自动抄表(Automatic Meter Reading,AMR)在变电站电表读数中具有重要的应用价值。近年来,深度学习图像识别技术在AMR领域取得了显著进展。然而,现有方法大多依赖于计数器检测、分割和识别的3阶段流程,存在复杂性和效率方面的问题。为提...自动抄表(Automatic Meter Reading,AMR)在变电站电表读数中具有重要的应用价值。近年来,深度学习图像识别技术在AMR领域取得了显著进展。然而,现有方法大多依赖于计数器检测、分割和识别的3阶段流程,存在复杂性和效率方面的问题。为提升AMR的准确性与效率,首次将序列到序列(Sequence-to-Sequence,Seq2Seq)架构引入该任务,结合YOLOv5进行计数器检测,并利用Seq2Seq架构直接识别计数器,省略了传统流程中的计数器分割步骤。此外,还提出改进注意力机制的Seq2Seq架构,以优化信息传递与特征对齐。在UFPR-AMR公开数据集上的实验表明,改进方法的准确率达到了92.5%,比原方法提升了1.25%,这一结果验证了所提出的方法在AMR任务中的有效性。展开更多
辣椒红色素是目前全球销量最大的纯天然可食用色素,培育高辣椒红色素品种为辣椒产业重要任务。通过对255份一年生栽培种辣椒核心种质的辣椒红素含量进行全基因组关联分析(genome-wide association study,GWAS),在第1、2、3、5、6、8、9...辣椒红色素是目前全球销量最大的纯天然可食用色素,培育高辣椒红色素品种为辣椒产业重要任务。通过对255份一年生栽培种辣椒核心种质的辣椒红素含量进行全基因组关联分析(genome-wide association study,GWAS),在第1、2、3、5、6、8、9、10、11和12号染色体均关联到与辣椒红素含量显著相关的区间,关联区间内共包括93个基因,根据功能注释和转录表达数据预测了3个影响辣椒果实中辣椒红素含量的候选基因。通过对高辣椒红色素材料Pep-340、低辣椒红色素材料Pep-276构建的F2群体进行混合分组分析法-测序(bulked segregant analysis-sequencing,BSA-seq)分析,在第1、3、5和10号染色体定位到与辣椒红色素含量相关区间,其中第3和5号染色体上的定位区间与GWAS分析中的显著相关区间相近或重合;利用这两个区间的In Del分子标记,进行遗传连锁分析,将调控辣椒红色素含量基因定位在3号染色体的q CC3.1,物理位置为22.8~25.9 Mb,其中含有99个基因,根据功能注释和转录组分析,预测了4个影响辣椒果实中辣椒红色素含量的候选基因Capana03g001314、Capana03g001325、Capana03g001334和Capana03g001387。研究结果为调控辣椒中辣椒红色素含量基因精细定位及分子标记辅助选择育种奠定基础。展开更多
文摘针对新能源大规模并网带来的消纳问题,提出一种考虑源荷双侧弹性资源的日前调度方法.首先,对深度调峰机组、可平移负荷和可削减负荷的弹性调节能力进行分析,建立含弹性资源的电力系统调度模型;然后,提出一种基于Conv-Seq2Seq (convolutional sequence to sequence)模型的日前调度方法,使用多层卷积神经网络作为编码器对负荷预测数据等信息进行提取,改进深度学习网络信息提取的能力和速度,并使用门控循环单元作为解码器对编码器提取的信息进行解码,以输出调度计划;最后,通过辅助决策修正来确保调度计划的安全性.基于改进的IEEE39节点算例验证所提出方法的有效性和正确性.
文摘自动抄表(Automatic Meter Reading,AMR)在变电站电表读数中具有重要的应用价值。近年来,深度学习图像识别技术在AMR领域取得了显著进展。然而,现有方法大多依赖于计数器检测、分割和识别的3阶段流程,存在复杂性和效率方面的问题。为提升AMR的准确性与效率,首次将序列到序列(Sequence-to-Sequence,Seq2Seq)架构引入该任务,结合YOLOv5进行计数器检测,并利用Seq2Seq架构直接识别计数器,省略了传统流程中的计数器分割步骤。此外,还提出改进注意力机制的Seq2Seq架构,以优化信息传递与特征对齐。在UFPR-AMR公开数据集上的实验表明,改进方法的准确率达到了92.5%,比原方法提升了1.25%,这一结果验证了所提出的方法在AMR任务中的有效性。