Owls exhibit remarkably silent flight,largely attributed to trailing-edge(TE)serrations on their wings.Inspired by this biological adaptation,TE serrations have become promising passive-noise-control strategies for ae...Owls exhibit remarkably silent flight,largely attributed to trailing-edge(TE)serrations on their wings.Inspired by this biological adaptation,TE serrations have become promising passive-noise-control strategies for aerodynamic devices,including drones and wind turbines.However,conventional designs typically feature single-scale geometries—Such as sawtooth or sinusoidal serrations—that fail to replicate the owl’s inherently dual-scale morphology:Macro-scale waviness formed by feather tips combined with micro-scale morphology.Here,we introduce and evaluate a hybrid TE serration design that incorporates both macro-scale wave patterns and micro-scale fringe-like elements to closely emulate the owl wing structure.Using large-eddy simulations coupled with the Ffowcs Williams-Hawkings acoustic analogy,we assess three configurations:A smooth baseline,a conventional wavy serration,and the proposed hybrid serration.Our results indicate that the hybrid configuration achieves an overall noise reduction of about 12 dB relative to the smooth baseline,surpassing the conventional wavy configuration by approximately 2.5 dB,while preserving aerodynamic performance as measured by lift-to-drag ratio.Flow-field analyses further reveal that dual-scale serrations effectively suppress TE pressure fluctuations,highlighting a key aeroacoustic advantage of the owl-inspired hybrid approach.These insights advance our understanding of bioinspired noisecontrol mechanisms and provide practical guidelines for designing quieter aerodynamic systems.展开更多
Biomimetics has recently emerged as an interesting approach to enhance renewable energy technologies.In this work,bioinspired Trailing Edge Serrations(TES)were evaluated on a typical Vertical Axis Wind Turbine(VAWT)ai...Biomimetics has recently emerged as an interesting approach to enhance renewable energy technologies.In this work,bioinspired Trailing Edge Serrations(TES)were evaluated on a typical Vertical Axis Wind Turbine(VAWT)airfoil,the DU06-W200.As noise reduction benefits of these mechanisms are already well-established,this study focuses on their impact on airfoil and VAWT performance.A saw-tooth geometry was chosen based on VAWT specifications and existing research,followed by a detailed assessment through wind tunnel tests using a newly developed aerodynamic balance.For a broad spectrum of attack angles and Reynolds numbers,lift,drag,and pitching moments were carefully measured.The results show that TES enhance the lift-to-drag ratio,especially in stalled conditions,and postpone stall at negative angles,expanding the effective performance range.A notable increase in pitching moment also is also observed,relevant for blade-strut joint design.Additionally,the impact on turbine performance was estimated using an analytical model,demonstrating excellent accuracy when compared against previous experimental results.TES offer a modest 2%improve-ment in peak performance,though they slightly narrow the optimal tip-speed ratio zone.Despite this,the potential noise reduction and performance gains make TES a valuable addition to VAWT designs,especially in urban settings.展开更多
The process of tensile test at different temperatures and strain rates was used to study the characteristics of serrated flow, i.e., Portevin-Le Chatelier effect (PLC), in NZ31 Mg alloy. The PLC effect in the tensile ...The process of tensile test at different temperatures and strain rates was used to study the characteristics of serrated flow, i.e., Portevin-Le Chatelier effect (PLC), in NZ31 Mg alloy. The PLC effect in the tensile stress?strain curves was observed at the temperature range of 150?250 °C. Serrated flow during the deformation at 250 °C is prominent, and a lot of slip bands with a specific direction in each grain can be observed in the microstructure. The serration changes from type A to type C with the increase of temperature and the decrease of strain rate. One single serration of type A was described specifically by the processes of partial pinning, absolute pinning and unpinning. The enhancement of pinning ability at high temperature and low strain rate can promote the absolute pinning process and restrain the unpinning process, which explains the serration type transition.展开更多
Dynamic strain aging (DSA) effect on SA508-III reactor pressure vessel (RPV) steel was investigated. The SA508-III RPV steel was subjected to tension tests at different strain rates (1.1× 10-5 s-1 and 6.6...Dynamic strain aging (DSA) effect on SA508-III reactor pressure vessel (RPV) steel was investigated. The SA508-III RPV steel was subjected to tension tests at different strain rates (1.1× 10-5 s-1 and 6.6× 10-5 s-1) and different temperatures (500 and 550 ℃) to evaluate the influence of strain rate and temperature on the serrated flow behavior, which is the repetitive and discontinuous yielding phenomenon on the stress-strain curves. The higher temperature leads to the higher density of precipitates, M23C6 carbides and needle-like Mo2C carbides. It was found that the samples under tension test of 6.6 × 10-5 s-1 and 500 ℃ possess superior mechanical properties and mainly show A-type serrations on the tension test curves. Then, the local regress method was used to filter the DSA curves, thus to show the real trend of the curves. It has been found that the less time of interaction between dislocations and precipitates under higher strain rates leads to a higher strength of the sample. The more tiny-stress drops on the 550 ℃ serration curve can be attributed to the hardening phase, M23C6 carbides and needle-like Mo2C carbides. The higher percentage of the small stress drops on the serration curves represents the higher mechanical strength.展开更多
Trailing edge serrations(TESs)are capable of noticeably suppressing the turbulent trailing edge noise induced by rotating wind turbine blades and become an integral part of a blade.However,the challenges involved in t...Trailing edge serrations(TESs)are capable of noticeably suppressing the turbulent trailing edge noise induced by rotating wind turbine blades and become an integral part of a blade.However,the challenges involved in the dimensional design of serration height 2 h,wavelengthλand flap angleϕare yet to be dealt with in a satisfactory manner.To address the problem,a general model for simulating the effects of serrations on the hydrodynamic and aeroacoustic performance is proposed due to its ease of use and relatively low requirements for user input.The solid serrations are replicated by momentum sources calculated by its aerodynamic forces.Then,a case relevant to wind turbine airfoil is examined,a hybrid improved delay detached eddy simulation(IDDES)method coupled with FW-H integration is deployed to obtain the flow features and far-field sound pressure level.It is found that the modeling method could reproduce the flow field and noise as serrated airfoil.展开更多
Multicomponent alloys with high entropy of mixing,e.g.,high entropy alloys(HEAs)and/or multiprincipal-element alloys(MEAs),are attracting increasing attentions,because the materials with novel properties are being...Multicomponent alloys with high entropy of mixing,e.g.,high entropy alloys(HEAs)and/or multiprincipal-element alloys(MEAs),are attracting increasing attentions,because the materials with novel properties are being developed,based on the design strategy of the equiatomic ratio,multicomponent,and high entropy of mixing in their liquid or random solution state.Recently,HEAs with the ultrahigh strength and fracture toughness,excellent magnetic properties,high fatigue,wear and corrosion resistance,great phase stability/high resistance to heat-softening behavior,sluggish diffusion effects,and potential superconductivity,etc.,were developed.The HEAs can even have very high irradiation resistance and may have some self-healing effects,and can potentially be used as the first wall and nuclear fuel cladding materials.Serration behaviors and flow units are powerful methods to understand the plastic deformation or fracture of materials.The methods have been successfully used to study the plasticity of amorphous alloys(also bulk metallic glasses,BMGs).The flow units are proposed as:free volumes,shear transition zones(STZs),tension-transition zones(TTZs),liquid-like regions,soft regions or soft spots,etc.The flow units in the crystalline alloys are usually dislocations,which may interact with the solute atoms,interstitial types,or substitution types.Moreover,the flow units often change with the testing temperatures and loading strain rates,e.g.,at the low temperature and high strain rate,plastic deformation will be carried out by the flow unit of twinning,and at high temperatures,the grain boundary will be the weak area,and play as the flow unit.The serration shapes are related to the types of flow units,and the serration behavior can be analyzed using the power law and modified power law.展开更多
A series of as-cast lightweight multicomponent alloys Al(86-x)Mg10Zn2Cu2Six(x=0,0.3,0.6,0.9,1.2 at.%)were prepared by a vacuum induction furnace with a steel die.With the addition of Si,the reticular white Al-Cu phase...A series of as-cast lightweight multicomponent alloys Al(86-x)Mg10Zn2Cu2Six(x=0,0.3,0.6,0.9,1.2 at.%)were prepared by a vacuum induction furnace with a steel die.With the addition of Si,the reticular white Al-Cu phase deposited were gradually replaced by the gray eutectic Mg-Si phase,while the compressive strength of the alloys increases first and then decreases slowly.It is particularly noteworthy that the compression plasticity also exhibits this trend.When the Si content is 0.9 at.%,the compressive strength reaches its maximum at 779.11 MPa and the compressive plasticity reaches 20.91%.The effect of the addition of Si on the serration behavior of alloy was also studied;we found that the addition of Si introduces a new MgSi phase,and with the change of Si is significantly affects the morphology of the precipitated phase,which affects the serration behavior of the alloys.The comprehensive mechanical properties of the alloy are optimal at the critical point where the serration behavior disappears.In this work,we have provided a method and a composition for the preparation of a low-cost,high-strength,lightweight medium-entropy alloys.展开更多
Behaviour of hardening and serration yield of a Fe-Ni-Cr alloy under isothermal cycling (ISC) and out-phase TMF was studied on the basis of varied hysteresis loops. Cycling hardening and serrated yielding for ISC de...Behaviour of hardening and serration yield of a Fe-Ni-Cr alloy under isothermal cycling (ISC) and out-phase TMF was studied on the basis of varied hysteresis loops. Cycling hardening and serrated yielding for ISC depend on the temperature and the total strain range, stronger hardening with serrated yielding at higher strain range under ISC at 600 ℃, but no hardening and serrated yielding occurred under ISC at 800 ℃. Stronger hardening with stress serration occurred at the thermal path going to the lowest temperature, no stress serration occurred at the highest temperature under the out-phase. The hardening also depends on the total strain range, higher total strain range with lower cycling temperature resulted in a stronger hardening and remarkable serration yielding behavior. Weaker hardening without serrated yielding occurred at near 800℃ may due to an obvious cycling stress drop under out-phase TMF. Change in the shape of the hysteresis loops also expresses the degree of the damage of the tested alloy under out-phase and ISC.展开更多
Metallic amorphous/crystalline(A/C)nanolaminates exhibit excellent ductility while retaining their high strength.However,the underlying physical mechanisms and the resultant structural changes during plastic deformati...Metallic amorphous/crystalline(A/C)nanolaminates exhibit excellent ductility while retaining their high strength.However,the underlying physical mechanisms and the resultant structural changes during plastic deformation still remain unclear.In the present work,the structure-property relationship of CuZr/Cu A/C nanolaminates is established through integrated high-throughput micro-compression tests and molecular dynamics simulations together with high-resolution transmission electron microcopy.The serrated flow of nanolaminates results from the formation of hexagonal-close-packed(HCP)-type stacking faults and twins inside the face-centered-cubic(FCC)Cu nano-grains,the body-centered-cubic(BCC)-type ordering at their grain boundaries,and the crystallization of the amorphous CuZr layers.The serration behavior of CuZr/Cu A/C nanolaminates is determined by several factors,including the formation of dense dislocation networks from the multiplication of initial dislocations that formed after yielding,weak-spots-related configurational-transitions and shear-transition-zone activities,and deformation-induced devitrification.The present work provides an insight into the heterogeneous deformation mechanism of A/C nanolaminates at the atomic scale,and mechanistic base for the microstructural design of self-toughening metallic-glass(MG)-based composites and A/C nanolaminates.展开更多
Modification of the carbide characteristics through the grain boundary serration is investigated, using an AISI 316 and 304 stainless steels. In both steels, triangular carbides were observed at straight grain boundar...Modification of the carbide characteristics through the grain boundary serration is investigated, using an AISI 316 and 304 stainless steels. In both steels, triangular carbides were observed at straight grain boundaries while planar carbides were observed at the serrated grain boundaries. The serrated grain boundary energy is observed to be much lower than that of the straight one. Therefore, the carbide morphology is found to be changed from triangular to planar along the serrated boundary to reduce the interfacial energy between the carbide and the matrix. The creep-fatigue properties of these steels at 873K have been investigated. The creep-fatigue life of the sample with planar carbide at the serrated grain boundary was found to be much longer than that with triangular carbide at the straight one. These results imply that the planar carbides with lower interfacial energy have higher cavitation resistance, resulting in the retardation of cavity nucleation and growth to increase creep-fatigue life.展开更多
Pre-existing(multiple)shear bands were introduced into the ductile Zr56Co28Al16 and Zr65Ni10Cu15Al10bulk metallic glasses(BMGs)through the lateral-deformation,respectively.It was found that the pre-exiting shear b...Pre-existing(multiple)shear bands were introduced into the ductile Zr56Co28Al16 and Zr65Ni10Cu15Al10bulk metallic glasses(BMGs)through the lateral-deformation,respectively.It was found that the pre-exiting shear bands can further enhance the compressive plasticity of ductile BMGs.According to the serration analysis on the plastic deformation of the as-cast and the pre-deformed samples,the serration events in the stress-strain curves during deformation display a self-organized critical(SOC)behavior.Compared with the as-cast BMGs,a larger power-law scaling exponent calculated based on serrated flow behaviors becomes larger for the pre-deformed BMGs,implying that the shear banding stability of BMGs is effectively enhanced.This should be caused by the pronounced interactions of shear bands during plastic deformation for the pre-deformed BMGs.However,by introducing a large amount of multiple shear bands into the glassy matrix,it also becomes easier for shear bands to propagate along the pre-existing shear bands,leading to a lower cut-off elastic energy density for the pre-deformed BMGs.More multiple shear bands with stronger interactions for the pre-deformed BMGs could provide a larger chance to activate the shear-band cracking but less local elastic energies are remained for the subsequent crack-linking.展开更多
By means of statistical analysis,the deformation mechanisms taking place in elastic loading and plastic shearing stages during serrated flows on the stress-strain curves for bulk metallic glasses were studied comprehe...By means of statistical analysis,the deformation mechanisms taking place in elastic loading and plastic shearing stages during serrated flows on the stress-strain curves for bulk metallic glasses were studied comprehensively.Normalized serration number presented a linear increasing tendency with the decrease of applied strain rates due to the reduction of free volumes.An excellent plastic deformation was illustrated from the influences of structure arrangement with activation energy.By using mean-field theory(MFT),maximum elastic-energy density at different strain rates could be predicted by MFT besides maximum stress drops during serrations.These results were helpful for understanding the serrated flow behavior or designing decent schemes to improve the plasticity of bulk metallic glasses at room temperature.展开更多
The metallic glass matrix composites(MGMCs)and bulk metallic glasses(BMGs)were studied by statistical analysis during plastic deformation at the strain rates of 2×10^-2,2×10^-3,and 2×10^-4 s^-1,resp...The metallic glass matrix composites(MGMCs)and bulk metallic glasses(BMGs)were studied by statistical analysis during plastic deformation at the strain rates of 2×10^-2,2×10^-3,and 2×10^-4 s^-1,respectively.No serration events occur in both MGMCs and BMGs during compression tests at the strain rate of 2×10^-2 s^-1.When deformed at the strain rate of 2×10^-3 s^-1,the BMG displays a larger plasticity,which is due to the larger serration events followed by a series of small serrations caused by the continuous movement of free volume.The amplitudes and elastic-energy densities increase with increasing the strain rates owing to many serrations in MGMCs.It is deduced that the Young′s modulus decreases from the normalized stress drop and fluctuations are observed on stressstrain curves,which is attributed to a lower coefficient according to the stick-slip model.展开更多
The Chinese Materials Research Society(C-MRS)Conference(2015)was held in the Guizhou Park Hotel International Conference Center,Guiyang,China,from July 10-14,2015.This conference consists of 30symposia,including 4...The Chinese Materials Research Society(C-MRS)Conference(2015)was held in the Guizhou Park Hotel International Conference Center,Guiyang,China,from July 10-14,2015.This conference consists of 30symposia,including 4international symposia.As one of 4international symposia,"Serration and noise behavior in advanced materials"展开更多
In the current research, serrated flow is investigated under tensile and compressive loading in a ZrCubased bulk metallic glass composite (BMGC) that is well known for its plastic deformability, which is higher than t...In the current research, serrated flow is investigated under tensile and compressive loading in a ZrCubased bulk metallic glass composite (BMGC) that is well known for its plastic deformability, which is higher than that of metallic glasses. Statistical analysis on serrations shows a complex, scale free process, in which shear bands are highly correlated. The distribution of the elastic-energy density stored in each serration event follows a power-law relationship, showing a randomly generated serrated event under both tension and compression tests. The plastic deformation in the temporal space is explored by a timeseries analysis, which is consistent with the trajectory convergent evolution in critical dynamic behavior even in the low strain rate regime in both tests. The results demonstrate that the secondary phase in the BMGC can stabilize the shear band extension and facilitate the critical behavior in the low strain rate regime. This study provides a strong evidence of serrated flow phenomenon in BMGC under tension test, and offers a deep understanding of the correlation between serrations and shear banding in temporal space.展开更多
This paper discussed a noise reduction effect of airfoil and small-scale model rotor by using attached serration trailing edge in the wind tunnel test condition. In order to analyze the changes in the performance due ...This paper discussed a noise reduction effect of airfoil and small-scale model rotor by using attached serration trailing edge in the wind tunnel test condition. In order to analyze the changes in the performance due to the inclusion of a serrated trailing edge designed to reduce noise, a 10 k W wind turbine rotor was equipped with a thin serrated trailing edge. The restrictive condition for the serrated trailing edge equipped with the using of a 2D airfoil was examined through the using of a wind tunnel experiment after studying existing restrictive condition and analyzing prior research on serrated trailing edges. The aerodynamic performance and noise reduction effect of a small-scale model were investigated with the using of a serrated trailing edge. Moreover, the noise levels from the experiment were considered that the noise prediction method could be used for a full-scale rotor. It is confirmed that noise reduction effect is compared with wind tunnel test data at the 2D airfoil and model rotor condition.展开更多
Seldom could metals and alloys maintain excellent properties in cryogenic condition, such as the ductility, owing to the restrained dislocation motion.However, a face-centered-cubic(FCC) CoCrFeNi highentropy alloy(HEA...Seldom could metals and alloys maintain excellent properties in cryogenic condition, such as the ductility, owing to the restrained dislocation motion.However, a face-centered-cubic(FCC) CoCrFeNi highentropy alloy(HEA) with great ductility is investigated under the cryogenic environment. The tensile strength of this alloy can reach a maximum at 1,251±10 MPa, and the strain to failure can stay at as large as 62% at the liquid helium temperature. We ascribe the high strength and ductility to the low stacking fault energy at extremely low temperatures,which facilitates the activation of deformation twinning.Moreover, the FCC→HCP(hexagonal close-packed) transition and serration lead to the sudden decline of ductility below 77 K. The dynamical modeling and analysis of serrations at 4.2 and 20 K verify the unstable state due to the FCC→HCP transition. The deformation twinning together with phase transformation at liquid helium temperature produces an adequate strain-hardening rate that sustains the stable plastic flow at high stresses, resulting in the serration feature.展开更多
基金supported by a Grant-in-Aid for Scientific Research of KAKENHI,Japan Society for the Promotion of Science(Grant Nos.23H01373 and 23K26068)support from the Japanese Government MEXT scholarship and the Excellent International Student Scholarship provided by Chiba University。
文摘Owls exhibit remarkably silent flight,largely attributed to trailing-edge(TE)serrations on their wings.Inspired by this biological adaptation,TE serrations have become promising passive-noise-control strategies for aerodynamic devices,including drones and wind turbines.However,conventional designs typically feature single-scale geometries—Such as sawtooth or sinusoidal serrations—that fail to replicate the owl’s inherently dual-scale morphology:Macro-scale waviness formed by feather tips combined with micro-scale morphology.Here,we introduce and evaluate a hybrid TE serration design that incorporates both macro-scale wave patterns and micro-scale fringe-like elements to closely emulate the owl wing structure.Using large-eddy simulations coupled with the Ffowcs Williams-Hawkings acoustic analogy,we assess three configurations:A smooth baseline,a conventional wavy serration,and the proposed hybrid serration.Our results indicate that the hybrid configuration achieves an overall noise reduction of about 12 dB relative to the smooth baseline,surpassing the conventional wavy configuration by approximately 2.5 dB,while preserving aerodynamic performance as measured by lift-to-drag ratio.Flow-field analyses further reveal that dual-scale serrations effectively suppress TE pressure fluctuations,highlighting a key aeroacoustic advantage of the owl-inspired hybrid approach.These insights advance our understanding of bioinspired noisecontrol mechanisms and provide practical guidelines for designing quieter aerodynamic systems.
基金The authors wish to thank the financial support of the Spanish Ministry of Science,Innovation and Universities in reference to the Project:Efficiency improvement and noise reduction of a vertical axis wind turbine for urban environments(MERTURB)-Ref.MCINN-22-TED2021-131307B-100.
文摘Biomimetics has recently emerged as an interesting approach to enhance renewable energy technologies.In this work,bioinspired Trailing Edge Serrations(TES)were evaluated on a typical Vertical Axis Wind Turbine(VAWT)airfoil,the DU06-W200.As noise reduction benefits of these mechanisms are already well-established,this study focuses on their impact on airfoil and VAWT performance.A saw-tooth geometry was chosen based on VAWT specifications and existing research,followed by a detailed assessment through wind tunnel tests using a newly developed aerodynamic balance.For a broad spectrum of attack angles and Reynolds numbers,lift,drag,and pitching moments were carefully measured.The results show that TES enhance the lift-to-drag ratio,especially in stalled conditions,and postpone stall at negative angles,expanding the effective performance range.A notable increase in pitching moment also is also observed,relevant for blade-strut joint design.Additionally,the impact on turbine performance was estimated using an analytical model,demonstrating excellent accuracy when compared against previous experimental results.TES offer a modest 2%improve-ment in peak performance,though they slightly narrow the optimal tip-speed ratio zone.Despite this,the potential noise reduction and performance gains make TES a valuable addition to VAWT designs,especially in urban settings.
基金Project(2013CB632202)supported by the National Basic Research Program of ChinaProject(51301173)supported by the National Natural Science Foundation of China
文摘The process of tensile test at different temperatures and strain rates was used to study the characteristics of serrated flow, i.e., Portevin-Le Chatelier effect (PLC), in NZ31 Mg alloy. The PLC effect in the tensile stress?strain curves was observed at the temperature range of 150?250 °C. Serrated flow during the deformation at 250 °C is prominent, and a lot of slip bands with a specific direction in each grain can be observed in the microstructure. The serration changes from type A to type C with the increase of temperature and the decrease of strain rate. One single serration of type A was described specifically by the processes of partial pinning, absolute pinning and unpinning. The enhancement of pinning ability at high temperature and low strain rate can promote the absolute pinning process and restrain the unpinning process, which explains the serration type transition.
文摘Dynamic strain aging (DSA) effect on SA508-III reactor pressure vessel (RPV) steel was investigated. The SA508-III RPV steel was subjected to tension tests at different strain rates (1.1× 10-5 s-1 and 6.6× 10-5 s-1) and different temperatures (500 and 550 ℃) to evaluate the influence of strain rate and temperature on the serrated flow behavior, which is the repetitive and discontinuous yielding phenomenon on the stress-strain curves. The higher temperature leads to the higher density of precipitates, M23C6 carbides and needle-like Mo2C carbides. It was found that the samples under tension test of 6.6 × 10-5 s-1 and 500 ℃ possess superior mechanical properties and mainly show A-type serrations on the tension test curves. Then, the local regress method was used to filter the DSA curves, thus to show the real trend of the curves. It has been found that the less time of interaction between dislocations and precipitates under higher strain rates leads to a higher strength of the sample. The more tiny-stress drops on the 550 ℃ serration curve can be attributed to the hardening phase, M23C6 carbides and needle-like Mo2C carbides. The higher percentage of the small stress drops on the serration curves represents the higher mechanical strength.
基金This work was supported by the National Natural Science Foundation of China(Grant No.51736008)“Transformational Technologies for Clean Energy and Demonstration”,Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA21050303).
文摘Trailing edge serrations(TESs)are capable of noticeably suppressing the turbulent trailing edge noise induced by rotating wind turbine blades and become an integral part of a blade.However,the challenges involved in the dimensional design of serration height 2 h,wavelengthλand flap angleϕare yet to be dealt with in a satisfactory manner.To address the problem,a general model for simulating the effects of serrations on the hydrodynamic and aeroacoustic performance is proposed due to its ease of use and relatively low requirements for user input.The solid serrations are replicated by momentum sources calculated by its aerodynamic forces.Then,a case relevant to wind turbine airfoil is examined,a hybrid improved delay detached eddy simulation(IDDES)method coupled with FW-H integration is deployed to obtain the flow features and far-field sound pressure level.It is found that the modeling method could reproduce the flow field and noise as serrated airfoil.
基金Item Sponsored by National Natural Science Foundation of China(51471025,51210105006,51371122)
文摘Multicomponent alloys with high entropy of mixing,e.g.,high entropy alloys(HEAs)and/or multiprincipal-element alloys(MEAs),are attracting increasing attentions,because the materials with novel properties are being developed,based on the design strategy of the equiatomic ratio,multicomponent,and high entropy of mixing in their liquid or random solution state.Recently,HEAs with the ultrahigh strength and fracture toughness,excellent magnetic properties,high fatigue,wear and corrosion resistance,great phase stability/high resistance to heat-softening behavior,sluggish diffusion effects,and potential superconductivity,etc.,were developed.The HEAs can even have very high irradiation resistance and may have some self-healing effects,and can potentially be used as the first wall and nuclear fuel cladding materials.Serration behaviors and flow units are powerful methods to understand the plastic deformation or fracture of materials.The methods have been successfully used to study the plasticity of amorphous alloys(also bulk metallic glasses,BMGs).The flow units are proposed as:free volumes,shear transition zones(STZs),tension-transition zones(TTZs),liquid-like regions,soft regions or soft spots,etc.The flow units in the crystalline alloys are usually dislocations,which may interact with the solute atoms,interstitial types,or substitution types.Moreover,the flow units often change with the testing temperatures and loading strain rates,e.g.,at the low temperature and high strain rate,plastic deformation will be carried out by the flow unit of twinning,and at high temperatures,the grain boundary will be the weak area,and play as the flow unit.The serration shapes are related to the types of flow units,and the serration behavior can be analyzed using the power law and modified power law.
基金The authors would like to thank the National Science Foundation of China(NSFC,Grants 51671020)Dongguan Yi’an Technology Co.,Ltd.for the financial support.
文摘A series of as-cast lightweight multicomponent alloys Al(86-x)Mg10Zn2Cu2Six(x=0,0.3,0.6,0.9,1.2 at.%)were prepared by a vacuum induction furnace with a steel die.With the addition of Si,the reticular white Al-Cu phase deposited were gradually replaced by the gray eutectic Mg-Si phase,while the compressive strength of the alloys increases first and then decreases slowly.It is particularly noteworthy that the compression plasticity also exhibits this trend.When the Si content is 0.9 at.%,the compressive strength reaches its maximum at 779.11 MPa and the compressive plasticity reaches 20.91%.The effect of the addition of Si on the serration behavior of alloy was also studied;we found that the addition of Si introduces a new MgSi phase,and with the change of Si is significantly affects the morphology of the precipitated phase,which affects the serration behavior of the alloys.The comprehensive mechanical properties of the alloy are optimal at the critical point where the serration behavior disappears.In this work,we have provided a method and a composition for the preparation of a low-cost,high-strength,lightweight medium-entropy alloys.
文摘Behaviour of hardening and serration yield of a Fe-Ni-Cr alloy under isothermal cycling (ISC) and out-phase TMF was studied on the basis of varied hysteresis loops. Cycling hardening and serrated yielding for ISC depend on the temperature and the total strain range, stronger hardening with serrated yielding at higher strain range under ISC at 600 ℃, but no hardening and serrated yielding occurred under ISC at 800 ℃. Stronger hardening with stress serration occurred at the thermal path going to the lowest temperature, no stress serration occurred at the highest temperature under the out-phase. The hardening also depends on the total strain range, higher total strain range with lower cycling temperature resulted in a stronger hardening and remarkable serration yielding behavior. Weaker hardening without serrated yielding occurred at near 800℃ may due to an obvious cycling stress drop under out-phase TMF. Change in the shape of the hysteresis loops also expresses the degree of the damage of the tested alloy under out-phase and ISC.
基金financially supported by the National Natural Science Foundation of China(Nos.51690163 and 51601147)the Science Challenge Project(No.TZZT2019-D1.5)+4 种基金the Ministry of Science and Technology of China(No.2017YFA0700700)the United States National Science Foundation(Nos.DMR-1006557,1611180,and 1809640)the Fundamental Research Funds for the Central Universities in China(No.G2016KY0302)the CyberStar cluster funded by NSF through grant No.OCI-0821527the XSEDE clusters supported by NSF through Grant No.ACI-1053575。
文摘Metallic amorphous/crystalline(A/C)nanolaminates exhibit excellent ductility while retaining their high strength.However,the underlying physical mechanisms and the resultant structural changes during plastic deformation still remain unclear.In the present work,the structure-property relationship of CuZr/Cu A/C nanolaminates is established through integrated high-throughput micro-compression tests and molecular dynamics simulations together with high-resolution transmission electron microcopy.The serrated flow of nanolaminates results from the formation of hexagonal-close-packed(HCP)-type stacking faults and twins inside the face-centered-cubic(FCC)Cu nano-grains,the body-centered-cubic(BCC)-type ordering at their grain boundaries,and the crystallization of the amorphous CuZr layers.The serration behavior of CuZr/Cu A/C nanolaminates is determined by several factors,including the formation of dense dislocation networks from the multiplication of initial dislocations that formed after yielding,weak-spots-related configurational-transitions and shear-transition-zone activities,and deformation-induced devitrification.The present work provides an insight into the heterogeneous deformation mechanism of A/C nanolaminates at the atomic scale,and mechanistic base for the microstructural design of self-toughening metallic-glass(MG)-based composites and A/C nanolaminates.
文摘Modification of the carbide characteristics through the grain boundary serration is investigated, using an AISI 316 and 304 stainless steels. In both steels, triangular carbides were observed at straight grain boundaries while planar carbides were observed at the serrated grain boundaries. The serrated grain boundary energy is observed to be much lower than that of the straight one. Therefore, the carbide morphology is found to be changed from triangular to planar along the serrated boundary to reduce the interfacial energy between the carbide and the matrix. The creep-fatigue properties of these steels at 873K have been investigated. The creep-fatigue life of the sample with planar carbide at the serrated grain boundary was found to be much longer than that with triangular carbide at the straight one. These results imply that the planar carbides with lower interfacial energy have higher cavitation resistance, resulting in the retardation of cavity nucleation and growth to increase creep-fatigue life.
基金financially supported by the National Natural Science Foundation of China(51501104,51501103,and 51371108)the Young Scholars Program of Shandong University(Weihai)
文摘Pre-existing(multiple)shear bands were introduced into the ductile Zr56Co28Al16 and Zr65Ni10Cu15Al10bulk metallic glasses(BMGs)through the lateral-deformation,respectively.It was found that the pre-exiting shear bands can further enhance the compressive plasticity of ductile BMGs.According to the serration analysis on the plastic deformation of the as-cast and the pre-deformed samples,the serration events in the stress-strain curves during deformation display a self-organized critical(SOC)behavior.Compared with the as-cast BMGs,a larger power-law scaling exponent calculated based on serrated flow behaviors becomes larger for the pre-deformed BMGs,implying that the shear banding stability of BMGs is effectively enhanced.This should be caused by the pronounced interactions of shear bands during plastic deformation for the pre-deformed BMGs.However,by introducing a large amount of multiple shear bands into the glassy matrix,it also becomes easier for shear bands to propagate along the pre-existing shear bands,leading to a lower cut-off elastic energy density for the pre-deformed BMGs.More multiple shear bands with stronger interactions for the pre-deformed BMGs could provide a larger chance to activate the shear-band cracking but less local elastic energies are remained for the subsequent crack-linking.
基金the financial support of National Natural Science Foundation of China(No.51371122)the Youth Natural Science Foundation of Shanxi Province,China(No.2015021005)
文摘By means of statistical analysis,the deformation mechanisms taking place in elastic loading and plastic shearing stages during serrated flows on the stress-strain curves for bulk metallic glasses were studied comprehensively.Normalized serration number presented a linear increasing tendency with the decrease of applied strain rates due to the reduction of free volumes.An excellent plastic deformation was illustrated from the influences of structure arrangement with activation energy.By using mean-field theory(MFT),maximum elastic-energy density at different strain rates could be predicted by MFT besides maximum stress drops during serrations.These results were helpful for understanding the serrated flow behavior or designing decent schemes to improve the plasticity of bulk metallic glasses at room temperature.
基金Item Sponsored by National Natural Science Foundation of China(51371122,51471025,51210105006)Program for Innovative Talents of Higher Learning Institutions of Shanxi of China(2013)Youth Natural Science Foundation of Shanxi Province of China(2015021005)
文摘The metallic glass matrix composites(MGMCs)and bulk metallic glasses(BMGs)were studied by statistical analysis during plastic deformation at the strain rates of 2×10^-2,2×10^-3,and 2×10^-4 s^-1,respectively.No serration events occur in both MGMCs and BMGs during compression tests at the strain rate of 2×10^-2 s^-1.When deformed at the strain rate of 2×10^-3 s^-1,the BMG displays a larger plasticity,which is due to the larger serration events followed by a series of small serrations caused by the continuous movement of free volume.The amplitudes and elastic-energy densities increase with increasing the strain rates owing to many serrations in MGMCs.It is deduced that the Young′s modulus decreases from the normalized stress drop and fluctuations are observed on stressstrain curves,which is attributed to a lower coefficient according to the stick-slip model.
文摘The Chinese Materials Research Society(C-MRS)Conference(2015)was held in the Guizhou Park Hotel International Conference Center,Guiyang,China,from July 10-14,2015.This conference consists of 30symposia,including 4international symposia.As one of 4international symposia,"Serration and noise behavior in advanced materials"
基金financially supported by National Natural Science Foundation of China (Nos. 51671067, 51761135125 and 11771407)the Plan for Scientific Innovation Talent of Henan Province (No. 164200510011)the Innovative Research Team of Science and Technology in Henan Province (No. 17IRTSTHN007)
文摘In the current research, serrated flow is investigated under tensile and compressive loading in a ZrCubased bulk metallic glass composite (BMGC) that is well known for its plastic deformability, which is higher than that of metallic glasses. Statistical analysis on serrations shows a complex, scale free process, in which shear bands are highly correlated. The distribution of the elastic-energy density stored in each serration event follows a power-law relationship, showing a randomly generated serrated event under both tension and compression tests. The plastic deformation in the temporal space is explored by a timeseries analysis, which is consistent with the trajectory convergent evolution in critical dynamic behavior even in the low strain rate regime in both tests. The results demonstrate that the secondary phase in the BMGC can stabilize the shear band extension and facilitate the critical behavior in the low strain rate regime. This study provides a strong evidence of serrated flow phenomenon in BMGC under tension test, and offers a deep understanding of the correlation between serrations and shear banding in temporal space.
基金supported by the Research Fund of 2014 Chungnam National University of the Korea
文摘This paper discussed a noise reduction effect of airfoil and small-scale model rotor by using attached serration trailing edge in the wind tunnel test condition. In order to analyze the changes in the performance due to the inclusion of a serrated trailing edge designed to reduce noise, a 10 k W wind turbine rotor was equipped with a thin serrated trailing edge. The restrictive condition for the serrated trailing edge equipped with the using of a 2D airfoil was examined through the using of a wind tunnel experiment after studying existing restrictive condition and analyzing prior research on serrated trailing edges. The aerodynamic performance and noise reduction effect of a small-scale model were investigated with the using of a serrated trailing edge. Moreover, the noise levels from the experiment were considered that the noise prediction method could be used for a full-scale rotor. It is confirmed that noise reduction effect is compared with wind tunnel test data at the 2D airfoil and model rotor condition.
基金supported in part by the Nationa Natural Science Foundation of China (51471025, 51671020, 51471024 and 11771407)the Department of Energy (DOE), Office of Fossil Energy, National Energy Technology Laboratory (DE-FE-0011194)+1 种基金the support from the US Army Research Office project (W911NF-13-1-0438)the support from the National Science Foundation (DMR-1611180 and 1809640)
文摘Seldom could metals and alloys maintain excellent properties in cryogenic condition, such as the ductility, owing to the restrained dislocation motion.However, a face-centered-cubic(FCC) CoCrFeNi highentropy alloy(HEA) with great ductility is investigated under the cryogenic environment. The tensile strength of this alloy can reach a maximum at 1,251±10 MPa, and the strain to failure can stay at as large as 62% at the liquid helium temperature. We ascribe the high strength and ductility to the low stacking fault energy at extremely low temperatures,which facilitates the activation of deformation twinning.Moreover, the FCC→HCP(hexagonal close-packed) transition and serration lead to the sudden decline of ductility below 77 K. The dynamical modeling and analysis of serrations at 4.2 and 20 K verify the unstable state due to the FCC→HCP transition. The deformation twinning together with phase transformation at liquid helium temperature produces an adequate strain-hardening rate that sustains the stable plastic flow at high stresses, resulting in the serration feature.