期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Aboveground carbon sequestration rate in alpine forests on the eastern Tibetan Plateau:impacts of future forest management options 被引量:1
1
作者 Yang Lin Jiang-Tao Xiao +3 位作者 Yong-Ping Kou Jia-Xing Zu Xin-Ran Yu Yuan-Yuan Li 《Journal of Plant Ecology》 SCIE CSCD 2023年第3期177-190,共14页
Alpine forests in the eastern Tibetan Plateau are important ecological barriers in the upper reaches of the Yangtze River.However,due to continuous high-intensity harvesting,a large number of plantings,and the complet... Alpine forests in the eastern Tibetan Plateau are important ecological barriers in the upper reaches of the Yangtze River.However,due to continuous high-intensity harvesting,a large number of plantings,and the complete harvesting ban measures in recent decades,the forest tree species and age cohorts have become relatively homogenous,and the biodiversity and ecological functions have been reduced.To design effective forest management options to optimize forest structure and increase carbon sequestration capacity,Mao County in Sichuan Province was selected as the study site and six forest management options(harvesting,planting)of different intensities were tested using the LANDIS-II model to simulate and compare the differences in forest aboveground carbon sequestration rate(ACSR)between these options and the current management option over the next 100 years.Our results showed that(i)the different harvesting and planting intensities significantly changed the ACSR compared with the current management options;(ii)different communities responded differently to the management options,with the ACSR differing significantly in cold temperate conifers and temperate conifers but not in broad-leaved trees(P<0.05);and(iii)a comprehensive consideration of forest management options at the species,community and landscape levels was necessary.Our results suggest that implementing a longer harvesting and planting interval(20 years)at the study site can maximize forest ACSR.This study provides an important reference for evaluating the ability of forest management options to restore forest ecological functions and increase carbon sequestration capacity and for selecting effective forest management programs in the eastern Tibetan Plateau. 展开更多
关键词 aboveground carbon sequestration rate species and community forest management ecological processes forest landscape model alpine forest Tibetan Plateau
原文传递
Carbon Sequestration Effects of Shrublands in Three-North Shelterbelt Forest Region, China 被引量:15
2
作者 LIU Wenhui ZHU Jiaojun +4 位作者 JIA Quanquan ZHENG Xiao LI Junsheng LOU Xuedong HU Lile 《Chinese Geographical Science》 SCIE CSCD 2014年第4期444-453,共10页
Three-North Shelterbelt Forest (TSF) program, is one of six key forestry programs and has a 73-year construction period, from 1978 to 2050. Quantitative analysis of the carbon sequestration of shrubs in this region ... Three-North Shelterbelt Forest (TSF) program, is one of six key forestry programs and has a 73-year construction period, from 1978 to 2050. Quantitative analysis of the carbon sequestration of shrubs in this region is important for understanding the overall function of carbon sequestration of the forest and other terrestrial ecosystems in China. This study investigated the distribution area of shrubland in the TSF region based on remote sensing images in 1978 and 2008, and calculated the carbon density of shrubland in combination with the field investigation and previous data from published papers. The carbon sequestration quantity and rate from 1978 to 2008 was analyzed for four sub-regions and different types of shrubs in the TSF region. The results revealed that: 1) The area of shrubland in the study area and its four sub-regions increased during the past thirty years. The area of shrubland for the whole region in 2008 was 1.2 × 10^7 ha, 72.8% larger than that in 1978. The Inner Mongolia-Xinjiang Sub-region was the largest shrubland distribution area, while the highest coverage rate was found in the North China Sub-region. 2) In decreasing order of their carbon sequestration, the four types of shrubs considered in this study were Hippophae rhamnoides, Caragana spp., Haloxylon ammodendron and Vitex negundo vat. heterophylla. The carbon sequestration of/-/, rhamnoides, with a maximum mean carbon density of 16.5 Mg C/ha, was significantly higher than that of the other three species. 3) The total carbon sequestration of shrubland in the study region was 4.5 x 107 Mg C with a mean annual carbon sequestration of 1.5× 10^6 Mg C. The carbon density in the four sub-regions decreased in the following order: the Loess Plateau Sub-region, the North China Sub-region, the Northeast China Sub-region and the Inner Mongolia-Xinjiang Sub-region. The paucity of studies and data availability on the large-scale carbon sequestration of shrub species suggests this study provides a baseline reference for future research in this area. 展开更多
关键词 BIOMASS biomass density carbon density carbon sequestration carbon sequestration rate carbon storage Three-NorthShelterbelt Forest (TSF)
在线阅读 下载PDF
Carbon sequestration potential and its eco-service function in the karst area, China 被引量:8
3
作者 SONG Xianwei GAO Yang +4 位作者 WEN Xuefa GUO Dali YU Guirui HE Nianpeng ZHANG Jinzhong 《Journal of Geographical Sciences》 SCIE CSCD 2017年第8期967-980,共14页
The karst critical zone is an essential component of the carbon (C) pool, constituting the global C cycle. It is referred to as one of the "residual land sink" that remains largely in- determinate. Karst area (2.... The karst critical zone is an essential component of the carbon (C) pool, constituting the global C cycle. It is referred to as one of the "residual land sink" that remains largely in- determinate. Karst area (2.2×10^7 km^2) comprises 15% of the world's land area, and karst area comprises 3.44~106 km^2 of area in China. Due to the complexity of karst structure and its considerable heterogeneity, C sequestration rate estimations contain large inaccuracies, especially in relation to the different methods used in calculations. Therefore, we reevaluated rock weathering-related C sink estimations in China (approximately 4.74 Tg C yr^-1), which we calibrated from previous studies. Additionally, we stipulated that more comprehensive re- search on rock-soil-biology-atmosphere continuum C migration is essential to better under- stand C conversion mechanisms based on uncertainty analyses of C sink estimations. Moreover, we stressed that a collective confirmation of chemical methods and simulated models through a combined research effort could at least partially eliminate such uncertainty. Furthermore, integrated C cycling research need a long-term observation of the carbon flux of multi-interfaces. The enhanced capacity of ecosystem C and soil C pools remains an effective way of increasing C sink. Karst ecosystem health and security is crucial to human social de- velopment, accordingly, it is critical that we understand thresholds or potential C sink capacities in karst critical zones now and in the future. 展开更多
关键词 KARST karst critical zone carbon sink carbon sequestration rate China
原文传递
Modeling Carbon Dynamics in Paddy Soils in Jiangsu Province of China with Soil Databases Differing in Spatial Resolution 被引量:9
4
作者 XU Sheng-Xiang SHI Xue-Zheng +5 位作者 ZHAO Yong-Cun YU Dong-Sheng WANG Shi-Hang ZHANG Li-Ming C. S. LI TAN Man-Zhi 《Pedosphere》 SCIE CAS CSCD 2011年第6期696-705,共10页
A number of process-based models have been developed for quantifying carbon(C)sequestration in agro-ecosystems.The DeNitrification-DeComposition(DNDC)model was used to simulate and quantify long-term(1980-2008)soil or... A number of process-based models have been developed for quantifying carbon(C)sequestration in agro-ecosystems.The DeNitrification-DeComposition(DNDC)model was used to simulate and quantify long-term(1980-2008)soil organic carbon(SOC)dynamics in the important rice-producing province,Jiangsu,China.Changes in SOC storages were estimated from two soil databases differing in spatial resolution:a county database consisting of 68 polygons and a soil patch-based database of 701 polygons for all 3.7 Mha of rice fields in Jiangsu.The simulated SOC storage with the coarse resolution county database ranged between 131.0-320.6 Tg C in 1980 and 170.3-305.1 Tg C in 2008,respectively,while that estimated with the fine resolution database was 201.6 and 216.2 Tg C in 1980 and 2008,respectively.The results modeled with the soil databases differing in spatial resolution indicated that using the soil input data with higher resolution substantially increased the accuracy of the modeled results;and when lacking detailed soil datasets,the DNDC model,parameterized with the most sensitive factor(MSF) method to cope with attribute uncertainty,could still produce acceptable results although with deviations of up to 60% for the case study reported in this paper. 展开更多
关键词 1:1 000000 soil map C sequestration rate DeNitrification-DeComposition (DNDC) greenhouse gas soil organic carbon (SOC)
原文传递
The efficiency of long-term straw return to sequester organic carbon in Northeast China's cropland 被引量:24
5
作者 WANG Shi-chao ZHAO Ya-wen +5 位作者 WANG Jin-zhou ZHU Ping CUI Xian HAN Xiao-zeng XU Ming-gang LU Chang-ai 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2018年第2期436-448,共13页
Black soil is one of the most precious soil resources on earth because it has abundant carbon stocks and a relatively high production capacity. However, decreasing organic matter after land reclamation, and the effect... Black soil is one of the most precious soil resources on earth because it has abundant carbon stocks and a relatively high production capacity. However, decreasing organic matter after land reclamation, and the effects of long-term inputs of organic carbon have made it less fertile black soil in Northeast China. Straw return could be an effective method for improving soil organic carbon(SOC) sequestration in black soils. The objective of this study was to evaluate whether straw return effectively increases SOC sequestration. Long-term field experiments were conducted at three sites in Northeast China with varying latitudes and SOC densities. Study plots were subjected to three treatments: no fertilization(CK); inorganic fertilization(NPK); and NPK plus straw return(NPKS). The results showed that the SOC stocks resulting from NPKS treatment were 4.0 and 5.7% higher than those from NPK treatment at two sites, but straw return did not significantly affect the SOC stocks at the third site. Furthermore, at higher SOC densities, the NPKS treatment resulted in significantly higher soil carbon sequestration rates(CSR) than the NPK treatment. The equilibrium value of the CSR for the NPKS treatment equated to cultivation times of 17, 11, and 8 years at the different sites. Straw return did not significantly increase the SOC stocks in regions with low SOC densities, but did enhance the C pool in regions with high SOC densities. These results show that there is strong regional variation in the effects of straw return on the SOC stocks in black soil in Northeast China. Additional cultivations and fertilization practices should be used when straw return is considered as an approach for the long-term improvement of the soil organic carbon pool. 展开更多
关键词 soil organic carbon(SOC) SOC stock straw return soil sequestration rate straw-C sequestration efficiency black soil long-term experiments
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部