期刊文献+
共找到327篇文章
< 1 2 17 >
每页显示 20 50 100
Pseudo Derivative Feedback Control of Electro Hydraulic Speed Servos 被引量:3
1
作者 陈留 许明恒 科坚 《Journal of Modern Transportation》 2000年第2期107-113,共7页
The Pseudo-Derivative Feedback (PDF) algorithm is introduced into design of electro-hydraulic speed servos. With limited extra complexity in implementation of controller's electronic circuits, the PDF control enab... The Pseudo-Derivative Feedback (PDF) algorithm is introduced into design of electro-hydraulic speed servos. With limited extra complexity in implementation of controller's electronic circuits, the PDF control enables the electro-hydraulic speed servo to respond to a step command without steady-state error, and also to follow successfully a sinusoidal command at the frequency higher than that the system resulted from traditional design can reach. The numerical example-based comparison in dynamic and static behavior shows also the PDF system is superior to the traditional system in terms of both the capability of handling loads applied to the system and the robustness to ignore variation and uncertainty of the parameters of the hydraulic valve-actuator unit in operation. 展开更多
关键词 PDF control electro-hydraulic speed servo performanT
在线阅读 下载PDF
Control of Multiple PWM Servos by a Single Programmable Timer
2
作者 高理颢 孙进伟 《Journal of Measurement Science and Instrumentation》 CAS 2011年第1期60-63,共4页
An algorithm for control of several servo motors by a mi- crocontroller is presented. The limited ntanber of progranunable timers on the majority of micnocntrollers presents a problem for multiple generation of timing... An algorithm for control of several servo motors by a mi- crocontroller is presented. The limited ntanber of progranunable timers on the majority of micnocntrollers presents a problem for multiple generation of timing pulses. Two software approaches are discussed in the paper and experimental results given for operation of a set of small servos using a single timer. 展开更多
关键词 PWM SERVO MULTIPLE TIMER
在线阅读 下载PDF
Overview on active disturbance rejection control for electro-mechanical actuation servo drive 被引量:1
3
作者 Chunqiang LIU Guangzhao LUO +1 位作者 Zhe CHEN Xiaofeng DING 《Chinese Journal of Aeronautics》 2025年第7期291-309,共19页
Permanent magnet synchronous motor based electro-mechanical actuation servo drives have widespread applications in the aviation field,such as unmanned aerial vehicle electric servos,electric cabin doors,and mechanical... Permanent magnet synchronous motor based electro-mechanical actuation servo drives have widespread applications in the aviation field,such as unmanned aerial vehicle electric servos,electric cabin doors,and mechanical arms.The performance of the servo drive,which encompasses the response to the torque,efficiency,control bandwidth and the steady-state positioning accuracy,significantly influences the performance of the aviation actuation.Consequently,enhancing the control bandwidth and refining the positioning accuracy of aviation electro-mechanical actuation servo drives have emerged as a focal point of research.This paper investigates the multi-source disturbances present in aviation electro-mechanical actuation servo systems and summarizes recent research on high-performance servo control methods based on active disturbance rejection control(ADRC).We present a comprehensive overview of the research status pertaining to servo control architecture,strategies for suppressing disturbances in the current loop,and ADRC-based strategies for the position loop.We delineate the research challenges and difficulties encountered by aviation electro-mechanical actuation servo drive control technology. 展开更多
关键词 Active disturbance rejection control Electric servo drive Permanent magnet synchronous motor Electro-mechanical actuation
原文传递
Automatic Control of Magnetic Helical Microrobots Docking with Target Objects in Liquid Environments
4
作者 Fu Zhao Haoran Rong Lefeng Wang 《Journal of Bionic Engineering》 2025年第2期574-584,共11页
Bio-inspired magnetic helical microrobots have great potential for biomedical and micromanipulation applications. Precise interaction with objects in liquid environments is an important prerequisite and challenge for ... Bio-inspired magnetic helical microrobots have great potential for biomedical and micromanipulation applications. Precise interaction with objects in liquid environments is an important prerequisite and challenge for helical microrobots to perform various tasks. In this study, an automatic control method is proposed to realize the axial docking of helical microrobots with arbitrarily placed cylindrical objects in liquid environments. The docking process is divided into ascent, approach, alignment, and insertion stages. First, a 3D docking path is planned according to the positions and orientations of the microrobot and the target object. Second, a steering-based 3D path-following controller guides the helical microrobot to rise away from the container bottom and approach the target along the path. Third, based on path design with gravity compensation and steering output limits, alignment of position and orientation can be accomplished simultaneously. Finally, the helical microrobot completes the docking under the rotating magnetic field along the target orientation. Experiments verified the automatic docking of the helical microrobot with static targets, including connecting with micro-shafts and inserting into micro-tubes. The object grasping of a reconfigurable helical microrobot aided by 3D automatic docking was also demonstrated. This method enables precise docking of helical microrobots with objects, which might be used for capture and sampling, in vivo navigation control, and functional assembly of microrobots. 展开更多
关键词 Magnetic actuation Helical microrobots Visual servo Motion control DOCKING
在线阅读 下载PDF
Smooth switching mechanism-based adaptive integral terminal SMC for PMSM servo system with stator voltage saturation and unknown disturbances
5
作者 Xiangxiang Meng Haisheng Yu +1 位作者 Jie Zhang Qing Yang 《Control Theory and Technology》 2025年第2期294-309,共16页
This article investigates the anti-disturbance and stabilization problems for the nonlinear uncertain permanent magnet synchronous motor(PMSM)with stator voltage saturation and unknown load.A smooth switching mechanis... This article investigates the anti-disturbance and stabilization problems for the nonlinear uncertain permanent magnet synchronous motor(PMSM)with stator voltage saturation and unknown load.A smooth switching mechanism is presented to structure the adaptive integral terminal sliding mode control(SMC)strategy.The control design consists of compensation control and nominal control,which improves the rapidity and accuracy of trajectory tracking.The smooth saturation model based on the error function is applied to approximate the voltage saturation phenomenon.Additionally,to deal with the adverse effects of various unknown disturbances,including model parameter uncertainties and unknown external load disturbances,an improved disturbance observer(DO)is proposed.This observer effectively suppresses the fluctuations caused by fixed gain during the starting period of the system.Finally,the experimental results under different conditions show that the proposed strategy has good tracking and disturbance suppression performances. 展开更多
关键词 Smooth switching mechanism Integral terminal SMC PMSM servo system Disturbance suppression Stator voltage saturation
原文传递
Dynamic Analysis of Horizontal Servo System in Suspension Gravity Compensation System
6
作者 WANG Wanqing WANG Qingxia +2 位作者 YANG Shuai LI Na HUANG Shunzhou 《Journal of Donghua University(English Edition)》 2025年第1期29-40,共12页
A new suspension gravity compensation system has been developed to alleviate the gravity effects on a two-dimensional(2D)deployable mechanism for ground verification.Considering the rigid-flexible coupling of both the... A new suspension gravity compensation system has been developed to alleviate the gravity effects on a two-dimensional(2D)deployable mechanism for ground verification.Considering the rigid-flexible coupling of both the rotating servo and the suspension system,a multi-body dynamic model simulating their integration is established using Lagrange’s equation.To mitigate instantaneous impact forces due to significant non-plumb effects from passive following in the horizontal direction,an elastic element is added in series with the rope in the vertical suspension system.The dynamic response of this elastic element relative to the rotating servo system is analyzed by the ADAMS software.Simulation results show that the compensating error decreases significantly from 45%to 0.31%when incorporating elastic elements compared to scenarios without such elements.Additionally,low-stiffness elastic elements demonstrate a higher compensating error than high-stiffness ones.A spring with a stiffness coefficient of 6 N/mm is selected in the experiment,ensuring that compensating error meets the design specification of 5%. 展开更多
关键词 suspension gravity compensation passive servo system flexible-rigid coupling model series elastic element
在线阅读 下载PDF
A Method for Ultrasound Servo Tracking of Puncture Needle
7
作者 Shitong Ye Bo Yang +3 位作者 Hao Quan Shan Liu Minyi Tang Jiawei Tian 《Computer Modeling in Engineering & Sciences》 2025年第8期2287-2306,共20页
Computer-aided surgical navigation technology helps and guides doctors to complete the operation smoothly,which simulates the whole surgical environment with computer technology,and then visualizes the whole operation... Computer-aided surgical navigation technology helps and guides doctors to complete the operation smoothly,which simulates the whole surgical environment with computer technology,and then visualizes the whole operation link in three dimensions.At present,common image-guided surgical techniques such as computed tomography(CT)and X-ray imaging(X-ray)will cause radiation damage to the human body during the imaging process.To address this,we propose a novel Extended Kalman filter-based model that tracks the puncture needle-point using an ultrasound probe.To address the limitations of Kalman filteringmethods based on position and velocity,our method of Kalman filtering uses the position and relative velocity of the puncture needle-point instead,and the ultrasonic probe is controlled by a Proportional Integral(PI)controller in X-axis direction and Proportional Derivative(PD)controller in the Y-axis direction.The motion of the ultrasonic probe can be servo-controlled by whether the image information of the puncture needle-point can be detected by the ultrasonic image so that the ultrasonic probe can track the puncture needle-point in real time.The experiment results show that this method has better tracking performance. 展开更多
关键词 Surgical navigation system ultrasonic image servo control position and relative velocity extended Kalman filtering
在线阅读 下载PDF
Multicopter interception control based on visual servo and virtual tube in a cluttered environment
8
作者 LYU Yangjie GAO Yan QI Guoyuan 《Journal of Systems Engineering and Electronics》 2025年第4期1094-1102,共9页
This paper presents a method of multicopter intercep-tion control based on visual servo and virtual tube in a cluttered environment.The proposed hybrid heuristic function improves the efficiency of the A*algorithm.The... This paper presents a method of multicopter intercep-tion control based on visual servo and virtual tube in a cluttered environment.The proposed hybrid heuristic function improves the efficiency of the A*algorithm.The revised objective function makes the virtual tube generating curve not only smooth but also close to the path points generated by the A*algorithm.In six dif-ferent simulation scenarios,the efficiency of the modified A*algorithm is 6.2%higher than that of the traditional A*algorithm.The efficiency of path planning and virtual tube planning is veri-fied by simulations.The effectiveness of interception control is verified by a software-in-loop(SIL)simulation. 展开更多
关键词 interception control visual servo virtual tube.
在线阅读 下载PDF
Study on pressure buffer structure of continuous rotary electro-hydraulic servo motor
9
作者 WANG Xiaojing PENG Ziqin ZHANG Yuxuan 《High Technology Letters》 2025年第1期95-104,共10页
The aim of the study is to investigate the impact of the buffer groove structure on the pressure of continuous rotation electro-hydraulic servo motor.The mathematical model of the motor valve plate with triangular gro... The aim of the study is to investigate the impact of the buffer groove structure on the pressure of continuous rotation electro-hydraulic servo motor.The mathematical model of the motor valve plate with triangular groove and U-groove structure is established firstly,and the structure size of the two buffer grooves with better pressure drop effect is obtained by Matlab.Secondly,an established pressure gradient model is developed for the sealed canisters for electric motors using a combined groove structure.The bird swarm optimization algorithm is used to obtain the optimal dimensions for the combined depth and angle of the pressure groove.The flow field in the motor seal chamber is simulated and calculated by Fluent.This study compared the pressure field distributions in the motors sealing chamber using triangular and combined groove structures.It investigated the combined grooves effect on the pressure impact during the commutation of a continuously rotating electro-hydraulic servo motor.It is found that the combined groove structure has a positive impact on reducing the pressure impact.The results indicate that the combined groove structure significantly enhances the efficiency of mitigating pressure shocks when the motor switches between high-and low-pressure chambers. 展开更多
关键词 continuous rotating electro-hydraulic servo motor pressure impact combined groove optimal design
在线阅读 下载PDF
Dynamic Characteristics of the Subsea Direct Drive Hydraulic Servo Rotary Valve
10
作者 SHI You-cheng SHAN Jun-feng +1 位作者 ZHANG Hu-cheng LIU Yin-shui 《China Ocean Engineering》 2025年第2期329-339,共11页
Hydraulic technology has the outstanding advantages of easy pressure compensation and high power density.It is an indispensable part of subsea equipment,such as deep-sea operations and submersible propulsion.There are... Hydraulic technology has the outstanding advantages of easy pressure compensation and high power density.It is an indispensable part of subsea equipment,such as deep-sea operations and submersible propulsion.There are few studies on electrohydraulic servo valves(EHSVs)in the deep sea.In this work,a novel electro-hydraulic servo rotary valve is designed,and its mathematical model is established.The analysis considers the variations in physical parameters such as temperature,ambient pressure,and oil viscosity resulting from changes in sea depth.This study focuses on the deformation of the rotary valve and the consequent alterations in leakage and friction torque.The findings indicate that at a depth of 12000 m,the fit clearance between the valve spool and the valve sleeve is 0.00413 mm,representing a 17%reduction compared with the clearance in a land environment.Then,the response of the rotary valve to depth is analyzed.The results indicate that the bandwidth of the rotary valve decreases with increasing depth.This study provides a reference for the use of the EHSV in the deep sea. 展开更多
关键词 subsea hydraulic technology electro-hydraulic servo rotary valve valve deformation fit clearance dynamic characteristics response
在线阅读 下载PDF
S&S:Global expert in jacquard weaving solutions
11
《China Textile》 2025年第5期51-51,共1页
At this exhibition,as global expert in jacquard weaving solutions,Jiangsu S&S Intelligent Science And Technology Co.,Ltd.focuses on launching the SLX cam series jacquard machines.This equipment adopts servo direct... At this exhibition,as global expert in jacquard weaving solutions,Jiangsu S&S Intelligent Science And Technology Co.,Ltd.focuses on launching the SLX cam series jacquard machines.This equipment adopts servo direct-drive technology,which can reduce energy consumption by over 20%compared with traditional motor systems,and achieves highprecision control,efficient energy utilization,intelligent control.Precision process design The SLX cam jacquard machine adopts optimized shedding cam curve,featuring long effective shedding time and more stable operation.The low-center-of-gravity design minimizes the vibration and noise of the machine frame,while the camshaft box body formed by one-time processing ensures extremely high mounting accuracy of the conjugate cam.The equipment adopts a fully sealed design,which has good dust-proof effect and attractive appearance.The easily adjustable sensor disc assembly facilitates maintenance.These design details reflect S&S's pursuit of exquisite product quality. 展开更多
关键词 jacquard machines slx cam jacquard machine precision control traditional motor systemsand energy consumption jacquard machinesthis servo direct drive technology jacquard weaving
在线阅读 下载PDF
Parameter identification and high order active disturbance rejection control of electro-hydraulic servo motor system
12
作者 WANG Xiaojing GAO Wentao +1 位作者 ZHANG Yuxuan SUN Yuwei 《High Technology Letters》 2025年第3期280-287,共8页
An enhanced least mean square(LMS)error identification algorithm integrated with Kalman filtering is proposed to resolve accuracy degradation induced by nonlinear dynamics and parameter uncertainties in continuous rot... An enhanced least mean square(LMS)error identification algorithm integrated with Kalman filtering is proposed to resolve accuracy degradation induced by nonlinear dynamics and parameter uncertainties in continuous rotary electro-hydraulic servo systems.This enhancement accelerates convergence and improves accuracy compared with traditional LMS.A fifth-order identification mod-el is developed based on valve-controlled hydraulic motors,with parameters identified using Kalman filter state estimation and gradient smoothing.The results indicate that the improved LMS effectively enhances parameter identification.An advanced disturbance rejection controller(ADRC)is de-signed,and its performance is compared with an optimal proportional integral derivative(PID)con-troller through Simulink simulations.The results show that the ADRC fulfills the control specifications and expands the system’s operational bandwidth. 展开更多
关键词 electro-hydraulic servo system tracking differentiator filter minimum mean square error identification advanced disturbance rejection controller nonlinear feedback control law extended state observer parameter optimal proportional integral derivative control
在线阅读 下载PDF
Adaptive Robust Servo Control for Vertical Electric Stabilization System of Tank and Experimental Validation 被引量:3
13
作者 Darui Lin Xiuye Wang +1 位作者 Yimin Wang Guolai Yang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期326-342,共17页
A tracking stability control problem for the vertical electric stabilization system of moving tank based on adaptive robust servo control is addressed.This paper mainly focuses on two types of possibly fast timevaryin... A tracking stability control problem for the vertical electric stabilization system of moving tank based on adaptive robust servo control is addressed.This paper mainly focuses on two types of possibly fast timevarying but bounded uncertainty within the vertical electric stabilization system:model parameter uncertainty and uncertain nonlinearity.First,the vertical electric stabilization system is constructed as an uncertain nonlinear dynamic system that can reflect the practical mechanics transfer process of the system.Second,the dynamical equation in the form of state space is established by designing the angular tracking error.Third,the comprehensive parameter of system uncertainty is designed to estimate the most conservative effects of uncertainty.Finally,an adaptive robust servo control which can effectively handle the combined effects of complex nonlinearity and uncertainty is proposed.The feasibility of the proposed control strategy under the practical physical condition is validated through the tests on the experimental platform.This paper pioneers the introduction of the internal nonlinearity and uncertainty of the vertical electric stabilization system into the settlement of the tracking stability control problem,and validates the advanced servo control strategy through experiment for the first time. 展开更多
关键词 Adaptive robust servo control Experimental validation Nonlinearity compensation System uncertainty Vertical electric stabilization system
在线阅读 下载PDF
Dual sliding mode coordinated control of manipulator grasping system with visual assistance
14
作者 Pengxin Zhang Haisheng Yu +3 位作者 Xiangxiang Meng Zhe Li Qing Yang Xunkai Gao 《Control Theory and Technology》 EI CSCD 2024年第1期106-121,共16页
The operation efficiency of the manipulator is placed in the primary position in automatic production. This paper proposes a coordinated control strategy for joint servo and visual servo to enable timely transfer and ... The operation efficiency of the manipulator is placed in the primary position in automatic production. This paper proposes a coordinated control strategy for joint servo and visual servo to enable timely transfer and accurate gripping in the working area. Aiming at the issues of chattering and slow convergence of traditional sliding mode controller, a fast variable power reaching rate on the basis of the non-singular fast terminal sliding mode controller is proposed, which can effectively reduce the convergence time and chattering. For the purpose of addressing the problem that the traditional visual servo control method is sensitive to the environment, a visual servo controller based on integral sliding mode is proposed, to ensure the favorable positioning accuracy of the manipulator. Based on the two proposed controllers mentioned above, a coordinated control strategy is used to implement the control of the manipulator. Finally, the upper computer software is developed using the C# programming language to monitor the workstation. The feasibility of the above-mentioned method is verified through multiple simulations and experiments. 展开更多
关键词 Automatic production Joint servo Visual servo Coordinated control Non-singular fast terminal sliding mode Integral sliding mode
原文传递
Simulation Study on Dynamic Stiffness of Kick-reaction Link Actuator 被引量:1
15
作者 HU Yixue PU Youhua LIU Peng 《International Journal of Plant Engineering and Management》 2024年第3期129-141,共13页
Under the same aerodynamic load,the load transmitted by the kick-reaction link actuator to the aircraft structure is only 1/5 to 1/3 of that of the point-to-point actuator,which can significantly reduce the weight of ... Under the same aerodynamic load,the load transmitted by the kick-reaction link actuator to the aircraft structure is only 1/5 to 1/3 of that of the point-to-point actuator,which can significantly reduce the weight of the structure,and is widely used in the main flight control surface of large and medium-sized civil airliners.In order to restrain the flutter of aircraft rudder surface,it is necessary to design the servo stiffness of the kick-reaction link actuator in the development stage,so that it can meet the dynamic stiffness requirement within the frequency range.Taking the actuator of a civil airliner as the research object,the dynamic stiffness modeling of elevator actuator is carried out on MATLAB platform,and the dynamic stiffness test is carried out to verify the correctness of dynamic stiffness modeling.The simulation and test results show that the actuator can meet the dynamic stiffness design requirements. 展开更多
关键词 kick⁃reaction link actuator dynamic stiffness MATLAB servo stiffness
在线阅读 下载PDF
Two-phase visual servoing for capturing tumbling non-cooperative satellites with a space manipulator
16
作者 Dezhi ZHANG Guocai YANG +3 位作者 Yongjun SUN Junhong JI Minghe JIN Hong LIU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第12期560-573,共14页
In this paper,a visual servoing approach is developed to capture the docking rings of tumbling non-cooperative satellites with a space manipulator.The primary challenge addressed is the potential for the docking ring ... In this paper,a visual servoing approach is developed to capture the docking rings of tumbling non-cooperative satellites with a space manipulator.The primary challenge addressed is the potential for the docking ring to leave the monocular camera’s field-of-view as the manipulator approaches the target,due to the ring’s large size.To solve this issue,a two-phase visual servoing scheme combining a monocular camera and a three-line structured light vision system is proposed.In an effort to augment the success rate and safety of capture operations,several constraints are formulated,encompassing manipulator’s kinematics,monocular camera’s field-of-view,obstacle avoidance,structured light’s breakpoints and smooth capture.Subsequently,a nonlinear model predictive controller is proposed to manage these constraints in real-time and regulate the system.System models are established based on image moments and pose for each phase,selecting these features as visual feedback to simplify the formulation of servo constraints and avoid the complex circle-based pose measurement.Furthermore,to ensure unbiased predictions,the model disturbances arising from the imprecise estimation of target motion parameter are observed using an extended Kalman filter,which are then incorporated into the predictive control framework.The simulation results demonstrate the effectiveness of this scheme. 展开更多
关键词 Space manipulator Tumbling non-cooperative satellite Visual servoing Model predictive control Disturbance estimation
原文传递
无人飞行器在不确定扰动下的动态目标跟踪
17
作者 Yanjie Chen Yangning Wu +4 位作者 Limin Lan Hang Zhong Zhiqiang Miao Hui Zhang Yaonan Wang 《Engineering》 SCIE EI CAS CSCD 2024年第4期74-85,共12页
This study proposes an image-based visual servoing(IBVS)method based on a velocity observer for an unmanned aerial vehicle(UAV)for tracking a dynamic target in Global Positioning System(GPS)-denied environments.The pr... This study proposes an image-based visual servoing(IBVS)method based on a velocity observer for an unmanned aerial vehicle(UAV)for tracking a dynamic target in Global Positioning System(GPS)-denied environments.The proposed method derives the simplified and decoupled image dynamics of underactuated UAVs using a constructed virtual camera and then considers the uncertainties caused by the unpredictable rotations and velocities of the dynamic target.A novel image depth model that extends the IBVS method to track a rotating target with arbitrary orientations is proposed.The depth model ensures image feature accuracy and image trajectory smoothness in rotating target tracking.The relative velocities of the UAV and the dynamic target are estimated using the proposed velocity observer.Thanks to the velocity observer,translational velocity measurements are not required,and the control chatter caused by noise-containing measurements is mitigated.An integral-based filter is proposed to compensate for unpredictable environmental disturbances in order to improve the antidisturbance ability.The stability of the velocity observer and IBVS controller is analyzed using the Lyapunov method.Comparative simulations and multistage experiments are conducted to illustrate the tracking stability,anti-disturbance ability,and tracking robustness of the proposed method with a dynamic rotating target. 展开更多
关键词 Unmanned aerial vehicle Visual servoing Velocity observer Target tracking
在线阅读 下载PDF
Manipulator tracking technology based on FSRUKF
18
作者 SHI Guoqing ZHANG Boyan +5 位作者 ZHANG Jiandong YANG Qiming HUANG Xiaofeng QUE Jianyao PU Junwei GENG Xiutang 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第2期473-484,共12页
Aiming at the shortcoming that the traditional industrial manipulator using off-line programming cannot change along with the change of external environment,the key technologies such as machine vision and manipulator ... Aiming at the shortcoming that the traditional industrial manipulator using off-line programming cannot change along with the change of external environment,the key technologies such as machine vision and manipulator control are studied,and a complete manipulator vision tracking system is designed.Firstly,Denavit-Hartenberg(D-H)parameters method is used to construct the model of the manipulator and analyze the forward and inverse kinematics equations of the manipulator.At the same time,a binocular camera is used to obtain the threedimensional position of the target.Secondly,in order to make the manipulator track the target more accurately,the fuzzy adaptive square root unscented Kalman filter(FSRUKF)is proposed to estimate the target state.Finally,the manipulator tracking system is built by using the position-based visual servo.The simulation experiments show that FSRUKF converges faster and with less error than the square root unscented Kalman filter(SRUKF),which meets the application requirements of the manipulator tracking system,and basically meets the application requirements of the manipulator tracking system in the practical experiments. 展开更多
关键词 square root unscented Kalman filter(SRUKF) fuzzy inference MANIPULATOR visual servo
在线阅读 下载PDF
Intelligent Solar Chasing Street Light System Design and Fabrication Summaries
19
作者 Liyan Zhang Qingying Zhou +1 位作者 Yueming Zhan Hu Guo 《Journal of Electronic Research and Application》 2024年第6期103-111,共9页
This project adopts an advanced microcontroller as the core control unit,which accurately commands the servo drive,realizes the real-time light chasing and charging function of the solar panel,and effectively manages ... This project adopts an advanced microcontroller as the core control unit,which accurately commands the servo drive,realizes the real-time light chasing and charging function of the solar panel,and effectively manages the power supply system of the street light.At the same time,the system is able to continuously monitor the operation status of the servo within the range of 0°to 180°to ensure that it is trouble-free and not offline.The hardware system construction consists of five modules:a power module,solar panel module,servo module,street light module,and Organic Light-Emitting Diode(OLED)display module.Each module works together to support the stable operation of the whole system.The system workflow is to accurately determine the direction of the light source by collecting real-time light intensity data through four precision photoresistors.Subsequently,the microcontroller intelligently controls the helm module based on these data to drive the solar panel to rotate within a range of 180°to accurately track the sun’s orientation.The street light provides two lighting modes,automatic and manual,to meet the needs of different scenarios.During the daytime,the solar panels work actively to monitor and collect solar energy efficiently in real-time,meanwhile,when night falls,the solar panels switch to standby mode and the streetlights light up automatically,illuminating the road ahead for pedestrians.Compared with the traditional solar street lights on the market,the intelligent solar light chasing road system introduced in this project has significant advantages.Its unique light-chasing algorithm enables the solar panel to continuously track the light source from sunrise to sunset,thus significantly improving the charging efficiency.Compared with traditional street lights,the biggest advantage of this project is the proposed light-chasing algorithm,which can always charge from sunrise until sunset,making the charging efficiency increase by 38%to 47%.The charging efficiency is 20%to 38%higher than that of traditional street lamps.Simultaneously,the biggest advantage of this project is that the power storage capacity is higher than 35%of the traditional solar street light.Bringing users a more durable and stable lighting experience. 展开更多
关键词 Microcontroller control Power supply module Solar panel module Servo module Street light module OLED display module
在线阅读 下载PDF
Design and Application of Discrete Sliding Mode Control with RBF Network-based Switching Law 被引量:6
20
作者 牛建军 付永领 祁晓野 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2009年第3期279-284,共6页
This article proposes a novel approach combining exponential-reaching-law-based equivalent control law with radial basis function (RBF) network-based switching law to strengthen the sliding mode control (SMC) tracking... This article proposes a novel approach combining exponential-reaching-law-based equivalent control law with radial basis function (RBF) network-based switching law to strengthen the sliding mode control (SMC) tracking capacity for systems with uncertainties and disturbances. First, SMC discrete equivalent control law is designed on the basis of the nominal model of the system and the adaptive exponential reaching law, and subsequently, stability of the algorithm is analyzed. Second, RBF network is used to f... 展开更多
关键词 sliding mode control switching law design radial basis function networks flight simulators extra-low speed servo
原文传递
上一页 1 2 17 下一页 到第
使用帮助 返回顶部