An advanced geometric modeler GEMS4.0 has been developed, in whichfeature representation is used at the highest level abstraction of a productmodel. Boundary representation is used at the bottom level, while CSG model...An advanced geometric modeler GEMS4.0 has been developed, in whichfeature representation is used at the highest level abstraction of a productmodel. Boundary representation is used at the bottom level, while CSG modelis adopted at the median level. A BRep data structure capable of modelingnon-manifold is adopted. NURBS representation is used for all curved surfaces.Quadric surfaces have dual representations consisting of their geometric datasuch as radius, center point, and center tals. Boundary representation of freeform surfaces is easily built by sweeping and skinning method with NURBSgeometry Set operations on curved solids with boundary representation areperformed by an evaluation process consisting of four steps. A file exchangefacility is provided for the conversion between product data described by STEPand product information generated by GEMS4.0展开更多
An adaptive mesh refinement strategy is proposed in this paper for the Immersed Boundary and Immersed Interface methods for two-dimensional elliptic interface problems involving singular sources.The interface is repre...An adaptive mesh refinement strategy is proposed in this paper for the Immersed Boundary and Immersed Interface methods for two-dimensional elliptic interface problems involving singular sources.The interface is represented by the zero level set of a Lipschitz functionϕ(x,y).Our adaptive mesh refinement is done within a small tube of|ϕ(x,y)|δwith finer Cartesian meshes.The discrete linear system of equations is solved by a multigrid solver.The AMR methods could obtain solutions with accuracy that is similar to those on a uniform fine grid by distributing the mesh more economically,therefore,reduce the size of the linear system of the equations.Numerical examples presented show the efficiency of the grid refinement strategy.展开更多
文摘An advanced geometric modeler GEMS4.0 has been developed, in whichfeature representation is used at the highest level abstraction of a productmodel. Boundary representation is used at the bottom level, while CSG modelis adopted at the median level. A BRep data structure capable of modelingnon-manifold is adopted. NURBS representation is used for all curved surfaces.Quadric surfaces have dual representations consisting of their geometric datasuch as radius, center point, and center tals. Boundary representation of freeform surfaces is easily built by sweeping and skinning method with NURBSgeometry Set operations on curved solids with boundary representation areperformed by an evaluation process consisting of four steps. A file exchangefacility is provided for the conversion between product data described by STEPand product information generated by GEMS4.0
文摘An adaptive mesh refinement strategy is proposed in this paper for the Immersed Boundary and Immersed Interface methods for two-dimensional elliptic interface problems involving singular sources.The interface is represented by the zero level set of a Lipschitz functionϕ(x,y).Our adaptive mesh refinement is done within a small tube of|ϕ(x,y)|δwith finer Cartesian meshes.The discrete linear system of equations is solved by a multigrid solver.The AMR methods could obtain solutions with accuracy that is similar to those on a uniform fine grid by distributing the mesh more economically,therefore,reduce the size of the linear system of the equations.Numerical examples presented show the efficiency of the grid refinement strategy.