期刊文献+
共找到54,189篇文章
< 1 2 250 >
每页显示 20 50 100
Two tandem multicomponent reactions for the synthesis of sequence-defined polymers 被引量:1
1
作者 Lu Yang Ze Zhang +3 位作者 Bofei Cheng Yezi You Decheng Wu Chunyan Hong 《Science China Chemistry》 SCIE EI CAS CSCD 2015年第11期1734-1740,共7页
Multicomponent polymerizations have become powerful tools for the construction of sequence-defined polymers. Although the Passerini multicomponent reaction has been widely used in the synthesis of sequence-defined pol... Multicomponent polymerizations have become powerful tools for the construction of sequence-defined polymers. Although the Passerini multicomponent reaction has been widely used in the synthesis of sequence-defined polymers, the tandem usage of the Passerini multicomponent reaction and other multicomponent reactions in one-pot for the synthesis of sequence-defined polymers has not been developed until now. In this contribution, we report the tandem usage of the Passerini three-component reaction and the three-component amine-thiol-ene conjugation reaction in one pot for the synthesis of sequence-defined polymers. The Passerini reaction between methacrylic acid, adipaldehyde, and 2-isocyanobutanoate was carried out, affording a new molecule containing two alkene units. Subsequently, an amine and a thiolactone were added to the reaction system, whereupon the three-component amine-thiol-ene conjugating reaction occurred to yield a sequence-defined polymer. This method offers more rapid access to sequence-defined polymers with high molecular diversity and complexity. 展开更多
关键词 multicomponent polymerizations multicomponent reaction sequence-defined polymers Passerini reaction
原文传递
Deterioration and Pore Structure Evolution of GO Modified Polymer Cement Mortar under Salt-freeze-thaw Coupling Effects
2
作者 ZHAO Xinyuan WEI Zhiqiang +3 位作者 QIAO Hongxia LI Shaofei CAO Hui XI Lingling 《Journal of Wuhan University of Technology(Materials Science)》 2026年第1期234-246,共13页
To investigate the pore structure of graphene oxide modified polymer cement mortar(GOPM)under salt-freeze-thaw(SFT)coupling effects and its impact on deterioration,this study modifies polymer cement mortar(EMCM)with g... To investigate the pore structure of graphene oxide modified polymer cement mortar(GOPM)under salt-freeze-thaw(SFT)coupling effects and its impact on deterioration,this study modifies polymer cement mortar(EMCM)with graphene oxide(GO).The micro-pore structure of GOPM is characterized using LF-NMR and SEM.Fractal theory is applied to calculate the fractal dimension of pore volume,and the deterioration patterns are analyzed based on the evolution characteristics of capillary pores.The experimental results indicate that,after 25 salt-freeze-thaw cycles(SFTc),SO2-4 ions penetrate the matrix,generating corrosion products that fill existing pores and enhance the compactness of the specimen.As the number of cycles increases,the ongoing formation and expansion of corrosion products within the matrix,combined with persistent freezing forces,and result in the degradation of the pore structure.Therefore,the mass loss rate(MLR)of the specimens shows a trend of first decreasing and then increasing,while the relative dynamic elastic modulus(RDEM)initially increases and then decreases.Compared to the PC group specimens,the G3PM group specimens show a 28.71% reduction in MLR and a 31.42% increase in RDEM after 150 SFTc.The fractal dimensions of the transition pores,capillary pores,and macropores in the G3PM specimens first increase and then decrease as the number of SFTc increases.Among them,the capillary pores show the highest correlation with MLR and RDEM,with correlation coefficients of 0.97438 and 0.98555,respectively. 展开更多
关键词 graphene oxide polymer cement mortar pore structure fractal dimension
原文传递
Advances in polymer-based hydrogel systems for adipose-derived mesenchymal stem cells toward bone regeneration
3
作者 Nivetha Suresh Sundaravadhanan Lekhavadhani Nagarajan Selvamurugan 《World Journal of Orthopedics》 2026年第1期13-28,共16页
Bone regeneration for non-load-bearing defects remains a significant clinical challenge requiring advanced biomaterials and cellular strategies.Adiposederived mesenchymal stem cells(AD-MSCs)have garnered significant i... Bone regeneration for non-load-bearing defects remains a significant clinical challenge requiring advanced biomaterials and cellular strategies.Adiposederived mesenchymal stem cells(AD-MSCs)have garnered significant interest in bone tissue engineering(BTE)because of their abundant availability,minimally invasive harvesting procedures,and robust differentiation potential into osteogenic lineages.Unlike bone marrow-derived mesenchymal stem cells,AD-MSCs can be easily obtained in large quantities,making them appealing alternatives for therapeutic applications.This review explores hydrogels containing polymers,such as chitosan,collagen,gelatin,and hyaluronic acid,and their composites,tailored for BTE,and emphasizes the importance of these hydrogels as scaffolds for the delivery of AD-MSCs.Various hydrogel fabrication techniques and biocompatibility assessments are discussed,along with innovative modifications to enhance osteogenesis.This review also briefly outlines AD-MSC isolation methods and advanced embedding techniques for precise cell placement,such as direct encapsulation and three-dimensional bioprinting.We discuss the mechanisms of bone regeneration in the AD-MSC-laden hydrogels,including osteoinduction,vascularization,and extracellular matrix remodeling.We also review the preclinical and clinical applications of AD-MSC-hydrogel systems,emphasizing their success and limitations.In this review,we provide a comprehensive overview of AD-MSC-based hydrogel systems to guide the development of effective therapies for bone regeneration. 展开更多
关键词 Mesenchymal stem cells Adipose-derived mesenchymal stem cells Bone tissue engineering HYDROGELS Bone regeneration polymerS
在线阅读 下载PDF
Lithium-Ion Dynamic Interface Engineering of Nano-Charged Composite Polymer Electrolytes for Solid-State Lithium-Metal Batteries
4
作者 Shanshan Lv Jingwen Wang +7 位作者 Yuanming Zhai Yu Chen Jiarui Yang Zhiwei Zhu Rui Peng Xuewei Fu Wei Yang Yu Wang 《Nano-Micro Letters》 2026年第2期288-305,共18页
Composite polymer electrolytes(CPEs)offer a promising solution for all-solid-state lithium-metal batteries(ASSLMBs).However,conventional nanofillers with Lewis-acid-base surfaces make limited contribution to improving... Composite polymer electrolytes(CPEs)offer a promising solution for all-solid-state lithium-metal batteries(ASSLMBs).However,conventional nanofillers with Lewis-acid-base surfaces make limited contribution to improving the overall performance of CPEs due to their difficulty in achieving robust electrochemical and mechanical interfaces simultaneously.Here,by regulating the surface charge characteristics of halloysite nanotube(HNT),we propose a concept of lithium-ion dynamic interface(Li^(+)-DI)engineering in nano-charged CPE(NCCPE).Results show that the surface charge characteristics of HNTs fundamentally change the Li^(+)-DI,and thereof the mechanical and ion-conduction behaviors of the NCCPEs.Particularly,the HNTs with positively charged surface(HNTs+)lead to a higher Li^(+)transference number(0.86)than that of HNTs-(0.73),but a lower toughness(102.13 MJ m^(-3)for HNTs+and 159.69 MJ m^(-3)for HNTs-).Meanwhile,a strong interface compatibilization effect by Li^(+)is observed for especially the HNTs+-involved Li^(+)-DI,which improves the toughness by 2000%compared with the control.Moreover,HNTs+are more effective to weaken the Li^(+)-solvation strength and facilitate the formation of Li F-rich solid-electrolyte interphase of Li metal compared to HNTs-.The resultant Li|NCCPE|LiFePO4cell delivers a capacity of 144.9 m Ah g^(-1)after 400 cycles at 0.5 C and a capacity retention of 78.6%.This study provides deep insights into understanding the roles of surface charges of nanofillers in regulating the mechanical and electrochemical interfaces in ASSLMBs. 展开更多
关键词 Charged nanofillers Nanocomposite polymer electrolyte Dynamic lithium ion interface Solid ion-conductors Solidstate lithium-metal battery
在线阅读 下载PDF
Controlled Fabrication of Uniform Digital Nanorods from Precise Sequence-Defined Amphiphilic Polymers in Aqueous Media 被引量:1
5
作者 Qiang-Qiang Shi Xin Zhou +4 位作者 Jie Xu Ning Wang Jia-Lin Zhang Xiang-Long Hu Shi-Yong Liu 《Chinese Journal of Polymer Science》 SCIE EI CAS CSCD 2023年第5期768-777,I0010,共11页
Compared with spherical micelles,rod/worm-like micelles not only have extended blood circulation duration,but also exhibit favorable cellular uptake behavior,which is promising for next-generation nanomedicine and bio... Compared with spherical micelles,rod/worm-like micelles not only have extended blood circulation duration,but also exhibit favorable cellular uptake behavior,which is promising for next-generation nanomedicine and biomaterials.However,the controllable fabrication of narrowly dispersed nanorods in aqueous media is still challenging.Herein,the methodology of thermal annealing was developed for the fabrication of helical nanorods as well as a series of nanorods with different lengths.The thermal annealing process generally consisted of adding a percentage of organic solvent(10%(V/V)or 20%(V/V))to the digital micellar aqueous dispersion,followed by heating at 90℃for 1 h,then cooling naturally to room temperature,and dialyzing against water to remove the organic solvent.Right-handed helical nanorods were afforded by the treatment of 45 nm digital micelles in the presence of 10%(V/V)dioxane,while left-handed helical nanorods were obtained in the presence of 20%(V/V)dioxane.Meanwhile,the controlled growth of rod-like digital micelles was achieved after thermal annealing in the presence of different types of organic solvents,and the length of the annealed nanorods was correlated with the types of organic solvent.Furthermore,no matter the size of initial digital micelles,they all exhibited similar trend of rod growth in the presence of a certain amount of organic solvent,allowing for controllable formulation of narrowly dispersed nanorods.In addition,supramolecular self-assembly by amphiphilic dendritic oligourethane readily fabricated diverse uniform nanorods in aqueous media.Overall,this work provided an attractive methodology to fabricate uniform digital nanorods. 展开更多
关键词 sequence-defined amphiphilic polymers Digital nanorods Thermal annealing Dendritic oligourethane SELF-ASSEMBLY
原文传递
A cadmium(Ⅱ)coordination polymer based on a semirigid tetracarboxylate ligand for highly selective detection of Fe^(3+)and 4-nitrophenol 被引量:1
6
作者 BAI Yu WANG Jijiang +4 位作者 TANG Long YUE Erlin BAI Chao WANG Xiao ZHANG Yuqi 《无机化学学报》 北大核心 2025年第6期1217-1226,共10页
A novel coordination polymer(CP){[Cd_(2)(L)(1,4-bimb)_(1.5)(DMF)_(2)]·DMF}n(1)(H_(4)L=5,5'-[1,1'-biphenyl-4,4'-diylbis(oxy)]diisophthalic acid,1,4-bimb=1,4-bis(imidazole-1-ylmethyl)-benzene)has been d... A novel coordination polymer(CP){[Cd_(2)(L)(1,4-bimb)_(1.5)(DMF)_(2)]·DMF}n(1)(H_(4)L=5,5'-[1,1'-biphenyl-4,4'-diylbis(oxy)]diisophthalic acid,1,4-bimb=1,4-bis(imidazole-1-ylmethyl)-benzene)has been designed and synthesized through solvothermal reaction.Structural analysis shows that Cd(Ⅱ)is connected by H4L and 1,4-bimb to form a 2D network,and 1,4-bimb further expands the 2D network into a 3D framework.CP 1 can be used as an excellent fluorescence sensor for Fe^(3+)and 4-nitrophenol(4-NP),with low detection limits and good anti-interference.The detection limits of Fe^(3+)and 4-NP were 0.034 and 0.031μmol·L^(-1),respectively.In addition,the fluorescence quenching mechanism was studied.1 was successfully applied to determine Fe^(3+)and 4-NP content in the Yanhe River water sample.CCDC:2351092. 展开更多
关键词 coordination polymer Fe^(3+) 4-NITROPHENOL fluorescence sensing
在线阅读 下载PDF
Iron-nitrogen-doped porous carbon absorbers constructed from hypercrosslinked ferrocene polymers for efficient electromagnetic wave absorption 被引量:1
7
作者 Yi Hu Yijia Zhou +4 位作者 Lijia Liu Qiang Wang Chunhong Zhang Hao Wei Yudan Wang 《International Journal of Minerals,Metallurgy and Materials》 2025年第3期578-590,共13页
Herein,an external crosslinker facilitated the hypercrosslinking of ferrocene and a nitrogen heterocyclic compound(either melamine or imidazole)through a direct Friedel-Crafts reaction,which led to the formation of ni... Herein,an external crosslinker facilitated the hypercrosslinking of ferrocene and a nitrogen heterocyclic compound(either melamine or imidazole)through a direct Friedel-Crafts reaction,which led to the formation of nitrogen-containing hypercrosslinked fer-rocene polymer precursors(HCP-FCs).Subsequent carbonization of these precursors results in the production of iron-nitrogen-doped por-ous carbon absorbers(Fe-NPCs).The Fe-NPCs demonstrate a porous structure comprising aggregated nanotubes and nanospheres.The porosity of this structure can be modulated by adjusting the iron and nitrogen contents to optimize impedance matching.The uniform dis-tribution of Fe-N_(x)C,N dipoles,andα-Fe within the carbon matrix can be ensured by using hypercrosslinked ferrocenes in constructing porous carbon,providing the absorber with numerous polarization sites and a conductive network.The electromagnetic wave absorption performance of the specially designed Fe-NPC-M_(2)absorbers is satisfactory,revealing a minimum reflection loss of-55.3 dB at 2.5 mm and an effective absorption bandwidth of 6.00 GHz at 2.0 mm.By utilizing hypercrosslinked polymers(HCPs)as precursors,a novel method for developing highly efficient carbon-based absorbing agents is introduced in this research. 展开更多
关键词 hypercrosslinked polymers porous carbon iron-nitrogen doping annealing
在线阅读 下载PDF
Dynamic Structural Colors in Helical Superstructures:from Supramolecules to Polymers 被引量:1
8
作者 Bo Ji Lang Qin Yan-Lei Yu 《Chinese Journal of Polymer Science》 2025年第3期406-428,共23页
Cholesteric liquid crystals(CLCs)exhibit unique helical superstructures that selectively reflect circularly polarized light,enabling them to dynamically respond to environmental changes with tunable structural colors.... Cholesteric liquid crystals(CLCs)exhibit unique helical superstructures that selectively reflect circularly polarized light,enabling them to dynamically respond to environmental changes with tunable structural colors.This dynamic color-changing capability is crucial for applications that require adaptable optical properties,positioning CLCs as key materials in advanced photonic technologies.This review focuses on the mechanisms of dynamic color tuning in CLCs across various forms,including small molecules,cholesteric liquid crystal elastomers(CLCEs),and cholesteric liquid crystal networks(CLCNs),and emphasizes the distinct responsive coloration each structure provides.Key developments in photochromic mechanisms based on azobenzene,dithienylethene,and molecular motor switches,are discussed for their roles in enhancing the stability and tuning range of CLCs.We examine the color-changing behaviors of CLCEs under mechanical stimuli and CLCNs under swelling,highlighting the advantages of each form.Following this,applications of dynamic color-tuning CLCs in information encryption,adaptive camouflage,and smart sensing technologies are explored.The review concludes with an outlook on current challenges and future directions in CLC research,particularly in biomimetic systems and dynamic photonic devices,aiming to broaden their functional applications and impact. 展开更多
关键词 Structural colors Cholesteric liquid crystals Elastomers polymer network
原文传递
The second near-infrared (NIR-II) window excitable/emissive organic/polymeric fluorescent molecules for bioimaging application 被引量:1
9
作者 Guannan Liu Chenguang Wang Geyu Lu 《Journal of Innovative Optical Health Sciences》 2025年第3期25-43,共19页
The fluorescence imaging (FLI) in the second near-infrared window (NIR-II, 1000–1700nm) has attracted considerable attention in the past decade. In contrast to conventional NIR-I window excitation (808nm/980nm), FLI ... The fluorescence imaging (FLI) in the second near-infrared window (NIR-II, 1000–1700nm) has attracted considerable attention in the past decade. In contrast to conventional NIR-I window excitation (808nm/980nm), FLI with NIR-II window excitation (1064nm/other wavelength beyond 1000nm) can afford deeper tissue penetration depth with high clarity due to the merits of suppressed photon scattering and diminished autofluorescence. In this review, we have summarized NIR-II window excitable/emissive organic/polymeric fluorophores recently developed. The characteristics of these fluorophores such as chemical structures and photophysical properties have also been critically discussed. Furthermore, the latest development of noninvasive in vivo FLI with NIR-II excitation was highlighted. The ideal imaging results emphasized the importance of NIR-II excitation of these fluorophores in enabling deep tissue penetration and high-resolution imaging. Finally, a perspective on the challenges and prospects of NIR-II excitable/emissive organic/polymeric fluorophores was also discussed. We expected this review will be served as a source of inspiration for researchers, stimulating the creation of novel NIR-II excitable fluorophores and fostering the development of bioimaging applications. 展开更多
关键词 Fluorescence imaging NEAR-INFRARED excitation wavelength organic fluorophores conjugated polymers
原文传递
Convenient and highly efficient adsorption of diosmetin from lemon peel by magnetic surface molecularly imprinted polymers 被引量:1
10
作者 Dongliang Xie Yi Kuang +12 位作者 Bingnan Yuan Yunlong Zhang Chenyu Ye Yuyi Guo Hua Qiu Juanna Ren Saud O.Alshammari Qamar A.Alshammari Zeinhom M.El-Bahy Kui Zhao Zhanhu Guo Qingqing Rao Shengxiang Yang 《Journal of Materials Science & Technology》 2025年第8期159-170,共12页
As a typical bioflavonoid,diosmetin is desirable in the field of natural medicine,healthy food,and cosmetics by anti-cancer,antibacterial,antioxidant,estrogen-like and anti-inflammatory activities,and it comes from a ... As a typical bioflavonoid,diosmetin is desirable in the field of natural medicine,healthy food,and cosmetics by anti-cancer,antibacterial,antioxidant,estrogen-like and anti-inflammatory activities,and it comes from a wide range of sources in traditional Chinese medicine like spider fragrance,spearmint and chrysanthemum,as well as in Citrus fruit.However,traditional analytical methods such as silica gel column chromatography face multiple challenges in the selective extraction of diosmetin from biological materials and traditional Chinese medicinal materials.Therefore,it is urgent to develop a new type of absorbent with high efficiency,recyclability and good specificity to diosmetin.In this investigation,a magnetic surface molecularly imprinted polymer(labeled as Diosmetin/SMIPs)was synthesized employing magnetic nanoparticles as the carrier and 4-vinylpyridinyl(4-VP)as the functional monomer by surface imprinting technology.The functional monomer was screened by the binding energy(△E)between functional monomers and template molecules via computational simulation.The Diosmetin/SMIPs had a high level of specific recognition and adsorption capability towards diosmetin with a 20.25 mg g^(-1) adsorption capacity and an imprinting factor(IF)of 2.28.Additionally,it demonstrated excellent regeneration performance with 8 adsorption/desorption cycles.In addition,91.20%-94.16% of spiked diosmetin was recovered from the lemon peel samples.The strategy of constructing Diosmetin/SMIPs based on computational simulation can effectively enhance the specific adsorption performance of diosmetin.Meanwhile,Diosmetin/SMIPs synthesized by imprinting polymerization showed excellent anti-interference and reusability,and realized efficient targeted extraction of diosmetin from lemon peel samples.The results of this investigation provide a promising adsorbent for selective enrichment of diosmetin from Citrus fruit and complicated materials. 展开更多
关键词 Diosmetin Selective extraction Magnetic molecularly imprinted polymer Lemon peel
原文传递
Sulfur-Doped Carbonized Polymer Dots:A Biocompatible Photocatalyst for Rapid Aqueous PET-RAFT Polymerization 被引量:1
11
作者 Yue Yu Songyuan Tao +3 位作者 Qingsen Zeng Zhihui Ma Kai Zhang Bai Yang 《Carbon Energy》 2025年第3期186-195,共10页
To achieve the target of carbon neutrality,it is crucial to develop an efficient and green synthesis methodology with good atomic economy to achieve sufficient utilization of energy and sustainable development.Photoin... To achieve the target of carbon neutrality,it is crucial to develop an efficient and green synthesis methodology with good atomic economy to achieve sufficient utilization of energy and sustainable development.Photoinduced electron transfer reversible addition-fragmentation chain-transfer(PET-RAFT)polymerization is a precise methodology for constructing polymers with well-defined structures.However,conventional semiconductor-mediated PET-RAFT polymerization still has considerable limitations in terms of efficiency as well as the polymerization environment.Herein,sulfur-doped carbonized polymer dots(CPDs)were hydrothermally synthesized for catalysis of aqueous PET-RAFT polymerization at unprecedented efficiency with a highest propagation rate of 5.05 h-1.The resulting polymers have well-controlled molecular weight and narrow molecular weight dispersion(Ð<1.10).Based on the optoelectronic characterizations,we obtained insights into the photoinduced electron transfer process and proposed the mechanism for CPD-mediated PET-RAFT polymerization.In addition,as-synthesized CPDs for PET-RAFT polymerization were also demonstrated to be suitable for a wide range of light sources(blue/green/solar irradiation),numerous monomers,low catalyst loading(low as 0.01 mg mL^(-1)),and multiple polar solvent environments,all of which allowed to achieve efficiencies much higher than those of existing semiconductor-mediated methods.Finally,the CPDs were confirmed to be non-cytotoxic and catalyzed PET-RAFT polymerization successfully in cell culture media,indicating broad prospects in biomedical fields. 展开更多
关键词 aqueous PET-RAFT polymerization carbonized polymer dots photocatalysis ultrahigh efficiency
在线阅读 下载PDF
Innovative Approaches in Water Decontamination: A Critical Analysis of Biomaterials, Nanocomposites, and Stimuli-Responsive Polymers for Effective Solutions 被引量:1
12
作者 Rakesh Namdeti Gaddala Babu Rao +5 位作者 Nageswara Rao Lakkimsetty Muayad Abdullah Ahmed Qatan Doaa Salim Musallam Samhan Al-Kathiri Lakhayar Amer Al Amri Noor Mohammed Said Qahoor Arlene Abuda Joaquin 《Journal of Environmental & Earth Sciences》 2025年第1期92-102,共11页
In recent years,smart materials have emerged as a groundbreaking innovation in the field of water filtration,offering sustainable,efficient,and environmentally friendly solutions to address the growing global water cr... In recent years,smart materials have emerged as a groundbreaking innovation in the field of water filtration,offering sustainable,efficient,and environmentally friendly solutions to address the growing global water crisis.This review explores the latest advancements in the application of smart materials—including biomaterials,nanocomposites,and stimuli-responsive polymers—specifically for water treatment.It examines their effectiveness in detecting and removing various types of pollutants,including organic contaminants,heavy metals,and microbial infections,while adapting to dynamic environmental conditions such as fluctuations in temperature,pH,and pressure.The review highlights the remarkable versatility of these materials,emphasizing their multifunctionality,which allows them to address a wide range of water quality issues with high efficiency and low environmental impact.Moreover,it explores the potential of smart materials to overcome significant challenges in water purification,such as the need for real-time pollutant detection and targeted removal processes.The research also discusses the scalability and future development of these materials,considering their cost-effectiveness and potential for large-scale application.By aligning with the principles of sustainable development,smart materials represent a promising direction for ensuring global water security,offering both innovative solutions for current water pollution issues and long-term benefits for the environment and public health. 展开更多
关键词 Smart Materials Water Purification NANOCOMPOSITES Stimuli-Responsive polymers Sustainable Water Treatment
在线阅读 下载PDF
Polymeric nanocarriers for therapeutic gene delivery 被引量:1
13
作者 Jiayuan Zhang Xinyu Yang +3 位作者 Zhichao Chang Wenwei Zhu Yuhua Ma Haisheng He 《Asian Journal of Pharmaceutical Sciences》 2025年第1期1-25,共25页
The recent commercialization of gene products has sparked significant interest in gene therapy,necessitating efficient and precise gene delivery via various vectors.Currently,viral vectors and lipid-based nanocarriers... The recent commercialization of gene products has sparked significant interest in gene therapy,necessitating efficient and precise gene delivery via various vectors.Currently,viral vectors and lipid-based nanocarriers are the predominant choices and have been extensively investigated and reviewed.Beyond these vectors,polymeric nanocarriers also hold the promise in therapeutic gene delivery owing to their versatile functionalities,such as improving the stability,cellar uptake and endosomal escape of nucleic acid drugs,along with precise delivery to targeted tissues.This review presents a brief overview of the status quo of the emerging polymeric nanocarriers for therapeutic gene delivery,focusing on key cationic polymers,nanocarrier types,and preparation methods.It also highlights targeted diseases,strategies to improve delivery efficiency,and potential future directions in this research area.The review is hoped to inspire the development,optimization,and clinical translation of highly efficient polymeric nanocarriers for therapeutic gene delivery. 展开更多
关键词 polymeric nanocarriers Therapeutic gene delivery Cationic polymers DISEASES Transfection efficiency STRATEGIES
暂未订购
Development and evaluation of organic/metal ion double crosslinking polymer gel for anti-CO_(2)gas channeling in high temperature and low permeability reservoirs 被引量:2
14
作者 Hong-Bin Yang Hai-Zhuang Jiang +7 位作者 Zhe Xu Xing Zhang Tao Wang Hai-Ning Liu Xiao Ma Jian-Jun Zhu Xiang-Feng Zhang Wan-Li Kang 《Petroleum Science》 2025年第2期724-738,共15页
CO_(2)flooding enhanced oil recovery(CO_(2)-EOR)represents a significant technology in the low permeability reservoir.With the fractures and heterogeneity in low permeability reservoirs,CO_(2)-EOR is susceptible to pe... CO_(2)flooding enhanced oil recovery(CO_(2)-EOR)represents a significant technology in the low permeability reservoir.With the fractures and heterogeneity in low permeability reservoirs,CO_(2)-EOR is susceptible to pessimistic gas channeling.Consequently,there is a need to develop conformance control materials that can be used in CO_(2)-EOR.Herein,to address the challenges of low strength and poor stability of polymer gel in high temperature and low permeability reservoirs,a new organic/metal ion composite crosslinking polymer gel(AR-Gel)is reported,which is formed by low hydrolysis and medium to high molecular weight polymer(CX-305),organic crosslinking agent(phenolic resin),and aluminium citrate(AI(Ⅲ)).The crosslinking of AI(Ⅲ)with carboxyl group and organic/metal ion double crosslinking can construct a more complex and stable polymer gel structure on the basis of traditional chemical crosslinking,to cope with the harsh conditions such as high temperature.The structure-activity relationship of AR-Gel was revealed by rheology behavior and micro-morphology.The applicability of AR-Gel in reservoir was investigated,as was its strength and stability in supercritical CO_(2).The anti-gas channeling and enhanced oil recovery of AR-Gel were investigated using low permeability fractured cores,and the field process parameters were provided.The gel can be used to meet supercritical CO_(2)reservoirs at 110℃and 20,000 mg/L salinity,with long-term stability over 60 days.The plugging rate of AR-Gel for fractured co re was 97%,with subsequent CO_(2)flooding re sulting in an enhanced oil recovery by 34.5%.ARGel can effectively control CO_(2)gas channeling and enhanced oil recovery.It offers a new material with high strength and temperature resistance,which is particularly beneficial in the CO_(2)flooding for the conformance control of oil field. 展开更多
关键词 High temperature and low permeability reservoir CO_(2)flooding Anti-gas channeling polymer gel
原文传递
Application of a low-cost and high-efficiency polymer non-catalytic reduction technology for NO_(x) removal in waste-to-energy plant 被引量:1
15
作者 Shuai Xiao Congbo Li +4 位作者 Xueyan Zheng Liya Li Jingzhong Si Xiuqi Shu Xianqiong Zeng 《Journal of Environmental Sciences》 2025年第12期112-125,共14页
Ultra-low emission of nitrogen oxide(NO_(x))is an irreversible trend for the development of waste-to-energy industry.But traditional approaches to remove NO_(x) face significant challenge s,such as low denitration eff... Ultra-low emission of nitrogen oxide(NO_(x))is an irreversible trend for the development of waste-to-energy industry.But traditional approaches to remove NO_(x) face significant challenge s,such as low denitration efficiency,complex denitration system,and high investment and operating cost.Here we put forward a novel polymer non-catalytic reduction(PNCR)technology that utilized a new type of polymer agent to remove NO_(x),and the proposed PNCR technology was applied to the existing waste-to-energy plant to test the denitration performance.The PNCR technology demonstrated excellent denitration performance with a NO_(x) emission concentration of<100 mg/Nm^(3) and high denitration efficiency of>75%at the temperature range of 800-900℃,which showed the application feasibility even on the complex and unstable industrial operating conditions.In addition,PNCR and hybrid polymer/selective non-catalytic reduction(PNCR/SNCR)technology possessed remarkable economic advantages including low investment fee and low operating cost of<10 CNY per ton of municipal solid waste(MSW)compared with selective catalytic reduction(SCR)technology.The excellent denitration performance of PNCR technology forebodes a broad industrial application prospect in the field of flue gas cleaning for waste-to-energy plants. 展开更多
关键词 polymer non-catalytic reduction High denitration efficiency Low operating cost Waste-to-energy plant
原文传递
Zincophilic Cu/flexible polymer heterogeneous interfaces ensuring the stability of zinc metal anodes 被引量:1
16
作者 Luyang Sun Wenjia Zhang +4 位作者 Qiongqiong Lu Pengfei Yue Guoshang Zhang Kexing Song Yanqing Su 《International Journal of Minerals,Metallurgy and Materials》 2025年第7期1719-1729,共11页
Aqueous zinc-ion batteries are regarded as promising electrochemical energy-storage systems for various applications because of their high safety,low costs,and high capacities.However,dendrite formation and side react... Aqueous zinc-ion batteries are regarded as promising electrochemical energy-storage systems for various applications because of their high safety,low costs,and high capacities.However,dendrite formation and side reactions during zinc plating or stripping greatly reduce the capacity and cycle life of a battery and subsequently limit its practical application.To address these issues,we modified the surface of a zinc anode with a functional bilayer composed of zincophilic Cu and flexible polymer layers.The zincophilic Cu interfacial layer was prepared through CuSO_(4)solution pretreatment to serve as a nucleation site to facilitate uniform Zn deposition.Meanwhile,the polymer layer was coated onto the Cu interface layer to serve as a protective layer that would prevent side reactions between zinc and electrolytes.Benefiting from the synergistic effect of the zincophilic Cu and protective polymer layers,the symmetric battery exhibits an impressive cycle life,lasting over 2900 h at a current density of 1 m A·cm^(-2)with a capacity of 1 m A·h·cm^(-2).Moreover,a full battery paired with a vanadium oxide cathode achieves a remarkable capacity retention of 72%even after 500 cycles. 展开更多
关键词 aqueous zinc-ion batteries zinc metal anode zincophilic Cu polymer protective layer DENDRITE
在线阅读 下载PDF
Syntheses,characterization,and luminescence properties of Yb(Ⅲ)-based one-dimensional chain coordination polymer
17
作者 CHEN Wanting MIAO Chufei +4 位作者 LIU Yan ZHENG Bobi ZHENG Xiaoyu XU Han TIAN Jumei 《无机化学学报》 北大核心 2025年第8期1672-1680,共9页
One Yb(Ⅲ)-based coordination polymer,{[Yb(H_(2)dhtp)1.5(H_(2)O)_(4)]·3H_(2)O}n(1)(H_(4)dhtp=2,5-dihydroxytere-phthalic acid),was fabricated and structurally characterized by single-crystal X-ray diffraction,IR,p... One Yb(Ⅲ)-based coordination polymer,{[Yb(H_(2)dhtp)1.5(H_(2)O)_(4)]·3H_(2)O}n(1)(H_(4)dhtp=2,5-dihydroxytere-phthalic acid),was fabricated and structurally characterized by single-crystal X-ray diffraction,IR,powder X-ray diffraction,X-ray diffraction,and elemental analysis.Complex 1 displays a 1D chain structure,and belongs to P1 group.The solid-state luminescent spectrum of 1 showed an emission band with the maximum at 508 nm(λex=408 nm).It exhibited the emission characteristic of the H_(4)dhtp ligand.The fluorescence of 1 in water displayed the stron-gest intensity.In detecting various metal ions,adding Zr^(4+)led to a blue shift in fluorescence,accompanied by an increase in intensity,whereas the presence of Fe^(3+)resulted in a decrease in luminescence.The changes observed in the IR spectrum indicate an interaction between Fe^(3+)/Zr^(4+)and complex 1,resulting in the variation of luminescence properties. 展开更多
关键词 coordination polymers STRUCTURE LUMINESCENCE
在线阅读 下载PDF
Highly electrically conductive MOF/conducting polymer nanocomposites toward tunable electromagnetic wave absorption 被引量:1
18
作者 Xin Wu Peiyuan Kang +5 位作者 Yinghan Zhang Haocheng Guo Shuoying Yang Qi Zheng Lianjun Wang Wan Jiang 《Journal of Materials Science & Technology》 2025年第2期258-269,共12页
Metal-organic frameworks(MOFs)have attracted significant interest as self-templates and precursors for the synthesis of carbon-based composites aimed at electromagnetic wave(EMW)absorption.However,the utilization of h... Metal-organic frameworks(MOFs)have attracted significant interest as self-templates and precursors for the synthesis of carbon-based composites aimed at electromagnetic wave(EMW)absorption.However,the utilization of high-temperature treatments has introduced uncertainties regarding the compositions and microstructures of resulting derivatives.Additionally,complete carbonization has led to diminished yields of the produced carbon composites,significantly limiting their practical applications.Consequently,the exploration of pristine MOF-based EMW absorbers presents an intriguing yet challenging endeavor,primarily due to inherently low electrical conductivity.In this study,we showcase the utilization of structurally robust Zr-MOFs as scaffolds to build highly conductive Zr-MOF/PPy composites via an inner-outer dual-modification approach,which involves the production of conducting polypyrrole(PPy)both within the confined nanoporous channels and the external surface of Zr-MOFs via post-synthetic modification.The interconnection of confined PPy and surface-lined PPy together leads to a consecutive and extensive conducting network to the maximum extent.This therefore entails outstanding conductivity up to~14.3 S cm^(-1) in Zr-MOF/PPy composites,which is approximately 1-2 orders of magnitude higher than that for conductive MOF nanocomposites constructed from either inner or outer modification.Benefiting from the strong and tunable conduction loss,as well as the induced dielectric polarization originated from the porous structures and MOF-polymer interfaces,Zr-MOF/PPy exhibits excellent microwave attenuation capabilities and a tunable absorption frequency range.Specifically,with only 15 wt.%loading,the minimum reflection loss(RLmin)can reach up to-67.4 dB,accompanied by an effective absorption bandwidth(EAB)extending to 6.74 GHz.Furthermore,the microwave absorption characteristics can be tailored from the C-band to the Ku-band by adjusting the loading of PPy.This work provides valuable insights into the fabrication of conductive MOF composites by presenting a straightforward pathway to enhance and reg-ulate electrical conduction in MOF-based nanocomposites,thus paving a way to facilely fabricate pristine MOF-based microwave absorbers. 展开更多
关键词 Conductive mof nanocomposites Electromagnetic wave absorption MOF/conducting polymer Electrical conductivity Zr-MOF/PPy
原文传递
Building slippy ion-conduction highways in polymer electrolyte by electrostatic adsorption enabled asymmetric solvation structure 被引量:1
19
作者 Shanshan Lv Guojiang Wen +6 位作者 Wenrui Cai Sifan Yang Jiarui Yang Yuanming Zhai Xuewei Fu Wei Yang Yu Wang 《Journal of Energy Chemistry》 2025年第4期48-58,共11页
Solvation structures fundamentally control the ion-transport dynamics and mechanical properties of polymer electrolytes.However,there is a lack of strategies to rationally regulate the solvation structures and fundame... Solvation structures fundamentally control the ion-transport dynamics and mechanical properties of polymer electrolytes.However,there is a lack of strategies to rationally regulate the solvation structures and fundamental understanding on how they control the electrochemical performances.Herein,by harnessing the electrostatic adsorption of one-dimensional nanofiller(i.e.,surface-charged halloysite nanotubes,d-HNTs),we successfully fabricate a high-performance polymer nanocomposite electrolyte enabled by strong surface adsorption,referred as adsorption-state polymer electrolyte(ASPE).This ASPE shows fast ion transport(0.71±0.05 mS cm^(-1)at room temperature),high mechanical strength and toughness(10.3±0.05 MPa;15.73 MJ m^(-3)),improved lithium-ion transference number,and long cycle life with lithium metal anode,in comparison with the sample without the d-HNT adsorption effect.To fundamentally understand these high performances,an anion-rich asymmetric solvent structure model is further proposed and evidenced by both experiments and simulation studies.Results show that the electrostatic adsorption among the d-HNT,ionic liquid electrolyte,and polymer chain generates a nano filler-supported fast ion-conduction pathway with asymmetric Li+-coordination microenvironment.Meanwhile,the anion-rich asymmetric solvent structure model of ASPE also generates a fast de-solvation and anion-derived stable solid-electrolyte interphase for lithium metal anode.The high performance and understanding of the mechanism for ASPE provide a promising path to develop advanced polymer electrolytes. 展开更多
关键词 Adsorption state polymer electrolyte Electrostatic adsorption effect Li^(+)-solvation structure Solid-electrolyte-interphase Li^(+)de-solvation
在线阅读 下载PDF
A viologen-based Cd(Ⅱ)coordination polymer:Self-assembly,thermochromism,and electrochemical property
20
作者 LI Xiaonan HAN Hui +3 位作者 ZHANG Yihan XIONG Jing GUO Tingting YAN Juanzhi 《无机化学学报》 北大核心 2025年第7期1439-1444,共6页
Under the condition of solvothermal synthesis,the viologen ligand 1,1′-bis(3-carboxyphenyl)-(4,4′-bipyri-dine)dichloride(H_(2)bcbpy·2Cl)and KI are coordinated with the metal cadmium ions.A case of thermochromic... Under the condition of solvothermal synthesis,the viologen ligand 1,1′-bis(3-carboxyphenyl)-(4,4′-bipyri-dine)dichloride(H_(2)bcbpy·2Cl)and KI are coordinated with the metal cadmium ions.A case of thermochromic coor-dination polymer[Cd(bcbpy)I_(2)]·2H_(2)O(1)was constructed.Complex 1 displays a 1D chain structure and exhibits thermochromic behavior.Under different temperature stimulation,the complex(ground)slowly changed from green to yellow-green,and with the increase of temperature,the color of complex 1 gradually deepened,and finally became orange-yellow.Therefore,complex 1 was prepared as a thermochromic film.In addition,we also performed electrochemical tests on complex 1,which showed that the complex is a semiconductor material.CCDC:2391802. 展开更多
关键词 coordination polymer VIOLOGEN THERMOCHROMISM electrochemical property
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部