A multi-resolution rectangular shell element with membrane-bending based on the Kirchhoff-Love theory is proposed. The multi-resolution analysis (MRA) framework is formulated out of a mutually nesting displacement s...A multi-resolution rectangular shell element with membrane-bending based on the Kirchhoff-Love theory is proposed. The multi-resolution analysis (MRA) framework is formulated out of a mutually nesting displacement subspace sequence, whose basis functions are constructed of scaling and shifting on the element domain of basic node shape functions. The basic node shape functions are constructed from shifting to other three quadrants around a specific node of a basic element in one quadrant and joining the corresponding node shape functions of four elements at the specific node. The MRA endows the proposed element with the resolution level (RL) to adjust the element node number, thus modulating structural analysis accuracy accordingly. The node shape functions of Kronecker delta property make the treatment of element boundary condition quite convenient and enable the stiffness matrix and the loading column vectors of the proposed element to be automatically acquired through quadraturing around nodes in RL adjusting. As a result, the traditional 4-node rectangular shell element is a mono-resolution one and also a special case of the proposed element. The accuracy of a structural analysis is actually determined by the RL, not by the mesh. The simplicity and clarity of node shape function formulation with the Kronecker delta property, and the rational MRA enable the proposed element method to be implemented more rationally, easily and efficiently than the conventional mono-resolution rectangular shell element method or other corresponding MRA methods.展开更多
A multiresolution hexahedron element is presented with a new multiresolution analysis(MRA)framework.The MRA framework is formulated out of a mutually nesting displacement subspace sequence,whose basis functions are co...A multiresolution hexahedron element is presented with a new multiresolution analysis(MRA)framework.The MRA framework is formulated out of a mutually nesting displacement subspace sequence,whose basis functions are constructed of scaling and shifting on element domain of a basic node shape function.The basic node shape function is constructed from shifting to other seven quadrants around a specific node of a basic isoparametric element in one quadrant and joining the corresponding node shape functions of eight elements at the specific node.The MRA endows the proposed element with the resolution level(RL)to adjust structural analysis accuracy.As a result,the traditional 8-node hexahedron element is a monoresolution one and also a special case of the proposed element.The meshing for the monoresolution finite element model is based on the empiricism while the RL adjusting for the multiresolution is laid on the solid mathematical basis.The simplicity and clarity of shape function construction with the Kronecker delta property and the rational MRA enable the proposed element method to be more rational,easier and efficient in its implementation than the conventional mono-resolution solid element method or other MRA methods.The multiresolution hexahedron element method is more adapted to dealing with the accurate computation of structural problems.展开更多
基金financial support by the Open Foundation of Chongqing Key Laboratory of Geomechanics and Geoenvironment Protection(Logistical Engineering University)(No.GKLGGP 2013-02)
文摘A multi-resolution rectangular shell element with membrane-bending based on the Kirchhoff-Love theory is proposed. The multi-resolution analysis (MRA) framework is formulated out of a mutually nesting displacement subspace sequence, whose basis functions are constructed of scaling and shifting on the element domain of basic node shape functions. The basic node shape functions are constructed from shifting to other three quadrants around a specific node of a basic element in one quadrant and joining the corresponding node shape functions of four elements at the specific node. The MRA endows the proposed element with the resolution level (RL) to adjust the element node number, thus modulating structural analysis accuracy accordingly. The node shape functions of Kronecker delta property make the treatment of element boundary condition quite convenient and enable the stiffness matrix and the loading column vectors of the proposed element to be automatically acquired through quadraturing around nodes in RL adjusting. As a result, the traditional 4-node rectangular shell element is a mono-resolution one and also a special case of the proposed element. The accuracy of a structural analysis is actually determined by the RL, not by the mesh. The simplicity and clarity of node shape function formulation with the Kronecker delta property, and the rational MRA enable the proposed element method to be implemented more rationally, easily and efficiently than the conventional mono-resolution rectangular shell element method or other corresponding MRA methods.
基金supported by the Foundation of Municipal Key Laboratory of Geomechanics and Geological Environment Protection at Chongqing Institute of Logistics Engineering of PLA(Grant No.GKLGGP 2013-02)the National Natural Science Foundation of China(Grant No.51178222)
文摘A multiresolution hexahedron element is presented with a new multiresolution analysis(MRA)framework.The MRA framework is formulated out of a mutually nesting displacement subspace sequence,whose basis functions are constructed of scaling and shifting on element domain of a basic node shape function.The basic node shape function is constructed from shifting to other seven quadrants around a specific node of a basic isoparametric element in one quadrant and joining the corresponding node shape functions of eight elements at the specific node.The MRA endows the proposed element with the resolution level(RL)to adjust structural analysis accuracy.As a result,the traditional 8-node hexahedron element is a monoresolution one and also a special case of the proposed element.The meshing for the monoresolution finite element model is based on the empiricism while the RL adjusting for the multiresolution is laid on the solid mathematical basis.The simplicity and clarity of shape function construction with the Kronecker delta property and the rational MRA enable the proposed element method to be more rational,easier and efficient in its implementation than the conventional mono-resolution solid element method or other MRA methods.The multiresolution hexahedron element method is more adapted to dealing with the accurate computation of structural problems.