In this paper, we investigate the loss caused by multiple humans blocking millimeter wave frequencies. We model human blockers as absorbing screens of infinite height with two knife-edges, We take a physical optics ap...In this paper, we investigate the loss caused by multiple humans blocking millimeter wave frequencies. We model human blockers as absorbing screens of infinite height with two knife-edges, We take a physical optics approach to computing the diffraction around the absorbing screens, This approach differs to the geometric optics approach described in much of the literature. The blocking model is validated by measuring the gain from multiple-human blocking configurations on an indoor link. The blocking gains predicted using Piazzi ' s numerical integration method (a physical optics method) agree well with measurements taken from approximately 2.7 dB to -50 dB. Thereofre, this model is suitable for real human blockers, The mean prediction error for the method is approximately -1.2 dB, and the standard deviation is approximately 5 dB.展开更多
A novel technique for reducing reverberation artifact in acoustic shadow imaging using nonlinear ultrasound interaction, called nonlinear acoustic shadow method, has been developed and experimentally studied. In this ...A novel technique for reducing reverberation artifact in acoustic shadow imaging using nonlinear ultrasound interaction, called nonlinear acoustic shadow method, has been developed and experimentally studied. In this technique, the conventional acoustic shadow method is modified by using the secondary wave generated by nonlinear interaction of two primary sound waves emitted from parametric array. Either conventional or nonlinear acoustic shadow imaging is carried out for aluminum square cylinder and the size of the shadow is compared. The result shows that the nonlinear acoustic shadow method reduces reverberation artifact inside the square cylinder and has better accuracy in the size measurement than conventional acoustic shadow method.展开更多
文摘In this paper, we investigate the loss caused by multiple humans blocking millimeter wave frequencies. We model human blockers as absorbing screens of infinite height with two knife-edges, We take a physical optics approach to computing the diffraction around the absorbing screens, This approach differs to the geometric optics approach described in much of the literature. The blocking model is validated by measuring the gain from multiple-human blocking configurations on an indoor link. The blocking gains predicted using Piazzi ' s numerical integration method (a physical optics method) agree well with measurements taken from approximately 2.7 dB to -50 dB. Thereofre, this model is suitable for real human blockers, The mean prediction error for the method is approximately -1.2 dB, and the standard deviation is approximately 5 dB.
基金Acknowledgments
This work was supported by the National High Technology Research and Development Program of China under grant No. 2006AAOAA102-12 and the National Natural Science Foundation of China (Grant No. 40774064). The authors would like to express their sincere thanks to TH oil field for providing field data sets.
文摘A novel technique for reducing reverberation artifact in acoustic shadow imaging using nonlinear ultrasound interaction, called nonlinear acoustic shadow method, has been developed and experimentally studied. In this technique, the conventional acoustic shadow method is modified by using the secondary wave generated by nonlinear interaction of two primary sound waves emitted from parametric array. Either conventional or nonlinear acoustic shadow imaging is carried out for aluminum square cylinder and the size of the shadow is compared. The result shows that the nonlinear acoustic shadow method reduces reverberation artifact inside the square cylinder and has better accuracy in the size measurement than conventional acoustic shadow method.