In this study,a straightforward one-step hydrothermal method was successfully utilized to synthesize the solid solution Na_(0.9)Mg_(0.45)Ti_(3.55)O_(8)-Na_(2)Ni_(2)Ti_(6)O_(16)(NNMTO-x),where x denotes the molar perce...In this study,a straightforward one-step hydrothermal method was successfully utilized to synthesize the solid solution Na_(0.9)Mg_(0.45)Ti_(3.55)O_(8)-Na_(2)Ni_(2)Ti_(6)O_(16)(NNMTO-x),where x denotes the molar percentage of Na_(2)Ni_(2)Ti_(6)O_(16)(NNTO)within Na_(0.9)Mg_(0.45)Ti_(3.55)O_(8)(NMTO),with x values of 10,20,30,40,and 50.Both XPS(X-ray Photoelectron Spectroscopy)and EDX(Energy Dispersive X-ray Spectroscopy)analyses unequivocally validated the formation of the NNMTO-x solid solutions.It was observed that when x is below 40,the NNMTO-x solid solution retains the structural characteristics of the original NMTO.However,beyond this threshold,significant alterations in crystal morphology were noted,accompanied by a noticeable decline in photocatalytic activity.Notably,the absorption edge of NNMTO-x(x<40)exhibited a shift towards the visible-light spectrum,thereby substantially broadening the absorption range.The findings highlight that NNMTO-30 possesses the most pronounced photocatalytic activity for the reduction of CO_(2).Specifically,after a 6 h irradiation period,the production rates of CO and CH_(4)were recorded at 42.38 and 1.47μmol/g,respectively.This investigation provides pivotal insights that are instrumental in the advancement of highly efficient and stable photocatalysts tailored for CO_(2)reduction processes.展开更多
Zn-I_(2) batteries have emerged as promising next-generation energy storage systems owing to their inherent safety,environmental compatibility,rapid reaction kinetics,and small voltage hysteresis.Nevertheless,two crit...Zn-I_(2) batteries have emerged as promising next-generation energy storage systems owing to their inherent safety,environmental compatibility,rapid reaction kinetics,and small voltage hysteresis.Nevertheless,two critical challenges,i.e.,zinc dendrite growth and polyiodide shuttle effect,severely impede their commercial viability.To conquer these limitations,this study develops a multifunctional separator fabricated from straw-derived carboxylated nanocellulose,with its negative charge density further reinforced by anionic polyacrylamide incorporation.This modification simultaneously improves the separator’s mechanical properties,ionic conductivity,and Zn^(2+)ion transfer number.Remarkably,despite its ultrathin 20μm profile,the engineered separator demonstrates exceptional dendrite suppression and parasitic reaction inhibition,enabling Zn//Zn symmetric cells to achieve impressive cycle life(>1800 h at 2 m A cm^(-2)/2 m Ah cm^(-2))while maintaining robust performance even at ultrahigh areal capacities(25 m Ah cm^(-2)).Additionally,the separator’s anionic characteristic effectively blocks polyiodide migration through electrostatic repulsion,yielding Zn-I_(2) batteries with outstanding rate capability(120.7 m Ah g^(-1)at 5 A g^(-1))and excellent cyclability(94.2%capacity retention after 10,000 cycles).And superior cycling stability can still be achieved under zinc-deficient condition and pouch cell configuration.This work establishes a new paradigm for designing high-performance zinc-based energy storage systems through rational separator engineering.展开更多
Traditional data-driven fault diagnosis methods depend on expert experience to manually extract effective fault features of signals,which has certain limitations.Conversely,deep learning techniques have gained promine...Traditional data-driven fault diagnosis methods depend on expert experience to manually extract effective fault features of signals,which has certain limitations.Conversely,deep learning techniques have gained prominence as a central focus of research in the field of fault diagnosis by strong fault feature extraction ability and end-to-end fault diagnosis efficiency.Recently,utilizing the respective advantages of convolution neural network(CNN)and Transformer in local and global feature extraction,research on cooperating the two have demonstrated promise in the field of fault diagnosis.However,the cross-channel convolution mechanism in CNN and the self-attention calculations in Transformer contribute to excessive complexity in the cooperative model.This complexity results in high computational costs and limited industrial applicability.To tackle the above challenges,this paper proposes a lightweight CNN-Transformer named as SEFormer for rotating machinery fault diagnosis.First,a separable multiscale depthwise convolution block is designed to extract and integrate multiscale feature information from different channel dimensions of vibration signals.Then,an efficient self-attention block is developed to capture critical fine-grained features of the signal from a global perspective.Finally,experimental results on the planetary gearbox dataset and themotor roller bearing dataset prove that the proposed framework can balance the advantages of robustness,generalization and lightweight compared to recent state-of-the-art fault diagnosis models based on CNN and Transformer.This study presents a feasible strategy for developing a lightweight rotating machinery fault diagnosis framework aimed at economical deployment.展开更多
Mineral fulvic acid(MFA)was used as an eco-friendly pyrite depressant to recover chalcopyrite by flotation with the use of the butyl xanthate as a collector.Flotation experiments showed that MFA produced a stronger in...Mineral fulvic acid(MFA)was used as an eco-friendly pyrite depressant to recover chalcopyrite by flotation with the use of the butyl xanthate as a collector.Flotation experiments showed that MFA produced a stronger inhibition effect on pyrite than on chalcopyrite.The separation of chalcopyrite from pyrite was realized by introducing 150 mg/L MFA at a pulp pH of approximately 8.0.The copper grade,copper recovery,and separation efficiency were 28.03%,84.79%,and 71.66%,respectively.Surface adsorption tests,zeta potential determinations,and localized electrochemical impedance spectroscopy tests showed that more MFA adsorbed on pyrite than on chalcopyrite,which weakened the subsequent interactions between pyrite and the collector.Atomic force microscope imaging further confirmed the adsorption of MFA on pyrite,and X-ray photoelectron spectroscopy results indicated that hydrophilic Fe-based species on the pyrite surfaces increased after exposure of pyrite to MFA,thereby decreasing the floatability of pyrite.展开更多
Melamine sponge is a major concern for oil-water separation due to its lightweight,high porosity(>99%),cost-effectiveness,impressive mechanical properties,and chemical/thermal stability.However,its amphiphilic natu...Melamine sponge is a major concern for oil-water separation due to its lightweight,high porosity(>99%),cost-effectiveness,impressive mechanical properties,and chemical/thermal stability.However,its amphiphilic nature hinders selective oil absorption in water.Recent strategies to enhance hydrophobicity are reviewed,including synthetic methods and materials,with comprehensive explanations of the mechanisms driven by surface energy and roughness.Key performance indicators for MS in oil-water separation,including adsorption capacity,wettability,stability,emulsion separation,reversible wettability switching,flame retardancy,mechanical properties,and recyclability,are thoroughly discussed.In conclusion,this review provides insights into the future potential and direction of functional melamine sponges in oil-water separation.展开更多
The growing demands for energy storage systems,electric vehicles,and portable electronics have significantly pushed forward the need for safe and reliable lithium batteries.It is essential to design functional separat...The growing demands for energy storage systems,electric vehicles,and portable electronics have significantly pushed forward the need for safe and reliable lithium batteries.It is essential to design functional separators with improved mechanical and electrochemical characteristics.This review covers the improved mechanical and electrochemical performances as well as the advancements made in the design of separators utilizing a variety of techniques.In terms of electrolyte wettability and adhesion of the coating materials,we provide an overview of the current status of research on coated separators,in situ modified separators,and grafting modified separators,and elaborate additional performance parameters of interest.The characteristics of inorganics coated separators,organic framework coated separators and inorganic-organic coated separators from different fabrication methods are compared.Future directions regarding new modified materials,manufacturing process,quantitative analysis of adhesion and so on are proposed toward next-generation advanced lithium batteries.展开更多
For the development of high-performance metallic glasses,enhancing their stability against viscous flow and crystallization is a primary objective.Vapor deposition or prolonged annealing is an effective method to impr...For the development of high-performance metallic glasses,enhancing their stability against viscous flow and crystallization is a primary objective.Vapor deposition or prolonged annealing is an effective method to improve glass stability,shown by increased glass transition temperature(Tg)and crystallization temperature(Tx).This contributes to the development of ultra-stable metallic glasses.Herein,we demonstrate that modulating the quenching temperature can also produce ultra-stable metallic glasses,as evidenced by an increase in Tx of 17-30 K in Cu-based metallic glasses.By modulating the quenching temperature,separated primary phases,secondary phases,and even nano-oxides can be obtained in the metallic glasses.Notably,metastable phases such as Cu-rich precipitates arising from secondary phase separation play a crucial role in enhancing glass stability.However,the enhancement of the stability of the glass has only a negligible effect on its mechanical properties.This study implies that different melt thermodynamic states generated by liquid-liquid separation and transition collectively determine the frozen-in glass structure.The results of this study will be helpful for the development of ultra-stable bulk glasses.展开更多
Due to water conflicts and allocation in the Lancang-Mekong River Basin(LMRB),the spatio-temporal differentiation of total water resources and the natural-human influence need to be clarified.This work investigated LM...Due to water conflicts and allocation in the Lancang-Mekong River Basin(LMRB),the spatio-temporal differentiation of total water resources and the natural-human influence need to be clarified.This work investigated LMRB's terrestrial water storage anomaly(TWSA)and its spatio-temporal dynamics during 2002–2020.Considering the effects of natural factors and human activities,the respective contributions of climate variability and human activities to terrestrial water storage change(TWSC)were separated.Results showed that:(1)LMRB's TWSA decreased by 0.3158 cm/a.(2)TWSA showed a gradual increase in distribution from southwest of MRB to middle LMRB and from northeast of LRB to middle LMRB.TWSA positively changed in Myanmar while slightly changed in Laos and China.It negatively changed in Vietnam,Thailand and Cambodia.(3)TWSA components decreased in a descending order of soil moisture,groundwater and precipitation.(4)Natural factors had a substantial and spatial differentiated influence on TWSA over the LMRB.(5)Climate variability contributed 79%of TWSC in the LMRB while human activities contributed 21%with an increasing impact after 2008.The TWSC of upstream basin countries was found to be controlled by climate variability while Vietnam and Cambodia's TWSC has been controlled by human activities since 2012.展开更多
Along with the proliferating research interest in semantic communication(Sem Com),joint source channel coding(JSCC)has dominated the attention due to the widely assumed existence in efficiently delivering information ...Along with the proliferating research interest in semantic communication(Sem Com),joint source channel coding(JSCC)has dominated the attention due to the widely assumed existence in efficiently delivering information semantics.Nevertheless,this paper challenges the conventional JSCC paradigm and advocates for adopting separate source channel coding(SSCC)to enjoy a more underlying degree of freedom for optimization.We demonstrate that SSCC,after leveraging the strengths of the Large Language Model(LLM)for source coding and Error Correction Code Transformer(ECCT)complemented for channel coding,offers superior performance over JSCC.Our proposed framework also effectively highlights the compatibility challenges between Sem Com approaches and digital communication systems,particularly concerning the resource costs associated with the transmission of high-precision floating point numbers.Through comprehensive evaluations,we establish that assisted by LLM-based compression and ECCT-enhanced error correction,SSCC remains a viable and effective solution for modern communication systems.In other words,separate source channel coding is still what we need.展开更多
Comprehensive utilization of phosphogypsum(PG)has attracted much attention,especially for the recovery of rare earth elements(REEs)and gypsum due to the issues of stockpile,environmental pollution,and waste of associa...Comprehensive utilization of phosphogypsum(PG)has attracted much attention,especially for the recovery of rare earth elements(REEs)and gypsum due to the issues of stockpile,environmental pollution,and waste of associated resources.Traditional utilization methods suffered the issues of low REEs leaching efficiency,huge amount of CaSO_(4)saturated wastewater and high recovery cost.To solve these issues,this study investigated the occurrence of REEs in PG and the leaching of REEs.The results show that REEs in PG are in the forms of(1)REEs mineral inclusions,(2)REEs isomorphous substitution of Ca^(2+)in gypsum lattice,(3)dispersed soluble REEs salts.Acid leaching results demonstrate that(1)the dissolution of gypsum matrix is the control factor of REEs leaching;(2)H_(2)SO_(4)is a promising leachant considering the recycle of leachate;(3)the gypsum matrix suffers a recrystallization during the acid leaching and releases the soluble REEs from PG to aqueous solution.For the recovery of the undissolved REEs mineral inclusions,wet sieving concentrated 37.1 wt%of the REEs in a 10.7 wt%mass,increasing REEs content from 309 to 1071 ppm.Finally,a green process combining gravity separation and hydrometallurgy is proposed.This process owns the merits of wastewater free,considerable REEs recovery(about 10%increase compared with traditional processes),excellent gypsum purification(>95 wt%CaSO_(4)·2H_(2)O,with<0.06 wt%of soluble P_(2)O_(5) and<0.015 wt%of soluble F)and reagent saving(about 2/3less reagent consumption than non-cyclical leaching).展开更多
Small-sized Cd_(x) Zn_(1-x) S solid solution nanomaterial is an important candidate for efficient photocatalytic hydrogen evolution(PHE),but it still suffers from easy agglomeration,severe photo corrosion,and fast pho...Small-sized Cd_(x) Zn_(1-x) S solid solution nanomaterial is an important candidate for efficient photocatalytic hydrogen evolution(PHE),but it still suffers from easy agglomeration,severe photo corrosion,and fast photogenerated electron-hole recombination.To tackle these issues,herein,we propose a new strategy to modify Cd_(x) Zn_(1-x) S nanoreactors by the simultaneous utilization of ionic-liquid-assisted morphology engineering and MXene-incorporating method.That is,we designed and synthesized a novel hierarchi-cal Cd_(0.8) Zn_(0.2) S/Ti_(3) C_(2) Schottky junction composite through the in-situ deposition of ultrathin Cd_(0.8) Zn_(0.2) S nanosheets on unique IL-modified Ti_(3) C_(2) MXenes by a one-pot solvothermal method for efficiently PHE.The unique construction strategy tailors the thickness of ultrathin Cd_(0.8) Zn_(0.2) S nanosheets and prevents them from stacking and agglomeration,and especially,optimizes their charge transfer pathways during the photocatalytic process.Compared with pristine Cd_(0.8) Zn_(0.2) S nanosheets,Cd_(0.8) Zn_(0.2) S/Ti_(3) C_(2) has abun-dant photogenerated electrons available on the Ti_(3) C_(2) surface for proton reduction reaction,owing to the absence of deep-trapped electrons,suppression of electron-hole recombination in Cd_(0.8) Zn_(0.2) S and high-efficiency charge separation at the Cd_(0.8) Zn_(0.2) S/Ti_(3) C_(2) Schottky junction interface.Moreover,the hy-drophilicity,electrical conductivity,visible-light absorption capacity,and surficial hydrogen desorption of Cd_(0.8) Zn_(0.2) S/Ti_(3) C_(2) heterostructure are significantly improved.As a result,the heterostructure exhibits out-standing photocatalytic stability and super high apparent quantum efficiency,being rendered as one of the best noble-metal-free Cd-Zn-S-based photocatalysts.This work illustrates the mechanisms of mor-phology control and heterojunction construction in controlling the catalytic behavior of photocatalysts and highlights the great potential of the IL-assisted route in the synthesis of high-performance MXene-based heterostructures for photocatalytic hydrogen evolution.展开更多
In lithium-sulfur batteries(LSBs),the limited utilization of sulfur and the sluggish kinetics of redox reaction significantly hinder their electrochemical performance,especially under high rates and high sulfur loadin...In lithium-sulfur batteries(LSBs),the limited utilization of sulfur and the sluggish kinetics of redox reaction significantly hinder their electrochemical performance,especially under high rates and high sulfur loadings.Here,we propose a novel separator structure with an interlayer composed of a vermiculite nanosheet combined with Ketjen Black(VMT@KB)for LSBs,facilitating efficient adsorption and rapid catalytic conversion toward lithium polysulfides(LiPSs).The VMT@KB nanosheets with an electrical double-layer structure and electronic conductivity are obtained through a high-temperature peeling process and Li^(+)exchange treatment in LiCl solution,followed by a mechanical combination process with KB.The results demonstrate that incorporating VMT@KB as an interlayer on a conventional separator enhances the conductivity and limits the LiPSs in the cathode region.The Li-S cell with VMT@KB interlayer shows satisfactory cycle and rate performance,especially in high sulfur loading.It exhibits a remarkable initial discharge capacity of 1225 mAh g^(-1)at 0.5 C and maintains a capacity of 816 mAh g^(-1)after 500 cycles.Besides,the discharge capacity remains 462 mAh g^(-1)even at 6 C.Moreover,the cell with high sulfur loading(8.2 mg cm^(-2))enables stable cycling for 100 cycles at 0.1 C with a discharge capacity of over1000 mAh g^(-1).展开更多
Copper and cobalt were recovered from SICOMINES mining waste rock in the Democratic Republic of Congo.The process mineralogy of the samples was analyzed using scanning electron microscopy and energy dispersive spectro...Copper and cobalt were recovered from SICOMINES mining waste rock in the Democratic Republic of Congo.The process mineralogy of the samples was analyzed using scanning electron microscopy and energy dispersive spectroscopy.The results showed that copper minerals exhibited various forms and uneven particle sizes,while cobalt existed in the form of highly dispersed asbolane,and large amounts of easily slimed gangue minerals were filled in the samples,making it difficult to separate copper and cobalt minerals.The particle size range plays a decisive role in selecting the separation method for the copper−cobalt ore.Gravity separation was suitable for particles ranging from 43 to 246μm,while flotation was more effective for particles below 43μm.After ore grinding and particle size classification,applying a combined gravity separation(shaking table)−flotation method yielded concentrated minerals with a copper recovery of 72.83%and a cobalt recovery of 31.13%.展开更多
To tackle the issue of notch frequency and center frequency drift of the L(0,1)mode guided wave in ultra⁃sonic guided wave⁃based stress monitoring of prestressed steel strands,a method using higher⁃order mode plateau ...To tackle the issue of notch frequency and center frequency drift of the L(0,1)mode guided wave in ultra⁃sonic guided wave⁃based stress monitoring of prestressed steel strands,a method using higher⁃order mode plateau fre⁃quencies is adopted.First,the correlation between group velocity peaks and phase velocities at these plateau frequen⁃cies is analyzed.This analysis establishes a quantitative rela⁃tionship between phase velocity and stress in the steel strand,providing a theoretical foundation for stress monitor⁃ing.Then the two⁃dimensional Fourier transform is em⁃ployed to separate wave modes.Dynamic programming techniques are applied in the frequency⁃velocity domain to extract higher⁃order modes.By identifying the group veloc⁃ity peaks of these separated higher⁃order modes,the plateau frequencies of guided waves are determined,enabling indi⁃rect measurement of stress in the steel strand.To validate this method,finite element simulations are conducted under three scenarios.Results show that the higher⁃order modes of transient signals from three different positions can be ac⁃curately extracted,leading to successful cable stress moni⁃toring.This approach effectively circumvents the issue of guided wave frequency drift and improves stress monitoring accuracy.Consequently,it significantly improves the appli⁃cation of ultrasonic guided wave technology in structural health monitoring.展开更多
The research,fabrication and development of piezoelectric nanofibrous materials offer effective solutions to the challenges related to energy consumption and non-renewable resources.However,enhancing their electrical ...The research,fabrication and development of piezoelectric nanofibrous materials offer effective solutions to the challenges related to energy consumption and non-renewable resources.However,enhancing their electrical output still remains a significant challenge.Here,a strategy of inducing constrained phase separation on single nanofibers via shear force was proposed.Employing electrospinning technology,a polyacrylonitrile/polyvinylidene difluoride(PAN/PVDF)nanofibrous membrane was fabricated in one step,which enabled simultaneous piezoelectric and triboelectric conversion within a single-layer membrane.Each nanofiber contained independent components of PAN and PVDF and exhibited a rough surface.The abundant frictional contact points formed between these heterogeneous components contributed to an enhanced endogenous triboelectric output,showcasing an excellent synergistic effect of piezoelectric and triboelectric response in the nanofibrous membrane.Additionally,the component mass ratio influenced the microstructure,piezoelectric conformation and piezoelectric performance of the PAN/PVDF nanofibrous membranes.Through comprehensive performance comparison,the optimal mass ratio of PAN to PVDF was determined to be 9∶1.The piezoelectric devices made of the optimal PAN/PVDF nanofibrous membranes with rough nanofiber surfaces generated an output voltage of 20 V,which was about 1.8 times that of the smooth one at the same component mass ratio.The strategy of constrained phase separation on the surface of individual nanofibers provides a new approach to enhance the output performance of single-layer piezoelectric nanofibrous materials.展开更多
Membrane technology holds significant potential for augmenting or partially substituting conventional separation techniques,such as heatdriven distillation,thereby reducing energy consumption.Organic solvent nanofiltr...Membrane technology holds significant potential for augmenting or partially substituting conventional separation techniques,such as heatdriven distillation,thereby reducing energy consumption.Organic solvent nanofiltration represents an advanced membrane separation technology capable of discerning molecules within a molecular weight range of approximately 100-1000 Da in organic solvents,offering low energy requirements and minimal carbon footprints.Molecular separation in non-polar solvent system,such as toluene,n-hexane,and n-heptane,has gained paramount importance due to their extensive use in the pharmaceutical,biochemical,and petrochemical industries.In this review,we presented recent advancements in membrane materials,membrane fabrication techniques and their promising applications for separation in nonpolar solvent system,encompassing hydrocarbon separation,bioactive molecule purification and organic solvent recovery.Furthermore,this review highlighted the challenges and opportunities associated with membrane scale-up strategies and the direct translation of this promising technology into industrial applications.展开更多
This paper focuses on the preparation of rare earth oxide products from rare earth chloride solutions during the rare earth extraction and separation processes,as well as the recycling of magnesium chloride solutions....This paper focuses on the preparation of rare earth oxide products from rare earth chloride solutions during the rare earth extraction and separation processes,as well as the recycling of magnesium chloride solutions.It proposes the idea of introducing spray pyrolysis technology into the rare earth extraction and separation processes.This paper briefly describes the development history of chloride spray pyrolysis technology,focusing on the research status and application progress of rare earth chloride solution and magnesium chloride solution spray pyrolysis technology,as well as spray pyrolysis equipment.The paper also analyzes the challenges and technical intricacies associated with applying spray pyrolysis technology to chloride solutions in the rare earth extraction and separation processes.Additionally,it explores future trends and proposes strategies to facilitate the full recycling of acids and bases,streamline the process flow,and enhance the prospects for green and low-carbon rare earth metallurgy.展开更多
Separating oil/water mixtures via superhydrophobic stainless steel mesh(SSM)is a kind of efficient methods of treating oily wastewater,and the superhydrophobic SSM with a low cost,simple fabrication process and robust...Separating oil/water mixtures via superhydrophobic stainless steel mesh(SSM)is a kind of efficient methods of treating oily wastewater,and the superhydrophobic SSM with a low cost,simple fabrication process and robust usability remains a challenge.Herein,urushiol-based benzoxazine(U-D)with a strong substrate adhesion and low surface free energy was used to anchor SiO_(2) particles on the SSM surface to obtain a durable superhydrophobic SSM(PU-D/SiO_(2)/SSM)through a simple dip-coating process,meanwhile,epoxy resin was also introduced to further improve the adhesion between coating and SSM.PU-D/SiO_(2)/SSM could successfully separate various immiscible oil-water mixtures with a separation efficiency of over 96%and a flux up to 27100 L/m^(2) h only by gravity,respectively.Especially,the modified SSM could effectively remove water from water-in-oil emulsion with a separation efficiency of 99.7%.Moreover,PU-D/SiO_(2)/SSM had an outstanding reusability,whose water contact angle and separation efficiency only slightly decreased after 20 cycles of separating oil/water mixture.In addition,the modified SSM also displayed a satisfactory abrasion resistance,chemical stability and self-cleaning property.Thereby,the robust PU-D/SiO_(2)/SSM prepared by cheap raw materials and facile dip-coating method exhibits a high potential for separating oil/water mixtures.展开更多
Carbon capture is an important strategy and is implemented to achieve the goals of CO_(2)reduction and carbon neutrality.As a high energy-efficient technology,membrane-based separation plays a crucial role in CO_(2)ca...Carbon capture is an important strategy and is implemented to achieve the goals of CO_(2)reduction and carbon neutrality.As a high energy-efficient technology,membrane-based separation plays a crucial role in CO_(2)capture.It is urgently needed for membrane-based CO_(2)capture to develop the high-performance membrane materials with high permeability,selectivity,and stability.Herein,ultrapermeable carbon molecular sieve(CMS)membranes are fabricated by py roly zing a finely-engineered benzoxazole-containing copolyimide precursor for efficient CO_(2)capture.The microstructure of CMS membrane has been optimized by initially engineering the precursor-chemistry and subsequently tuning the pyrolysis process.Deep insights into the structure-property relationship of CMSs are provided in detail by a combination of experimental characterization and molecular simulations.We demonstrate that the intrinsically high free volume environment of the precursor,coupled with the steric hindrance of thermostable contorted fragments,promotes the formation of loosely packed and ultramicroporous carbon structures within the resultant CMS membrane,thereby enabling efficient CO_(2)discrimination via size sieving and affinity.The membrane achieves an ultrahigh CO_(2)permeability,good selectivity,and excellent stability.After one month of long-term operation,the CO_(2)permeability in the mixed gas is maintained at 11,800 Barrer,with a CO_(2)/N_(2)selectivity exceeding 60.This study provides insights into the relationship between precursor-chemistry and CMS performance,and our ultrapermeable CMS membrane,which is scalable using thin film manufacturing,holds great potential for industrial CO_(2)capture.展开更多
Cu-Mn co-doped CeO_(2) photocatalyst was successfully synthesized by the sol-gel method to assess its capability in degrading tetracycline.XRD and TEM results showed that Cu and Mn were successfully co-doped into CeO_...Cu-Mn co-doped CeO_(2) photocatalyst was successfully synthesized by the sol-gel method to assess its capability in degrading tetracycline.XRD and TEM results showed that Cu and Mn were successfully co-doped into CeO_(2) without forming heterostructure,XPS and photoelectrochemical results revealed that Mn ions doping amplified the generation of photo-induced charge carriers,while Cu ions doping significantly facilitated the interfacial charge transfer process.Notably,the optimized Cu3Mn2CeO_(2) nanoparticles exhibited the highest TC removal efficiency,achieved a rate of 78.18%and maintained a stable cycling performance.展开更多
基金Supported by the Doctoral Research Start-up Project of Yuncheng University(YQ-2023067)Project of Shanxi Natural Science Foundation(202303021211189)+1 种基金Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shanxi Provinces(20220036)Shanxi ProvinceIntelligent Optoelectronic Sensing Application Technology Innovation Center and Shanxi Province Optoelectronic Information Science and TechnologyLaboratory,Yuncheng University.
文摘In this study,a straightforward one-step hydrothermal method was successfully utilized to synthesize the solid solution Na_(0.9)Mg_(0.45)Ti_(3.55)O_(8)-Na_(2)Ni_(2)Ti_(6)O_(16)(NNMTO-x),where x denotes the molar percentage of Na_(2)Ni_(2)Ti_(6)O_(16)(NNTO)within Na_(0.9)Mg_(0.45)Ti_(3.55)O_(8)(NMTO),with x values of 10,20,30,40,and 50.Both XPS(X-ray Photoelectron Spectroscopy)and EDX(Energy Dispersive X-ray Spectroscopy)analyses unequivocally validated the formation of the NNMTO-x solid solutions.It was observed that when x is below 40,the NNMTO-x solid solution retains the structural characteristics of the original NMTO.However,beyond this threshold,significant alterations in crystal morphology were noted,accompanied by a noticeable decline in photocatalytic activity.Notably,the absorption edge of NNMTO-x(x<40)exhibited a shift towards the visible-light spectrum,thereby substantially broadening the absorption range.The findings highlight that NNMTO-30 possesses the most pronounced photocatalytic activity for the reduction of CO_(2).Specifically,after a 6 h irradiation period,the production rates of CO and CH_(4)were recorded at 42.38 and 1.47μmol/g,respectively.This investigation provides pivotal insights that are instrumental in the advancement of highly efficient and stable photocatalysts tailored for CO_(2)reduction processes.
基金the financial support from the Natural Science Foundation of Jiangsu Province(BK20231292)the Jiangsu Agricultural Science and Technology Innovation Fund(CX(24)3091)+6 种基金the Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX25_1429)the National Key R&D Program of China(2024YFE0109200)the Fundamental Research Funds for the Central Universities(No.2024300440)Guangdong Basic and Applied Basic Research Foundation(2025A1515011098)the National Natural Science Foundation of China(12464032)the Natural Science Foundation of Jiangxi Province(20232BAB201032)Ji'an Science and Technology Plan Project(2024H-100301)。
文摘Zn-I_(2) batteries have emerged as promising next-generation energy storage systems owing to their inherent safety,environmental compatibility,rapid reaction kinetics,and small voltage hysteresis.Nevertheless,two critical challenges,i.e.,zinc dendrite growth and polyiodide shuttle effect,severely impede their commercial viability.To conquer these limitations,this study develops a multifunctional separator fabricated from straw-derived carboxylated nanocellulose,with its negative charge density further reinforced by anionic polyacrylamide incorporation.This modification simultaneously improves the separator’s mechanical properties,ionic conductivity,and Zn^(2+)ion transfer number.Remarkably,despite its ultrathin 20μm profile,the engineered separator demonstrates exceptional dendrite suppression and parasitic reaction inhibition,enabling Zn//Zn symmetric cells to achieve impressive cycle life(>1800 h at 2 m A cm^(-2)/2 m Ah cm^(-2))while maintaining robust performance even at ultrahigh areal capacities(25 m Ah cm^(-2)).Additionally,the separator’s anionic characteristic effectively blocks polyiodide migration through electrostatic repulsion,yielding Zn-I_(2) batteries with outstanding rate capability(120.7 m Ah g^(-1)at 5 A g^(-1))and excellent cyclability(94.2%capacity retention after 10,000 cycles).And superior cycling stability can still be achieved under zinc-deficient condition and pouch cell configuration.This work establishes a new paradigm for designing high-performance zinc-based energy storage systems through rational separator engineering.
基金supported by the National Natural Science Foundation of China(No.52277055).
文摘Traditional data-driven fault diagnosis methods depend on expert experience to manually extract effective fault features of signals,which has certain limitations.Conversely,deep learning techniques have gained prominence as a central focus of research in the field of fault diagnosis by strong fault feature extraction ability and end-to-end fault diagnosis efficiency.Recently,utilizing the respective advantages of convolution neural network(CNN)and Transformer in local and global feature extraction,research on cooperating the two have demonstrated promise in the field of fault diagnosis.However,the cross-channel convolution mechanism in CNN and the self-attention calculations in Transformer contribute to excessive complexity in the cooperative model.This complexity results in high computational costs and limited industrial applicability.To tackle the above challenges,this paper proposes a lightweight CNN-Transformer named as SEFormer for rotating machinery fault diagnosis.First,a separable multiscale depthwise convolution block is designed to extract and integrate multiscale feature information from different channel dimensions of vibration signals.Then,an efficient self-attention block is developed to capture critical fine-grained features of the signal from a global perspective.Finally,experimental results on the planetary gearbox dataset and themotor roller bearing dataset prove that the proposed framework can balance the advantages of robustness,generalization and lightweight compared to recent state-of-the-art fault diagnosis models based on CNN and Transformer.This study presents a feasible strategy for developing a lightweight rotating machinery fault diagnosis framework aimed at economical deployment.
基金supported by Fundamental Research Projects of Yunnan Province,China(Nos.202101BE070001-009,202301AU070189).
文摘Mineral fulvic acid(MFA)was used as an eco-friendly pyrite depressant to recover chalcopyrite by flotation with the use of the butyl xanthate as a collector.Flotation experiments showed that MFA produced a stronger inhibition effect on pyrite than on chalcopyrite.The separation of chalcopyrite from pyrite was realized by introducing 150 mg/L MFA at a pulp pH of approximately 8.0.The copper grade,copper recovery,and separation efficiency were 28.03%,84.79%,and 71.66%,respectively.Surface adsorption tests,zeta potential determinations,and localized electrochemical impedance spectroscopy tests showed that more MFA adsorbed on pyrite than on chalcopyrite,which weakened the subsequent interactions between pyrite and the collector.Atomic force microscope imaging further confirmed the adsorption of MFA on pyrite,and X-ray photoelectron spectroscopy results indicated that hydrophilic Fe-based species on the pyrite surfaces increased after exposure of pyrite to MFA,thereby decreasing the floatability of pyrite.
基金supported by the National Natural Science Foundation of China(Nos.52372093 and 52102145)the Key R&D Program of Shaanxi Province(Nos.2023GXLH-045 and 2022SF-168)+4 种基金the Xi’an Programs for Science and Technology Plan(Nos.2020KJRC0090 and 21XJZZ0045)the Opening Project of Shanxi Key Laboratory of Advanced Manufacturing Technology(No.XJZZ202001)the Xi’an Municipal Bureau of Science and Technology(No.21XJZZ0054)the Open Foundation of Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry,Ministry of Education,Shaanxi University of Science and Technology(No.KFKT2021-01)the Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry and Technology,Shaanxi University of Science and Technology(No.KFKT2021-01).
文摘Melamine sponge is a major concern for oil-water separation due to its lightweight,high porosity(>99%),cost-effectiveness,impressive mechanical properties,and chemical/thermal stability.However,its amphiphilic nature hinders selective oil absorption in water.Recent strategies to enhance hydrophobicity are reviewed,including synthetic methods and materials,with comprehensive explanations of the mechanisms driven by surface energy and roughness.Key performance indicators for MS in oil-water separation,including adsorption capacity,wettability,stability,emulsion separation,reversible wettability switching,flame retardancy,mechanical properties,and recyclability,are thoroughly discussed.In conclusion,this review provides insights into the future potential and direction of functional melamine sponges in oil-water separation.
基金the Center of Lithium Battery Membrane Materials jointly established by School of Chemistry and Chemical Engineering of Huazhong University of Science and Technology and Shenzhen Senior Technology Material Co.Ltd.,the National Natural Science Foundation of China(52020105012,52303084)the Young Scientists Fund of Natural Science Foundation of Hubei Province(2023AFB220)for the support of this work.
文摘The growing demands for energy storage systems,electric vehicles,and portable electronics have significantly pushed forward the need for safe and reliable lithium batteries.It is essential to design functional separators with improved mechanical and electrochemical characteristics.This review covers the improved mechanical and electrochemical performances as well as the advancements made in the design of separators utilizing a variety of techniques.In terms of electrolyte wettability and adhesion of the coating materials,we provide an overview of the current status of research on coated separators,in situ modified separators,and grafting modified separators,and elaborate additional performance parameters of interest.The characteristics of inorganics coated separators,organic framework coated separators and inorganic-organic coated separators from different fabrication methods are compared.Future directions regarding new modified materials,manufacturing process,quantitative analysis of adhesion and so on are proposed toward next-generation advanced lithium batteries.
基金supported by the National Natural Science Foundation of China(Nos.51827801,52371152,and 51971120).
文摘For the development of high-performance metallic glasses,enhancing their stability against viscous flow and crystallization is a primary objective.Vapor deposition or prolonged annealing is an effective method to improve glass stability,shown by increased glass transition temperature(Tg)and crystallization temperature(Tx).This contributes to the development of ultra-stable metallic glasses.Herein,we demonstrate that modulating the quenching temperature can also produce ultra-stable metallic glasses,as evidenced by an increase in Tx of 17-30 K in Cu-based metallic glasses.By modulating the quenching temperature,separated primary phases,secondary phases,and even nano-oxides can be obtained in the metallic glasses.Notably,metastable phases such as Cu-rich precipitates arising from secondary phase separation play a crucial role in enhancing glass stability.However,the enhancement of the stability of the glass has only a negligible effect on its mechanical properties.This study implies that different melt thermodynamic states generated by liquid-liquid separation and transition collectively determine the frozen-in glass structure.The results of this study will be helpful for the development of ultra-stable bulk glasses.
基金National Natural Science Foundation of China,No.42161006Yunnan Fundamental Research Projects No.202201AT070094,No.202301BF070001-004+1 种基金Special Project for High-level Talents of Yunnan Province for Young Top Talents,No.C6213001159European Research Council(ERC)Starting-Grant STORIES,No.101040939。
文摘Due to water conflicts and allocation in the Lancang-Mekong River Basin(LMRB),the spatio-temporal differentiation of total water resources and the natural-human influence need to be clarified.This work investigated LMRB's terrestrial water storage anomaly(TWSA)and its spatio-temporal dynamics during 2002–2020.Considering the effects of natural factors and human activities,the respective contributions of climate variability and human activities to terrestrial water storage change(TWSC)were separated.Results showed that:(1)LMRB's TWSA decreased by 0.3158 cm/a.(2)TWSA showed a gradual increase in distribution from southwest of MRB to middle LMRB and from northeast of LRB to middle LMRB.TWSA positively changed in Myanmar while slightly changed in Laos and China.It negatively changed in Vietnam,Thailand and Cambodia.(3)TWSA components decreased in a descending order of soil moisture,groundwater and precipitation.(4)Natural factors had a substantial and spatial differentiated influence on TWSA over the LMRB.(5)Climate variability contributed 79%of TWSC in the LMRB while human activities contributed 21%with an increasing impact after 2008.The TWSC of upstream basin countries was found to be controlled by climate variability while Vietnam and Cambodia's TWSC has been controlled by human activities since 2012.
基金supported in part by the National Key Research and Development Program of China under Grant No.2024YFE0200600the Zhejiang Provincial Natural Science Foundation of China under Grant No.LR23F010005the Huawei Cooperation Project under Grant No.TC20240829036。
文摘Along with the proliferating research interest in semantic communication(Sem Com),joint source channel coding(JSCC)has dominated the attention due to the widely assumed existence in efficiently delivering information semantics.Nevertheless,this paper challenges the conventional JSCC paradigm and advocates for adopting separate source channel coding(SSCC)to enjoy a more underlying degree of freedom for optimization.We demonstrate that SSCC,after leveraging the strengths of the Large Language Model(LLM)for source coding and Error Correction Code Transformer(ECCT)complemented for channel coding,offers superior performance over JSCC.Our proposed framework also effectively highlights the compatibility challenges between Sem Com approaches and digital communication systems,particularly concerning the resource costs associated with the transmission of high-precision floating point numbers.Through comprehensive evaluations,we establish that assisted by LLM-based compression and ECCT-enhanced error correction,SSCC remains a viable and effective solution for modern communication systems.In other words,separate source channel coding is still what we need.
基金Project supported by the National Natural Science Foundation of China(52104354)the National Natural Science Foundation of China(51674036)+1 种基金Joint Fund for Nuclear Technology Innovation Sponsored by the National Natural Science Foundation of Chinathe China National Nuclear Corporation(U2067201)。
文摘Comprehensive utilization of phosphogypsum(PG)has attracted much attention,especially for the recovery of rare earth elements(REEs)and gypsum due to the issues of stockpile,environmental pollution,and waste of associated resources.Traditional utilization methods suffered the issues of low REEs leaching efficiency,huge amount of CaSO_(4)saturated wastewater and high recovery cost.To solve these issues,this study investigated the occurrence of REEs in PG and the leaching of REEs.The results show that REEs in PG are in the forms of(1)REEs mineral inclusions,(2)REEs isomorphous substitution of Ca^(2+)in gypsum lattice,(3)dispersed soluble REEs salts.Acid leaching results demonstrate that(1)the dissolution of gypsum matrix is the control factor of REEs leaching;(2)H_(2)SO_(4)is a promising leachant considering the recycle of leachate;(3)the gypsum matrix suffers a recrystallization during the acid leaching and releases the soluble REEs from PG to aqueous solution.For the recovery of the undissolved REEs mineral inclusions,wet sieving concentrated 37.1 wt%of the REEs in a 10.7 wt%mass,increasing REEs content from 309 to 1071 ppm.Finally,a green process combining gravity separation and hydrometallurgy is proposed.This process owns the merits of wastewater free,considerable REEs recovery(about 10%increase compared with traditional processes),excellent gypsum purification(>95 wt%CaSO_(4)·2H_(2)O,with<0.06 wt%of soluble P_(2)O_(5) and<0.015 wt%of soluble F)and reagent saving(about 2/3less reagent consumption than non-cyclical leaching).
基金financial supports pro-vided by the National Natural Science Foundation of China(No.21905279)the Natural Science Foundation of Fujian Province(No.2020J05086).
文摘Small-sized Cd_(x) Zn_(1-x) S solid solution nanomaterial is an important candidate for efficient photocatalytic hydrogen evolution(PHE),but it still suffers from easy agglomeration,severe photo corrosion,and fast photogenerated electron-hole recombination.To tackle these issues,herein,we propose a new strategy to modify Cd_(x) Zn_(1-x) S nanoreactors by the simultaneous utilization of ionic-liquid-assisted morphology engineering and MXene-incorporating method.That is,we designed and synthesized a novel hierarchi-cal Cd_(0.8) Zn_(0.2) S/Ti_(3) C_(2) Schottky junction composite through the in-situ deposition of ultrathin Cd_(0.8) Zn_(0.2) S nanosheets on unique IL-modified Ti_(3) C_(2) MXenes by a one-pot solvothermal method for efficiently PHE.The unique construction strategy tailors the thickness of ultrathin Cd_(0.8) Zn_(0.2) S nanosheets and prevents them from stacking and agglomeration,and especially,optimizes their charge transfer pathways during the photocatalytic process.Compared with pristine Cd_(0.8) Zn_(0.2) S nanosheets,Cd_(0.8) Zn_(0.2) S/Ti_(3) C_(2) has abun-dant photogenerated electrons available on the Ti_(3) C_(2) surface for proton reduction reaction,owing to the absence of deep-trapped electrons,suppression of electron-hole recombination in Cd_(0.8) Zn_(0.2) S and high-efficiency charge separation at the Cd_(0.8) Zn_(0.2) S/Ti_(3) C_(2) Schottky junction interface.Moreover,the hy-drophilicity,electrical conductivity,visible-light absorption capacity,and surficial hydrogen desorption of Cd_(0.8) Zn_(0.2) S/Ti_(3) C_(2) heterostructure are significantly improved.As a result,the heterostructure exhibits out-standing photocatalytic stability and super high apparent quantum efficiency,being rendered as one of the best noble-metal-free Cd-Zn-S-based photocatalysts.This work illustrates the mechanisms of mor-phology control and heterojunction construction in controlling the catalytic behavior of photocatalysts and highlights the great potential of the IL-assisted route in the synthesis of high-performance MXene-based heterostructures for photocatalytic hydrogen evolution.
基金financially supported by the National Natural Science Foundation of China(52172245)the Key Scientific and Technological Innovation Project of Shandong(2023CXGC010302)the Qingdao Flexible Materials Precision Die-cutting Technology Innovation Center。
文摘In lithium-sulfur batteries(LSBs),the limited utilization of sulfur and the sluggish kinetics of redox reaction significantly hinder their electrochemical performance,especially under high rates and high sulfur loadings.Here,we propose a novel separator structure with an interlayer composed of a vermiculite nanosheet combined with Ketjen Black(VMT@KB)for LSBs,facilitating efficient adsorption and rapid catalytic conversion toward lithium polysulfides(LiPSs).The VMT@KB nanosheets with an electrical double-layer structure and electronic conductivity are obtained through a high-temperature peeling process and Li^(+)exchange treatment in LiCl solution,followed by a mechanical combination process with KB.The results demonstrate that incorporating VMT@KB as an interlayer on a conventional separator enhances the conductivity and limits the LiPSs in the cathode region.The Li-S cell with VMT@KB interlayer shows satisfactory cycle and rate performance,especially in high sulfur loading.It exhibits a remarkable initial discharge capacity of 1225 mAh g^(-1)at 0.5 C and maintains a capacity of 816 mAh g^(-1)after 500 cycles.Besides,the discharge capacity remains 462 mAh g^(-1)even at 6 C.Moreover,the cell with high sulfur loading(8.2 mg cm^(-2))enables stable cycling for 100 cycles at 0.1 C with a discharge capacity of over1000 mAh g^(-1).
基金National Key Research and Development Program of China(No.2020YFC1909202)Major Science and Technology Program of Yunnan Province,China(No.202202AB080012)for financial support。
文摘Copper and cobalt were recovered from SICOMINES mining waste rock in the Democratic Republic of Congo.The process mineralogy of the samples was analyzed using scanning electron microscopy and energy dispersive spectroscopy.The results showed that copper minerals exhibited various forms and uneven particle sizes,while cobalt existed in the form of highly dispersed asbolane,and large amounts of easily slimed gangue minerals were filled in the samples,making it difficult to separate copper and cobalt minerals.The particle size range plays a decisive role in selecting the separation method for the copper−cobalt ore.Gravity separation was suitable for particles ranging from 43 to 246μm,while flotation was more effective for particles below 43μm.After ore grinding and particle size classification,applying a combined gravity separation(shaking table)−flotation method yielded concentrated minerals with a copper recovery of 72.83%and a cobalt recovery of 31.13%.
基金The National Natural Science Foundation of China(No.52278303).
文摘To tackle the issue of notch frequency and center frequency drift of the L(0,1)mode guided wave in ultra⁃sonic guided wave⁃based stress monitoring of prestressed steel strands,a method using higher⁃order mode plateau fre⁃quencies is adopted.First,the correlation between group velocity peaks and phase velocities at these plateau frequen⁃cies is analyzed.This analysis establishes a quantitative rela⁃tionship between phase velocity and stress in the steel strand,providing a theoretical foundation for stress monitor⁃ing.Then the two⁃dimensional Fourier transform is em⁃ployed to separate wave modes.Dynamic programming techniques are applied in the frequency⁃velocity domain to extract higher⁃order modes.By identifying the group veloc⁃ity peaks of these separated higher⁃order modes,the plateau frequencies of guided waves are determined,enabling indi⁃rect measurement of stress in the steel strand.To validate this method,finite element simulations are conducted under three scenarios.Results show that the higher⁃order modes of transient signals from three different positions can be ac⁃curately extracted,leading to successful cable stress moni⁃toring.This approach effectively circumvents the issue of guided wave frequency drift and improves stress monitoring accuracy.Consequently,it significantly improves the appli⁃cation of ultrasonic guided wave technology in structural health monitoring.
基金National Natural Science Foundation of China(No.52373281)National Energy-Saving and Low-Carbon Materials Production and Application Demonstration Platform Program,China(No.TC220H06N)。
文摘The research,fabrication and development of piezoelectric nanofibrous materials offer effective solutions to the challenges related to energy consumption and non-renewable resources.However,enhancing their electrical output still remains a significant challenge.Here,a strategy of inducing constrained phase separation on single nanofibers via shear force was proposed.Employing electrospinning technology,a polyacrylonitrile/polyvinylidene difluoride(PAN/PVDF)nanofibrous membrane was fabricated in one step,which enabled simultaneous piezoelectric and triboelectric conversion within a single-layer membrane.Each nanofiber contained independent components of PAN and PVDF and exhibited a rough surface.The abundant frictional contact points formed between these heterogeneous components contributed to an enhanced endogenous triboelectric output,showcasing an excellent synergistic effect of piezoelectric and triboelectric response in the nanofibrous membrane.Additionally,the component mass ratio influenced the microstructure,piezoelectric conformation and piezoelectric performance of the PAN/PVDF nanofibrous membranes.Through comprehensive performance comparison,the optimal mass ratio of PAN to PVDF was determined to be 9∶1.The piezoelectric devices made of the optimal PAN/PVDF nanofibrous membranes with rough nanofiber surfaces generated an output voltage of 20 V,which was about 1.8 times that of the smooth one at the same component mass ratio.The strategy of constrained phase separation on the surface of individual nanofibers provides a new approach to enhance the output performance of single-layer piezoelectric nanofibrous materials.
基金supported by the National Natural Science Foundation of China(Grant No.2230081973)Shanghai Pilot Program for Basic Research(22TQ1400100-4).
文摘Membrane technology holds significant potential for augmenting or partially substituting conventional separation techniques,such as heatdriven distillation,thereby reducing energy consumption.Organic solvent nanofiltration represents an advanced membrane separation technology capable of discerning molecules within a molecular weight range of approximately 100-1000 Da in organic solvents,offering low energy requirements and minimal carbon footprints.Molecular separation in non-polar solvent system,such as toluene,n-hexane,and n-heptane,has gained paramount importance due to their extensive use in the pharmaceutical,biochemical,and petrochemical industries.In this review,we presented recent advancements in membrane materials,membrane fabrication techniques and their promising applications for separation in nonpolar solvent system,encompassing hydrocarbon separation,bioactive molecule purification and organic solvent recovery.Furthermore,this review highlighted the challenges and opportunities associated with membrane scale-up strategies and the direct translation of this promising technology into industrial applications.
基金supported by the National Key Research and Development Program of China(2022YFB3504501)the National Natural Science Foundation of China(52274355)。
文摘This paper focuses on the preparation of rare earth oxide products from rare earth chloride solutions during the rare earth extraction and separation processes,as well as the recycling of magnesium chloride solutions.It proposes the idea of introducing spray pyrolysis technology into the rare earth extraction and separation processes.This paper briefly describes the development history of chloride spray pyrolysis technology,focusing on the research status and application progress of rare earth chloride solution and magnesium chloride solution spray pyrolysis technology,as well as spray pyrolysis equipment.The paper also analyzes the challenges and technical intricacies associated with applying spray pyrolysis technology to chloride solutions in the rare earth extraction and separation processes.Additionally,it explores future trends and proposes strategies to facilitate the full recycling of acids and bases,streamline the process flow,and enhance the prospects for green and low-carbon rare earth metallurgy.
基金Funded by the National Natural Science Foundation of China(No.22165019)。
文摘Separating oil/water mixtures via superhydrophobic stainless steel mesh(SSM)is a kind of efficient methods of treating oily wastewater,and the superhydrophobic SSM with a low cost,simple fabrication process and robust usability remains a challenge.Herein,urushiol-based benzoxazine(U-D)with a strong substrate adhesion and low surface free energy was used to anchor SiO_(2) particles on the SSM surface to obtain a durable superhydrophobic SSM(PU-D/SiO_(2)/SSM)through a simple dip-coating process,meanwhile,epoxy resin was also introduced to further improve the adhesion between coating and SSM.PU-D/SiO_(2)/SSM could successfully separate various immiscible oil-water mixtures with a separation efficiency of over 96%and a flux up to 27100 L/m^(2) h only by gravity,respectively.Especially,the modified SSM could effectively remove water from water-in-oil emulsion with a separation efficiency of 99.7%.Moreover,PU-D/SiO_(2)/SSM had an outstanding reusability,whose water contact angle and separation efficiency only slightly decreased after 20 cycles of separating oil/water mixture.In addition,the modified SSM also displayed a satisfactory abrasion resistance,chemical stability and self-cleaning property.Thereby,the robust PU-D/SiO_(2)/SSM prepared by cheap raw materials and facile dip-coating method exhibits a high potential for separating oil/water mixtures.
基金financial support from the National Key R&D Program of China(2021YFB3801200)the National Natural Science Foundation of China(22278051,22178044,22308043)CNPC Innovation Found(2022DQ02-0608)。
文摘Carbon capture is an important strategy and is implemented to achieve the goals of CO_(2)reduction and carbon neutrality.As a high energy-efficient technology,membrane-based separation plays a crucial role in CO_(2)capture.It is urgently needed for membrane-based CO_(2)capture to develop the high-performance membrane materials with high permeability,selectivity,and stability.Herein,ultrapermeable carbon molecular sieve(CMS)membranes are fabricated by py roly zing a finely-engineered benzoxazole-containing copolyimide precursor for efficient CO_(2)capture.The microstructure of CMS membrane has been optimized by initially engineering the precursor-chemistry and subsequently tuning the pyrolysis process.Deep insights into the structure-property relationship of CMSs are provided in detail by a combination of experimental characterization and molecular simulations.We demonstrate that the intrinsically high free volume environment of the precursor,coupled with the steric hindrance of thermostable contorted fragments,promotes the formation of loosely packed and ultramicroporous carbon structures within the resultant CMS membrane,thereby enabling efficient CO_(2)discrimination via size sieving and affinity.The membrane achieves an ultrahigh CO_(2)permeability,good selectivity,and excellent stability.After one month of long-term operation,the CO_(2)permeability in the mixed gas is maintained at 11,800 Barrer,with a CO_(2)/N_(2)selectivity exceeding 60.This study provides insights into the relationship between precursor-chemistry and CMS performance,and our ultrapermeable CMS membrane,which is scalable using thin film manufacturing,holds great potential for industrial CO_(2)capture.
基金Funded by the Scientific Research Fund of Wuhan Institute of Technology(No.K2023055)the Key Research and Development Project of Hubei Province(No.2020BCA075)the Shccig-Qinling Program(No.2022QL-XM-ZhuLi-HG-006)。
文摘Cu-Mn co-doped CeO_(2) photocatalyst was successfully synthesized by the sol-gel method to assess its capability in degrading tetracycline.XRD and TEM results showed that Cu and Mn were successfully co-doped into CeO_(2) without forming heterostructure,XPS and photoelectrochemical results revealed that Mn ions doping amplified the generation of photo-induced charge carriers,while Cu ions doping significantly facilitated the interfacial charge transfer process.Notably,the optimized Cu3Mn2CeO_(2) nanoparticles exhibited the highest TC removal efficiency,achieved a rate of 78.18%and maintained a stable cycling performance.