore water pressure dissipation in the soil overlying the uplifted tun-nel was significant,which leads to suction in the soil deposit.Furthermore,the acceleration response of overlying soil with the uplifted tunnel was similar to that of the free field.However,the soil acceleration response around the tunnel without uplift was similar to the base motion. 展开更多
关键词 LIQUEFACTION Tunnel uplift Underground structures shaking table test Circular tunnel
在线阅读 下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部