A hybrid method is established by combining photoelastic experiment and finite element analysis.The method is used to evaluate contact stress distribution on dry friction interfaces,such as the contact interfaces betw...A hybrid method is established by combining photoelastic experiment and finite element analysis.The method is used to evaluate contact stress distribution on dry friction interfaces,such as the contact interfaces between shrouds of fan blades and turbine blades.The photoelastic stress frozen experiment method is used to decide the displacement boundary conditions of numerical calculation.Higher accuracy and efficiency of solving problems are improved by the method.Technical difficulty and high cost of experiment are also avoided by the method.Good agreement of the stress distribution by using the hybrid method and experiment is obtained.展开更多
Thermal barrier coatings (TBCs) are widely applied in thermal components to protect metallic components. Owing to the complex layered structure of TBCs and difficult preparation of coating, the mechanical characteriza...Thermal barrier coatings (TBCs) are widely applied in thermal components to protect metallic components. Owing to the complex layered structure of TBCs and difficult preparation of coating, the mechanical characterization of TBCs should be of primary importance. With regard to TBCs, this study deals with the constitutive parameters identification of bi-material. Considering the complex construction and boundary of bi material, the virtual fields method (VFM) was employed in this study. A methodology based on the optimized virtual fields method combined with moire interferometry was proposed for the constitutive parameters identification of bi-material. The feasibility of this method is verified using simulated deformation fields of a two-layer material subjected to three point ben ding loading. As an application, the deformation fields of the TBC specimens were measured by moire interferometry. Then, lhe mechanical parameters of the coating were identified by the proposed method. The identification results indicate that Young's modulus of the TBC top coating is 89.91 GPa, and its Poisson's ratio is 0.23.展开更多
基金Youth Foundation of Beijing Polytechnic University
文摘A hybrid method is established by combining photoelastic experiment and finite element analysis.The method is used to evaluate contact stress distribution on dry friction interfaces,such as the contact interfaces between shrouds of fan blades and turbine blades.The photoelastic stress frozen experiment method is used to decide the displacement boundary conditions of numerical calculation.Higher accuracy and efficiency of solving problems are improved by the method.Technical difficulty and high cost of experiment are also avoided by the method.Good agreement of the stress distribution by using the hybrid method and experiment is obtained.
基金the NationalKey Research and Development Procedure of China (Grant 2017YFB1103900)National Natural Science Foundation of China (Grants 11672153.11232008, 11227801).
文摘Thermal barrier coatings (TBCs) are widely applied in thermal components to protect metallic components. Owing to the complex layered structure of TBCs and difficult preparation of coating, the mechanical characterization of TBCs should be of primary importance. With regard to TBCs, this study deals with the constitutive parameters identification of bi-material. Considering the complex construction and boundary of bi material, the virtual fields method (VFM) was employed in this study. A methodology based on the optimized virtual fields method combined with moire interferometry was proposed for the constitutive parameters identification of bi-material. The feasibility of this method is verified using simulated deformation fields of a two-layer material subjected to three point ben ding loading. As an application, the deformation fields of the TBC specimens were measured by moire interferometry. Then, lhe mechanical parameters of the coating were identified by the proposed method. The identification results indicate that Young's modulus of the TBC top coating is 89.91 GPa, and its Poisson's ratio is 0.23.