Designing carbon materials with ideal stable hierarchical porous structures and fiexible functional properties for efficient and sustainable Zn2+ion storage still faces great challenges. Herein, the threedimensional c...Designing carbon materials with ideal stable hierarchical porous structures and fiexible functional properties for efficient and sustainable Zn2+ion storage still faces great challenges. Herein, the threedimensional carbon superstructures with spherical nanofiower-like structures were tailor-made by the self-assembly strategy. Specifically, organic polymer units(i.e., organic motifs) were formed by tetrachloro-p-benzoquinone(TBQ) and 2,6-diamino anthraquinone(DAQ) via a noble-metal-free catalyzed coupling reaction. Subsequently, the organic motifs assemble into spherical nanofiower-like superstructures induced by intermolecular hydrogen bonding and aromatic π-π stacking interactions. Welldesigned carbon superstructures can provide a stable backbone that effectively blocks structural stacking and collapse. Meanwhile, the hierarchical porous structures in 3D carbon superstructures provide continuous charge transport pathways to greatly shorten the ion diffusion distance, and as a result, the carbon superstructures-based zinc-ion hybrid capacitors(ZIHCs) provide a capacity of 245 m Ah/g at 0.5 A/g, a high energy density of 152 Wh/kg and an ultra-long life of 300,000 cycles at 20 A/g. The excellent electrochemical performance is also attributed to the corresponding charge storage mechanism, i.e., the alternate binding of Zn^(2+)/CF_(3)SO_(3)^(-) ions. Besides, the high-level N/O motifs improve the surface properties of the carbon superstructures and reduce the ion migration barriers for more efficient charge storage. This paper provides insights into the design of advanced carbon-based cathodes and presents a fundamental understanding of their charge storage mechanisms.展开更多
基金financially supported by the National Natural Science Foundation of China (Nos. 22272118, 22172111, 21905207, and 22309134)the Science and Technology Commission of Shanghai Municipality (Nos. 22ZR1464100, 20ZR1460300, and 19DZ2271500)+2 种基金China Postdoctoral Science Foundation (No. 2022M712402), Shanghai Rising-Star Program (No. 23YF1449200)Zhejiang Provincial Science and Technology Project (No. 2022C01182)the Fundamental Research Funds for the Central Universities (Nos. 22120210529 and 2023–3-YB-07)。
文摘Designing carbon materials with ideal stable hierarchical porous structures and fiexible functional properties for efficient and sustainable Zn2+ion storage still faces great challenges. Herein, the threedimensional carbon superstructures with spherical nanofiower-like structures were tailor-made by the self-assembly strategy. Specifically, organic polymer units(i.e., organic motifs) were formed by tetrachloro-p-benzoquinone(TBQ) and 2,6-diamino anthraquinone(DAQ) via a noble-metal-free catalyzed coupling reaction. Subsequently, the organic motifs assemble into spherical nanofiower-like superstructures induced by intermolecular hydrogen bonding and aromatic π-π stacking interactions. Welldesigned carbon superstructures can provide a stable backbone that effectively blocks structural stacking and collapse. Meanwhile, the hierarchical porous structures in 3D carbon superstructures provide continuous charge transport pathways to greatly shorten the ion diffusion distance, and as a result, the carbon superstructures-based zinc-ion hybrid capacitors(ZIHCs) provide a capacity of 245 m Ah/g at 0.5 A/g, a high energy density of 152 Wh/kg and an ultra-long life of 300,000 cycles at 20 A/g. The excellent electrochemical performance is also attributed to the corresponding charge storage mechanism, i.e., the alternate binding of Zn^(2+)/CF_(3)SO_(3)^(-) ions. Besides, the high-level N/O motifs improve the surface properties of the carbon superstructures and reduce the ion migration barriers for more efficient charge storage. This paper provides insights into the design of advanced carbon-based cathodes and presents a fundamental understanding of their charge storage mechanisms.