期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Geophysics-informed stratigraphic modeling using spatial sequential Bayesian updating algorithm
1
作者 Wei Yan Shouyong Yi +3 位作者 Taosheng Huang Jie Zou Wan-Huan Zhou Ping Shen 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第7期4400-4412,共13页
Challenges in stratigraphic modeling arise from underground uncertainty.While borehole exploration is reliable,it remains sparse due to economic and site constraints.Electrical resistivity tomography(ERT)as a cost-eff... Challenges in stratigraphic modeling arise from underground uncertainty.While borehole exploration is reliable,it remains sparse due to economic and site constraints.Electrical resistivity tomography(ERT)as a cost-effective geophysical technique can acquire high-density data;however,uncertainty and nonuniqueness inherent in ERT impede its usage for stratigraphy identification.This paper integrates ERT and onsite observations for the first time to propose a novel method for characterizing stratigraphic profiles.The method consists of two steps:(1)ERT for prior knowledge:ERT data are processed by soft clustering using the Gaussian mixture model,followed by probability smoothing to quantify its depthdependent uncertainty;and(2)Observations for calibration:a spatial sequential Bayesian updating(SSBU)algorithm is developed to update the prior knowledge based on likelihoods derived from onsite observations,namely topsoil and boreholes.The effectiveness of the proposed method is validated through its application to a real slope site in Foshan,China.Comparative analysis with advanced borehole-driven methods highlights the superiority of incorporating ERT data in stratigraphic modeling,in terms of prediction accuracy at borehole locations and sensitivity to borehole data.Informed by ERT,reduced sensitivity to boreholes provides a fundamental solution to the longstanding challenge of sparse measurements.The paper further discusses the impact of ERT uncertainty on the proposed model using time-lapse measurements,the impact of model resolution,and applicability in engineering projects.This study,as a breakthrough in stratigraphic modeling,bridges gaps in combining geophysical and geotechnical data to address measurement sparsity and paves the way for more economical geotechnical exploration. 展开更多
关键词 Stratigraphic modeling Electrical resistivity tomography(ERT) Site characterization Spatial sequential Bayesian updating(SSBU)algorithm Sparse measurements
在线阅读 下载PDF
Sequential Big Data-Based Macroeconomic Forecast for Industrial Value Added 被引量:1
2
作者 Yunli Yang Jing Kong +1 位作者 Lu Yang Zhouwang Yang 《Communications in Mathematics and Statistics》 SCIE 2019年第4期445-457,共13页
Macroeconomic situation is the overall performance of a country’s and regional economic situation.At present,the vast majority of macroeconomic indicators are obtained through sampling surveys,step-by-step reporting,... Macroeconomic situation is the overall performance of a country’s and regional economic situation.At present,the vast majority of macroeconomic indicators are obtained through sampling surveys,step-by-step reporting,statistical calculations,and other processes,which are publicly released by the Statistical Bureau.There are some shortcomings,such as lag and non-authenticity.Timely forecasting and early warning of macroeconomic trends are the important needs of government affairs.However,the timeliness of data has a direct impact on government decision-making.In this paper,the high frequency and relatively accurate big data sources are adopted to construct a multivariate regression prediction model for traditional national economic accounting indicators(such as industrial value added above the scale of Hefei),which is different from the traditional time series prediction model such as ARIMA model.Based on the macroeconomic prediction model of time series big data,multi-latitude data sources,sequential update,verification set screening model and other strategies are used to provide more reliable,timely,and easy-to-understand forecasting values of national economic accounting indicators.At the same time,the potential influencing factors of macroeconomic indicators are excavated to provide data and theoretical basis for macroeconomic analysis and decision-making. 展开更多
关键词 MACROECONOMICS Time series big data sequential update Multivariate regression prediction
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部