The presence of chirality,a fundamental attribute found in nature,is of great significance in the field of pharmaceutical science.Chiral drugs are unique in that their molecular structure is non-superimposable on its ...The presence of chirality,a fundamental attribute found in nature,is of great significance in the field of pharmaceutical science.Chiral drugs are unique in that their molecular structure is non-superimposable on its mirror image.This stereoisomerism significantly impacts the functionality,metabolic pathway,effectiveness,and safety of chiral medications.The enantiomers of chiral drugs can exhibit diverse pharmacological effects in the human body.As a result,it is essential to separate and purify chiral drugs effectively.Despite the abundance of reports on chiral drug separation membranes,there is a dearth of comprehensive reviews.This paper aims to fill this gap by providing a thorough review from a materials perspective,with a focus on the design and construction of chiral drug separation membranes.Furthermore,it systematically analyzes the separation mechanisms employed by these membranes.The paper also delves into the challenges and prospects related to chiral drug separation membranes,with the intention of imparting valuable insights for further research and development in this field.展开更多
The design of membrane pore is critical for membrane preparation. Polyvinylidene fluoride(PVDF) membrane exhibits outstanding properties in the water-treatment field. However, it is a huge challenge to prepare PVDF ma...The design of membrane pore is critical for membrane preparation. Polyvinylidene fluoride(PVDF) membrane exhibits outstanding properties in the water-treatment field. However, it is a huge challenge to prepare PVDF macro-pore plasma separation membrane by non-solvent induced phase separation(NIPS). Herein, a facile strategy is proposed to prepare PVDF macro-pore plasma separation membrane via macromolecular interaction. ATR-FTIR and ^(1)H NMR showed that the intermolecular interaction existed between polyethylene oxide(PEO) and polyvinylpyrrolidone(PVP). It could significantly affect the PVDF macro-pore membrane structure. The maximum pore of the PVDF membrane could be effectively adjusted from small-pore/medium-pore to macro-pore by changing the molecular weight of PEO. The PVDF macro-pore membrane was obtained successfully when PEO-200 k existed with PVP. It exhibited higher plasma separation properties than the currently used plasma separation membrane.Moreover, it had excellent hemocompatibility due to the similar plasma effect, hemolysis, prothrombin time, blood effect and complement C_(3a) effect with the current utilized plasma separation membrane,implying its great potential application. The proposed facile strategy in this work provides a new method to prepare PVDF macro-pore plasma separation membrane by NIPS.展开更多
Membrane separation technology has been taken up for use in diverse applications such as water treatment,pharmaceutical,petroleum,and energy-related industries.Compared with the design of membrane materials,the innova...Membrane separation technology has been taken up for use in diverse applications such as water treatment,pharmaceutical,petroleum,and energy-related industries.Compared with the design of membrane materials,the innovation of membrane preparation technique is more urgent for the development of membrane separation technology,because it not only affects physicochemical properties and separation performance of the fabricated membranes,but also determines their potential in industrialized application.Among the various membrane preparation methods,spray technique has recently gained increasing attention because of its low cost,rapidity,scalability,minimum of environmental burden,and viability for nearly unlimited range of materials.In this Review article,we summarized and discussed the recent developments in separation membranes using the spray technique,including the fundamentals,important features and applications.The present challenges and future considerations have been touched to provide inspired insights for developing the sprayed separation membranes.展开更多
Covalent organic skeletons(COFs)have been widely used in gas separation due to their excellent pore structure,high crystallinity,and high specific surface area.In this work,Dha Tab-COF was synthesized by solvothermal ...Covalent organic skeletons(COFs)have been widely used in gas separation due to their excellent pore structure,high crystallinity,and high specific surface area.In this work,Dha Tab-COF was synthesized by solvothermal method and filled in polyether block polyamide(PEBAX)to form mixed matrix membranes(MMMs).Various characterization methods such as Fourier transform infrared spectroscopy(FT-IR),Xray photoelectron spectroscopy(XPS),scanning electron microscopy(SEM)and X-ray diffractometry(XRD)were used to characterize the structure of Dha Tab-COF as well as the MMMs.The effects of operating pressure,operating temperature and the content of Dha Tab-COF particles on the CO_(2)/CH_(4)separation performance of the membranes were investigated.The best separation performance with a CO_(2)permeability of 295.8 barrer(1 barrer=7.52×10^(-18)m^(3)·(STP)·m^(-2)·m·s^(-1)·Pa^(-1))and a CO_(2)/CH_(4)selectivity of 21.6 was achieved when the Dha Tab-COF content is 2%(mass),which were 45.7%and 108.1%higher than that of the pure PEBAX membrane,respectively.展开更多
Membrane technology holds significant potential for augmenting or partially substituting conventional separation techniques,such as heatdriven distillation,thereby reducing energy consumption.Organic solvent nanofiltr...Membrane technology holds significant potential for augmenting or partially substituting conventional separation techniques,such as heatdriven distillation,thereby reducing energy consumption.Organic solvent nanofiltration represents an advanced membrane separation technology capable of discerning molecules within a molecular weight range of approximately 100-1000 Da in organic solvents,offering low energy requirements and minimal carbon footprints.Molecular separation in non-polar solvent system,such as toluene,n-hexane,and n-heptane,has gained paramount importance due to their extensive use in the pharmaceutical,biochemical,and petrochemical industries.In this review,we presented recent advancements in membrane materials,membrane fabrication techniques and their promising applications for separation in nonpolar solvent system,encompassing hydrocarbon separation,bioactive molecule purification and organic solvent recovery.Furthermore,this review highlighted the challenges and opportunities associated with membrane scale-up strategies and the direct translation of this promising technology into industrial applications.展开更多
Removing H_(2)S and CO_(2)is of great significance for natural gas purification.With excellent gas affinity and tunable structure,ionic liquids(ILs) have been regarded as nontrivial candidates for fabricating polymer-...Removing H_(2)S and CO_(2)is of great significance for natural gas purification.With excellent gas affinity and tunable structure,ionic liquids(ILs) have been regarded as nontrivial candidates for fabricating polymer-based membranes.Herein,we firstly reported the incorporation of protic ILs (PILs) having ether-rich and carboxylate sites (ECPILs) into poly(ether-block-amide)(Pebax) matrix for efficient separation H_(2)S and CO_(2)from CH_(4).Notably,the optimal permeability of H_(2)S reaches up to 4310 Barrer (40C,0.50 bar) in Pebax/ECPIL membranes,along with H_(2)S/CH_(4)and (H_(2)StCO_(2))/CH_(4)selectivity of 97.7 and 112.3,respectively.These values are increased by 1125%,160.8%and 145.9%compared to those in neat Pebax membrane.Additionally,the solubility and diffusion coefficients of the gases were measured,demonstrating that ECPIL can simultaneously strengthen the dissolution and diffusion of H_(2)S and CO_(2),thus elevating the permeability and permselectivity.By using quantum chemical calculations and FT-IR spectroscopy,the highly reversible multi-site hydrogen bonding interaction between ECPILs and H_(2)S was revealed,which is responsible for the fast permeation of H_(2)S and good selectivity.Furthermore,H_(2)S/CO_(2)/CH_(4)(3/3/94 mol/mol) ternary mixed gas can be efficiently and stably separated by Pebax/ECPIL membrane for at least 100 h.Overall,this work not only illustrates that PILs with ether-rich and carboxylate hydrogen bonding sites are outstanding materials for simultaneous removal of H_(2)S and CO_(2),but may also provide a novel insight into the design of membrane materials for natural gas upgrading.展开更多
Layered assembled membranes of 2D leaf-like zeolitic imidazolate frameworks(ZIF-L)nanosheets have received great attention in the field of water treatment due to the porous structure and excellent antibacterial abilit...Layered assembled membranes of 2D leaf-like zeolitic imidazolate frameworks(ZIF-L)nanosheets have received great attention in the field of water treatment due to the porous structure and excellent antibacterial ability,but the dense accumulation on the membrane surface and the low permeate flux greatly hinder their application.Herein,we synthesized m HNTs(modified halloysite nanotubes)/ZIF-L nanocomposites on modified m HNTs by in situ growth method.Interestingly,due to the different size of m HNTs and ZIF-L,m HNTs were packed in ZIF-L nanosheets.The hollow m HNTs provided additional transport channels for water molecules,and the accumulation of the ZIF-L nanosheets was decreased after assembling m HNTs/ZIF-L nanocomposites into membrane by filtration.The prepared m HNTs/ZIF-L membrane presented high permeate flux(59.6 L·m^(-2)·h^(-1)),which is 2-4 times of the ZIF-L membranes(14.8 L·m^(-2)·h^(-1)).Moreover,m HNTs/ZIF-L membranes are intrinsically antimicrobial,which exhibit extremely high bacterial resistance.We provide a controllable strategy to improve 2D ZIF-L assembles,and develops novel membranes using 2D package structure as building units.展开更多
In the field of modern hydrogen energy,obtaining pure hydrogen and syngas and then being able to use them for green energy production are significant problems.Developing solid oxide fuel cells(SOFC)and catalytic membr...In the field of modern hydrogen energy,obtaining pure hydrogen and syngas and then being able to use them for green energy production are significant problems.Developing solid oxide fuel cells(SOFC)and catalytic membranes for oxygen separation as well as materials for these devices is one of the most likely ways to solve these problems.In this work,the authors’recent studies in this field are reviewed;the fundamentals of developing materials for SOFC cathodes and oxygen separation membranes’permselective layers based on research of their oxygen mobility and surface reactivity are presented.Ruddlesden-Popper phases Ln_(2-x)Ca_(x)NiO_(4+δ)(LnCNO)and perovskite-fluorite nanocomposites PrNi_(0.5)Co_(0.5)O_(3-δ)-Ce_(0.9)Y_(0.1)O_(2-δ)(PNC-YDC)were studied by isotope exchange of oxygen with C_(18)O_(2)and^(18)O_(2)in flow and closed reactors.For LnCNO a high oxygen mobility was shown(D*~10^(-7)cm^(2)/s at 700℃),being provided by the cooperative mechanism of oxygen migration involving both regular and highly-mobile interstitial oxygen.For PNC-YDC dominated a wide fast diffusion channel via fluorite phase and interphases due to features of the redistribution of cations resulting in superior oxygen mobility(D*~10^(-8)cm^(2)/s at 700℃).After optimization of composition and nanodomain structure of these materials,as cathodes of SOFC they provided a high power density,while for asymmetric supported oxygen separation membranes-a high oxygen permeability.展开更多
Synthetic polymer membranes are widely used in many applications,including,among others,water purification,protein separation,and medicine.However,the use of existing polymer membranes faces major challenges,such as t...Synthetic polymer membranes are widely used in many applications,including,among others,water purification,protein separation,and medicine.However,the use of existing polymer membranes faces major challenges,such as the trade-off between permeability and selectivity,membrane fouling,and poor mechanical strength.To address these problems the authors have focused their research on surface/interfacial tailoring and the structure-property relationship of polymer membranes used in liquid separation systems.Progress has been made as follows:(1)a methodology for membrane surface functionalization and nanofiltration(NF)membrane preparation based on mussel-inspired catecholic chemistry was proposed and established;(2)a class of mechanically robust and environmentally-responsive composite membranes with hydrogel pore-filled in rigid macroporous supports was designed and developed;(3)a methodology for surface tailoring and antifouling modification of polymer membranes based on amphiphilic copolymers was created and the scientific implications for amphiphilic polymer membranes elaborated;(4)an adsorption membrane with both filtration and adsorption functions was designed and developed to achieve rapid removal of trace micropollutants,including heavy metal ions,organic dyes,plasticizer,antibiotics,and others.This mini-review briefly summarizes this work.展开更多
Membrane separation technologies,with a broad application prospect in the field of hydrogen separation,are characterized by the simplicity of the devices,high energy efficiency and environmental friendliness.The perfo...Membrane separation technologies,with a broad application prospect in the field of hydrogen separation,are characterized by the simplicity of the devices,high energy efficiency and environmental friendliness.The performance of separation membranes is the primary factor that determines the efficiency of hydrogen separation.Therefore,the development of hydrogen separation membranes is always a research focus.This paper presents and reviews the research developments and features of organic membranes,inorganic membranes and hybrid matrix membranes for hydrogen separations.First,the characterization methods of key index parameters of membrane materials are presented.Second,the performance parameters of different types of membrane are compared.Finally,the trend of technological development of different types of membrane materials is forecast.展开更多
Metal-organic polyhedra(MOPs)possess a microporous framework and impose hierarchical constraints on their surface ligands,leading to the long-ignored,logarithmic ligand exchange dynamics.Herein,polymer networks with M...Metal-organic polyhedra(MOPs)possess a microporous framework and impose hierarchical constraints on their surface ligands,leading to the long-ignored,logarithmic ligand exchange dynamics.Herein,polymer networks with MOP as nanoscale cross-linkers(MOP-CNs)can integrate unique ligand exchange dynamics and microporosity,affording vitrimer-like gas separation membranes with promising mechanical performance and(re)processability.All the ligands on the MOP surfaces are confined and correlated via a 3D coordination framework and their neighboring spaces,giving rise to a high energy barrier for ligand exchange.Therefore,MOP-CNs demonstrate high mechanical strengths at room temperature due to their negligible ligand dynamics.The thermo-activated ligand exchange process with integrated network topology enables facile(re)processing and high solvo-resistance at high temperatures.This facilitates Arrhenius type temperature dependence of flowability and stress relaxation,giving rise to the simultaneous achievement of promising mechanical strengths and(re)processability.Finally,the cage topologies of MOPs endow the materials with a bonus microporous feature and spur their applications as gas separation membranes.展开更多
Volatile organic compounds(VOCs)are a crucial kind of pollutants in the environment due to their obvious features of severe toxicity,high volatility,and poor degradability.It is particularly urgent to control the emis...Volatile organic compounds(VOCs)are a crucial kind of pollutants in the environment due to their obvious features of severe toxicity,high volatility,and poor degradability.It is particularly urgent to control the emission of VOCs due to the persistent increase of concentration and the stringent regulations.In China,clear directions and requirements for reduction of VOCs have been given in the“national plan on environmental improvement for the 13th Five-Year Plan period”.Therefore,the development of efficient technologies for removal and recovery of VOCs is of great significance.Recovery technologies are favored by researchers due to their advantages in both recycling VOCs and reducing carbon emissions.Among them,adsorption and membrane separation processes have been extensively studied due to their remarkable industrial prospects.This overview was to provide an up-to-date progress of adsorption and membrane separation for removal and recovery of VOCs.Firstly,adsorption and membrane separation were found to be the research hotspots through bibliometric analysis.Then,a comprehensive understanding of their mechanisms,factors,and current application statuses was discussed.Finally,the challenges and perspectives in this emerging field were briefly highlighted.展开更多
Proton exchange membranes(PEMs)are widely employed in energy conversion and storage devices including fuel cells(FCs),redox flow batteries(RFBs)and PEM water electrolysis(PEMWE).As one of the main components of these ...Proton exchange membranes(PEMs)are widely employed in energy conversion and storage devices including fuel cells(FCs),redox flow batteries(RFBs)and PEM water electrolysis(PEMWE).As one of the main components of these devices,a high-performance PEM is always desirable considering the cost challenges from both energy utilization efficiency and production cost.From this century,governments of countries worldwide have introduced PFAS(per-and polyfluoroalkyl substances)restriction related policies,which facilitate the extensive research on non-fluorinated PEMs.Besides,non-fluorinated PEMs become hot topics of all kinds of PEMs due to the advantages including excellent conductivity,high mechanical property,reduced swelling,low cost and reduced ion permeation of electrochemically active species.In this review,various types of non-fluorinated PEMs including main-chain-type hydrocarbon membranes,microphase separation membranes and membranes with rigid-twisted structure are comprehensively summarized.The basic properties of different types of non-fluorinated PEMs including water uptake,swelling ratio,oxidative stability,tensile strength and conductivity are compared and the corresponding application performance in FCs,RFBs and PEMWE are discussed.The state-of-the-art of the structural design in both monomers and polymers is reviewed for the construction of fast ion transport channels and high resistance of free radical attacks.Also,future challenges and possibilities for the development of non-fluorinated PEMs are comprehensively forecasted.展开更多
A two-staged membrane separation process for hydrogen recovery from refinery gases is introduced. The principle of the gas membrane separation process and the influence of the operation temperatures are analyzed. As t...A two-staged membrane separation process for hydrogen recovery from refinery gases is introduced. The principle of the gas membrane separation process and the influence of the operation temperatures are analyzed. As the conventional PID controller is difficult to make the operation temperatures steady, a fuzzy self-tuning PID control algorithm is proposed. The application shows that the algorithm is effective, the operation temperatures of both stages can be controlled steadily, and the operation flexibility and adaptability of the hydrogen recovery unit are enhanced with safety. This study lays a foundation to optimize the control of the membrane separation process and thus ensure the membrane performance.展开更多
Membrane technology has found wide applications in the petrochemical industry, mainly in the purification and recovery of the hydrogen resources. Accurate prediction of the membrane separation performance plays an imp...Membrane technology has found wide applications in the petrochemical industry, mainly in the purification and recovery of the hydrogen resources. Accurate prediction of the membrane separation performance plays an important role in carrying out advanced process control (APC). For the first time, a soft-sensor model for the membrane separation process has been established based on the radial basis function (RBF) neural networks. The main performance parameters, i.e, permeate hydrogen concentration, permeate gas flux, and residue hydrogen concentration, are estimated quantitatively by measuring the operating temperature, feed-side pressure, permeate-side pressure, residue-side pressure, feed-gas flux, and feed-hydrogen concentration excluding flow structure, membrane parameters, and other compositions. The predicted results can gain the desired effects. The effectiveness of this novel approach lays a foundation for integrating control technology and optimizing the operation of the gas membrane separation process.展开更多
During the last decade, metal-organic frameworks(MOFs) have been applied in various fields due to their unique chemical and functional advantages. One of the widespread research hotspots is MOF-based membranes for sep...During the last decade, metal-organic frameworks(MOFs) have been applied in various fields due to their unique chemical and functional advantages. One of the widespread research hotspots is MOF-based membranes for separations, specifically continuous defect-free MOF membranes, which are usually grown on porous substrates. The substrate not only serves as the MOF layer support but also has a great influence on the membrane fabrication process and the final separation performance of the resultant membrane. In this review, we mainly introduce the progress focused on the substrates for MOF membranes fabrication. The substrate modifications and seeding methods aimed at synthesizing highquality MOF membranes are also summarized systematically.展开更多
The separation of aromatic/aliphatic hydrocarbon mixtures is a significant process in chemical industry, but challenged in some cases. Compared with conventional separation technologies, pervaporation is quite promisi...The separation of aromatic/aliphatic hydrocarbon mixtures is a significant process in chemical industry, but challenged in some cases. Compared with conventional separation technologies, pervaporation is quite promising in terms of its economical, energy-saving, and eco-friendly advantages. However, this technique has not been used in industry for separating aromatic/aliphatic mixtures yet. One of the main reasons is that the separation performance of existed pervaporation membranes is unsatisfactory. Membrane material is an important factor that affects the separation performance. This review provides an overview on the advances in studying membrane materials for the pervaporation separation of aromatic/aliphatic mixtures over the past decade. Explored pristine polymers and their hybrid materials(as hybrid membranes) are summarized to highlight their nature and separation performance. We anticipate that this review could provide some guidance in the development of new materials for the aromatic/aliphatic pervaporation separation.展开更多
Poly(ethylene-oxide)(PEO)-based membranes have attracted much attention recently for CO2 separation because CO2 is highly soluble into PEO and shows high selectivity over other gases such as CH4 and N2.Unfortunately,t...Poly(ethylene-oxide)(PEO)-based membranes have attracted much attention recently for CO2 separation because CO2 is highly soluble into PEO and shows high selectivity over other gases such as CH4 and N2.Unfortunately,those membranes are not strong enough mechanically and highly crystalline,which hinders their broader applications for separation membranes.In this review discussions are made,as much in detail as possible,on the strategies to improve gas separation performance of PEO-based membranes.Some of techniques such as synthesis of graft copolymers that contain PEO,cross-linking of polymers and blending with long chains polymers contributed significantly to improvement of membrane.Incorporation of ionic liquids/nanoparticles has also been found effective.However,surface modification of nanoparticles has been done chemically or physically to enhance their compatibility with polymer matrix.As a result of all such efforts,an excellent performance,i.e.,CO2 permeability up to 200 Barrer,CO2/N2 selectivity up to 200 and CO2/CH4 selectivity up to 70,could be achieved.Another method is to introduce functional groups into PEO-based polymers which boosted CO2 permeability up to 200 Barrer with CO2/CH4 selectivity between 40 and 50.The CO2 permeability of PEO-based membranes increases,without much change in selectivity,when the length of ethylene oxide is increased.展开更多
Membrane separation, a new technology for removing VOCs including pervaporation, vapor permeation, membrane contactor, and membrane bioreactor was presented. Comparing with traditional techniques, these special techni...Membrane separation, a new technology for removing VOCs including pervaporation, vapor permeation, membrane contactor, and membrane bioreactor was presented. Comparing with traditional techniques, these special techniques are an efficient and energy saving technology. Vapor permeation can be applied to recovery of organic solvents from exhaust streams. Membrane contactor could be used for removing or recovering VOCs from air or wastewater. Pervaporation and vapor permeation are viable methods for removing VOCs from wastewater to yield a VOC concentrate which could either be destroyed by conventional means, or be recycled for reuse.展开更多
A series of organosilica sols are prepared by the polymeric sol–gel method using 1,2-bis(triethoxysilyl)ethane(BTESE)as the precursor.Particle size distributions of the BTESE-derived sols are systematically investiga...A series of organosilica sols are prepared by the polymeric sol–gel method using 1,2-bis(triethoxysilyl)ethane(BTESE)as the precursor.Particle size distributions of the BTESE-derived sols are systematically investigated by carefully adjusting the synthesis parameters(i.e.,water ratios,acid ratios and solvent ratios)in the sol process.In certain conditions,increasing the water ratio or the acid ratio tends to cause larger sol sizes and bimodal particle size distributions.However,higher solvent ratios lead to smaller sol sizes and unimodal particle size distributions.The organosilica membranes prepared from the optimized sols show excellent H_2 permeances(up to 4.2×10^(-7)mol·m^(-2)·s^(-1)·Pa^(-1))and gas permselectitivies(H_2/CO_2 is 9.5,H_2/N_2 is 50 and H_2/CH_4 is 68).This study offers significant insights into the relationship between the sol synthesis parameters,sol sizes and membrane performance.展开更多
基金supported by the Foundation Research Project of Kaili University(No.2025ZD007)the National Key Research and Development Program of China(No.2021YFB3801503)the Joint Research Program of Shaoxing University and Shaoxing Institute,Zhejiang University(No.2023LHLG006),China.
文摘The presence of chirality,a fundamental attribute found in nature,is of great significance in the field of pharmaceutical science.Chiral drugs are unique in that their molecular structure is non-superimposable on its mirror image.This stereoisomerism significantly impacts the functionality,metabolic pathway,effectiveness,and safety of chiral medications.The enantiomers of chiral drugs can exhibit diverse pharmacological effects in the human body.As a result,it is essential to separate and purify chiral drugs effectively.Despite the abundance of reports on chiral drug separation membranes,there is a dearth of comprehensive reviews.This paper aims to fill this gap by providing a thorough review from a materials perspective,with a focus on the design and construction of chiral drug separation membranes.Furthermore,it systematically analyzes the separation mechanisms employed by these membranes.The paper also delves into the challenges and prospects related to chiral drug separation membranes,with the intention of imparting valuable insights for further research and development in this field.
基金the National Natural Science Foundation of China (21776216)Tianjin Key Laboratory Project (16PTSYJC00210)+3 种基金Program for Innovative Research Team in University of Tianjin (TD13-5044)Science and technology support project of Tianjin (20YFZCSY00310, 21ZXGWSY00040)State Key Laboratory of Separation Membranes and Membrane Processes (Tiangong University), Youth Science Foundation of Tianjin (21JCQNJC00100)Tianjin Health Science and Technology Project (TJWJ2021MS014)。
文摘The design of membrane pore is critical for membrane preparation. Polyvinylidene fluoride(PVDF) membrane exhibits outstanding properties in the water-treatment field. However, it is a huge challenge to prepare PVDF macro-pore plasma separation membrane by non-solvent induced phase separation(NIPS). Herein, a facile strategy is proposed to prepare PVDF macro-pore plasma separation membrane via macromolecular interaction. ATR-FTIR and ^(1)H NMR showed that the intermolecular interaction existed between polyethylene oxide(PEO) and polyvinylpyrrolidone(PVP). It could significantly affect the PVDF macro-pore membrane structure. The maximum pore of the PVDF membrane could be effectively adjusted from small-pore/medium-pore to macro-pore by changing the molecular weight of PEO. The PVDF macro-pore membrane was obtained successfully when PEO-200 k existed with PVP. It exhibited higher plasma separation properties than the currently used plasma separation membrane.Moreover, it had excellent hemocompatibility due to the similar plasma effect, hemolysis, prothrombin time, blood effect and complement C_(3a) effect with the current utilized plasma separation membrane,implying its great potential application. The proposed facile strategy in this work provides a new method to prepare PVDF macro-pore plasma separation membrane by NIPS.
基金supported by the National Key Research and Development Program of China(2021YF B3802600)National Key Research and Development Project of China(2018YFE0203500)the Natural Science Foundation of Jiangsu Province(BK20190603).
文摘Membrane separation technology has been taken up for use in diverse applications such as water treatment,pharmaceutical,petroleum,and energy-related industries.Compared with the design of membrane materials,the innovation of membrane preparation technique is more urgent for the development of membrane separation technology,because it not only affects physicochemical properties and separation performance of the fabricated membranes,but also determines their potential in industrialized application.Among the various membrane preparation methods,spray technique has recently gained increasing attention because of its low cost,rapidity,scalability,minimum of environmental burden,and viability for nearly unlimited range of materials.In this Review article,we summarized and discussed the recent developments in separation membranes using the spray technique,including the fundamentals,important features and applications.The present challenges and future considerations have been touched to provide inspired insights for developing the sprayed separation membranes.
基金supported by the National Natural Science Foundation of China(No.22271022,No 22378327).
文摘Covalent organic skeletons(COFs)have been widely used in gas separation due to their excellent pore structure,high crystallinity,and high specific surface area.In this work,Dha Tab-COF was synthesized by solvothermal method and filled in polyether block polyamide(PEBAX)to form mixed matrix membranes(MMMs).Various characterization methods such as Fourier transform infrared spectroscopy(FT-IR),Xray photoelectron spectroscopy(XPS),scanning electron microscopy(SEM)and X-ray diffractometry(XRD)were used to characterize the structure of Dha Tab-COF as well as the MMMs.The effects of operating pressure,operating temperature and the content of Dha Tab-COF particles on the CO_(2)/CH_(4)separation performance of the membranes were investigated.The best separation performance with a CO_(2)permeability of 295.8 barrer(1 barrer=7.52×10^(-18)m^(3)·(STP)·m^(-2)·m·s^(-1)·Pa^(-1))and a CO_(2)/CH_(4)selectivity of 21.6 was achieved when the Dha Tab-COF content is 2%(mass),which were 45.7%and 108.1%higher than that of the pure PEBAX membrane,respectively.
基金supported by the National Natural Science Foundation of China(Grant No.2230081973)Shanghai Pilot Program for Basic Research(22TQ1400100-4).
文摘Membrane technology holds significant potential for augmenting or partially substituting conventional separation techniques,such as heatdriven distillation,thereby reducing energy consumption.Organic solvent nanofiltration represents an advanced membrane separation technology capable of discerning molecules within a molecular weight range of approximately 100-1000 Da in organic solvents,offering low energy requirements and minimal carbon footprints.Molecular separation in non-polar solvent system,such as toluene,n-hexane,and n-heptane,has gained paramount importance due to their extensive use in the pharmaceutical,biochemical,and petrochemical industries.In this review,we presented recent advancements in membrane materials,membrane fabrication techniques and their promising applications for separation in nonpolar solvent system,encompassing hydrocarbon separation,bioactive molecule purification and organic solvent recovery.Furthermore,this review highlighted the challenges and opportunities associated with membrane scale-up strategies and the direct translation of this promising technology into industrial applications.
基金sponsored by the National Natural Science Foundation of China (Nos. 22308145, 22208140, 22178159, 22078145)Natural Science Foundation of Jiangsu Province (BK20230791)Postgraduate Research Innovation Program of Jiangsu Province (KYCX24_0165)。
文摘Removing H_(2)S and CO_(2)is of great significance for natural gas purification.With excellent gas affinity and tunable structure,ionic liquids(ILs) have been regarded as nontrivial candidates for fabricating polymer-based membranes.Herein,we firstly reported the incorporation of protic ILs (PILs) having ether-rich and carboxylate sites (ECPILs) into poly(ether-block-amide)(Pebax) matrix for efficient separation H_(2)S and CO_(2)from CH_(4).Notably,the optimal permeability of H_(2)S reaches up to 4310 Barrer (40C,0.50 bar) in Pebax/ECPIL membranes,along with H_(2)S/CH_(4)and (H_(2)StCO_(2))/CH_(4)selectivity of 97.7 and 112.3,respectively.These values are increased by 1125%,160.8%and 145.9%compared to those in neat Pebax membrane.Additionally,the solubility and diffusion coefficients of the gases were measured,demonstrating that ECPIL can simultaneously strengthen the dissolution and diffusion of H_(2)S and CO_(2),thus elevating the permeability and permselectivity.By using quantum chemical calculations and FT-IR spectroscopy,the highly reversible multi-site hydrogen bonding interaction between ECPILs and H_(2)S was revealed,which is responsible for the fast permeation of H_(2)S and good selectivity.Furthermore,H_(2)S/CO_(2)/CH_(4)(3/3/94 mol/mol) ternary mixed gas can be efficiently and stably separated by Pebax/ECPIL membrane for at least 100 h.Overall,this work not only illustrates that PILs with ether-rich and carboxylate hydrogen bonding sites are outstanding materials for simultaneous removal of H_(2)S and CO_(2),but may also provide a novel insight into the design of membrane materials for natural gas upgrading.
基金supported by the Excellent Youth Foundation of Henan Scientific Committee,China(222300420018)Key Scientific Research Projects in Universities of Henan Province,China(21zx006)。
文摘Layered assembled membranes of 2D leaf-like zeolitic imidazolate frameworks(ZIF-L)nanosheets have received great attention in the field of water treatment due to the porous structure and excellent antibacterial ability,but the dense accumulation on the membrane surface and the low permeate flux greatly hinder their application.Herein,we synthesized m HNTs(modified halloysite nanotubes)/ZIF-L nanocomposites on modified m HNTs by in situ growth method.Interestingly,due to the different size of m HNTs and ZIF-L,m HNTs were packed in ZIF-L nanosheets.The hollow m HNTs provided additional transport channels for water molecules,and the accumulation of the ZIF-L nanosheets was decreased after assembling m HNTs/ZIF-L nanocomposites into membrane by filtration.The prepared m HNTs/ZIF-L membrane presented high permeate flux(59.6 L·m^(-2)·h^(-1)),which is 2-4 times of the ZIF-L membranes(14.8 L·m^(-2)·h^(-1)).Moreover,m HNTs/ZIF-L membranes are intrinsically antimicrobial,which exhibit extremely high bacterial resistance.We provide a controllable strategy to improve 2D ZIF-L assembles,and develops novel membranes using 2D package structure as building units.
基金the Russian Science Foundation(Project 16-13-00112)the budget project#AAAA-A17-117041110045-9 for Boreskov Institute of Catalysis is gratefully acknowledged.
文摘In the field of modern hydrogen energy,obtaining pure hydrogen and syngas and then being able to use them for green energy production are significant problems.Developing solid oxide fuel cells(SOFC)and catalytic membranes for oxygen separation as well as materials for these devices is one of the most likely ways to solve these problems.In this work,the authors’recent studies in this field are reviewed;the fundamentals of developing materials for SOFC cathodes and oxygen separation membranes’permselective layers based on research of their oxygen mobility and surface reactivity are presented.Ruddlesden-Popper phases Ln_(2-x)Ca_(x)NiO_(4+δ)(LnCNO)and perovskite-fluorite nanocomposites PrNi_(0.5)Co_(0.5)O_(3-δ)-Ce_(0.9)Y_(0.1)O_(2-δ)(PNC-YDC)were studied by isotope exchange of oxygen with C_(18)O_(2)and^(18)O_(2)in flow and closed reactors.For LnCNO a high oxygen mobility was shown(D*~10^(-7)cm^(2)/s at 700℃),being provided by the cooperative mechanism of oxygen migration involving both regular and highly-mobile interstitial oxygen.For PNC-YDC dominated a wide fast diffusion channel via fluorite phase and interphases due to features of the redistribution of cations resulting in superior oxygen mobility(D*~10^(-8)cm^(2)/s at 700℃).After optimization of composition and nanodomain structure of these materials,as cathodes of SOFC they provided a high power density,while for asymmetric supported oxygen separation membranes-a high oxygen permeability.
基金Project supported by the National Natural Science Foundation of China(Nos.51828301,51773175,and 51973185)the Fundamental Research Funds for the Central Universities,China。
文摘Synthetic polymer membranes are widely used in many applications,including,among others,water purification,protein separation,and medicine.However,the use of existing polymer membranes faces major challenges,such as the trade-off between permeability and selectivity,membrane fouling,and poor mechanical strength.To address these problems the authors have focused their research on surface/interfacial tailoring and the structure-property relationship of polymer membranes used in liquid separation systems.Progress has been made as follows:(1)a methodology for membrane surface functionalization and nanofiltration(NF)membrane preparation based on mussel-inspired catecholic chemistry was proposed and established;(2)a class of mechanically robust and environmentally-responsive composite membranes with hydrogel pore-filled in rigid macroporous supports was designed and developed;(3)a methodology for surface tailoring and antifouling modification of polymer membranes based on amphiphilic copolymers was created and the scientific implications for amphiphilic polymer membranes elaborated;(4)an adsorption membrane with both filtration and adsorption functions was designed and developed to achieve rapid removal of trace micropollutants,including heavy metal ions,organic dyes,plasticizer,antibiotics,and others.This mini-review briefly summarizes this work.
基金funded by the National Key Research and Development Program of China (grant no.2019YFB1505000).
文摘Membrane separation technologies,with a broad application prospect in the field of hydrogen separation,are characterized by the simplicity of the devices,high energy efficiency and environmental friendliness.The performance of separation membranes is the primary factor that determines the efficiency of hydrogen separation.Therefore,the development of hydrogen separation membranes is always a research focus.This paper presents and reviews the research developments and features of organic membranes,inorganic membranes and hybrid matrix membranes for hydrogen separations.First,the characterization methods of key index parameters of membrane materials are presented.Second,the performance parameters of different types of membrane are compared.Finally,the trend of technological development of different types of membrane materials is forecast.
基金The work is supported by the National Natural Science Foundation of China(grant nos.51873067 and 21961142018)the Natural Science Foundation of Guangdong Province(grant no.2021A1515012024).
文摘Metal-organic polyhedra(MOPs)possess a microporous framework and impose hierarchical constraints on their surface ligands,leading to the long-ignored,logarithmic ligand exchange dynamics.Herein,polymer networks with MOP as nanoscale cross-linkers(MOP-CNs)can integrate unique ligand exchange dynamics and microporosity,affording vitrimer-like gas separation membranes with promising mechanical performance and(re)processability.All the ligands on the MOP surfaces are confined and correlated via a 3D coordination framework and their neighboring spaces,giving rise to a high energy barrier for ligand exchange.Therefore,MOP-CNs demonstrate high mechanical strengths at room temperature due to their negligible ligand dynamics.The thermo-activated ligand exchange process with integrated network topology enables facile(re)processing and high solvo-resistance at high temperatures.This facilitates Arrhenius type temperature dependence of flowability and stress relaxation,giving rise to the simultaneous achievement of promising mechanical strengths and(re)processability.Finally,the cage topologies of MOPs endow the materials with a bonus microporous feature and spur their applications as gas separation membranes.
基金supported financially by the“Xing Liao Talents Program”Project(No.XLYC1902051)the National Natural Science Foundation of China(No.22076018)+1 种基金the Fundamental Research Funds for the Central Universities(No.DUT19LAB10)the Key Laboratory of Industrial Ecology and Environmental Engineering,China Ministry of Education,and the State Key Laboratory of Catalysis in DICP(No.N-20-06)。
文摘Volatile organic compounds(VOCs)are a crucial kind of pollutants in the environment due to their obvious features of severe toxicity,high volatility,and poor degradability.It is particularly urgent to control the emission of VOCs due to the persistent increase of concentration and the stringent regulations.In China,clear directions and requirements for reduction of VOCs have been given in the“national plan on environmental improvement for the 13th Five-Year Plan period”.Therefore,the development of efficient technologies for removal and recovery of VOCs is of great significance.Recovery technologies are favored by researchers due to their advantages in both recycling VOCs and reducing carbon emissions.Among them,adsorption and membrane separation processes have been extensively studied due to their remarkable industrial prospects.This overview was to provide an up-to-date progress of adsorption and membrane separation for removal and recovery of VOCs.Firstly,adsorption and membrane separation were found to be the research hotspots through bibliometric analysis.Then,a comprehensive understanding of their mechanisms,factors,and current application statuses was discussed.Finally,the challenges and perspectives in this emerging field were briefly highlighted.
基金funded by the National Key Research and Development Program of China(No.2022YFB3805300)National Natural Science Foundation of China(Grant No.22125801,22005010).
文摘Proton exchange membranes(PEMs)are widely employed in energy conversion and storage devices including fuel cells(FCs),redox flow batteries(RFBs)and PEM water electrolysis(PEMWE).As one of the main components of these devices,a high-performance PEM is always desirable considering the cost challenges from both energy utilization efficiency and production cost.From this century,governments of countries worldwide have introduced PFAS(per-and polyfluoroalkyl substances)restriction related policies,which facilitate the extensive research on non-fluorinated PEMs.Besides,non-fluorinated PEMs become hot topics of all kinds of PEMs due to the advantages including excellent conductivity,high mechanical property,reduced swelling,low cost and reduced ion permeation of electrochemically active species.In this review,various types of non-fluorinated PEMs including main-chain-type hydrocarbon membranes,microphase separation membranes and membranes with rigid-twisted structure are comprehensively summarized.The basic properties of different types of non-fluorinated PEMs including water uptake,swelling ratio,oxidative stability,tensile strength and conductivity are compared and the corresponding application performance in FCs,RFBs and PEMWE are discussed.The state-of-the-art of the structural design in both monomers and polymers is reviewed for the construction of fast ion transport channels and high resistance of free radical attacks.Also,future challenges and possibilities for the development of non-fluorinated PEMs are comprehensively forecasted.
文摘A two-staged membrane separation process for hydrogen recovery from refinery gases is introduced. The principle of the gas membrane separation process and the influence of the operation temperatures are analyzed. As the conventional PID controller is difficult to make the operation temperatures steady, a fuzzy self-tuning PID control algorithm is proposed. The application shows that the algorithm is effective, the operation temperatures of both stages can be controlled steadily, and the operation flexibility and adaptability of the hydrogen recovery unit are enhanced with safety. This study lays a foundation to optimize the control of the membrane separation process and thus ensure the membrane performance.
文摘Membrane technology has found wide applications in the petrochemical industry, mainly in the purification and recovery of the hydrogen resources. Accurate prediction of the membrane separation performance plays an important role in carrying out advanced process control (APC). For the first time, a soft-sensor model for the membrane separation process has been established based on the radial basis function (RBF) neural networks. The main performance parameters, i.e, permeate hydrogen concentration, permeate gas flux, and residue hydrogen concentration, are estimated quantitatively by measuring the operating temperature, feed-side pressure, permeate-side pressure, residue-side pressure, feed-gas flux, and feed-hydrogen concentration excluding flow structure, membrane parameters, and other compositions. The predicted results can gain the desired effects. The effectiveness of this novel approach lays a foundation for integrating control technology and optimizing the operation of the gas membrane separation process.
基金the funding from the National Natural Science Foundation of China (22078107, 22022805)the National Key Research and Development Program (2021YFB3802500)。
文摘During the last decade, metal-organic frameworks(MOFs) have been applied in various fields due to their unique chemical and functional advantages. One of the widespread research hotspots is MOF-based membranes for separations, specifically continuous defect-free MOF membranes, which are usually grown on porous substrates. The substrate not only serves as the MOF layer support but also has a great influence on the membrane fabrication process and the final separation performance of the resultant membrane. In this review, we mainly introduce the progress focused on the substrates for MOF membranes fabrication. The substrate modifications and seeding methods aimed at synthesizing highquality MOF membranes are also summarized systematically.
基金Supported by the National Natural Science Foundation of China(21406006,21576003)the Science and Technology Program of Beijing Municipal Education Commission(KM201510005010)+1 种基金the Importation and Development of High-Caliber Talents Project of Beijing Municipal Institutions(CIT&TCD20150309)the China Postdoctoral Science Foundation funded project(2015M580954)
文摘The separation of aromatic/aliphatic hydrocarbon mixtures is a significant process in chemical industry, but challenged in some cases. Compared with conventional separation technologies, pervaporation is quite promising in terms of its economical, energy-saving, and eco-friendly advantages. However, this technique has not been used in industry for separating aromatic/aliphatic mixtures yet. One of the main reasons is that the separation performance of existed pervaporation membranes is unsatisfactory. Membrane material is an important factor that affects the separation performance. This review provides an overview on the advances in studying membrane materials for the pervaporation separation of aromatic/aliphatic mixtures over the past decade. Explored pristine polymers and their hybrid materials(as hybrid membranes) are summarized to highlight their nature and separation performance. We anticipate that this review could provide some guidance in the development of new materials for the aromatic/aliphatic pervaporation separation.
文摘Poly(ethylene-oxide)(PEO)-based membranes have attracted much attention recently for CO2 separation because CO2 is highly soluble into PEO and shows high selectivity over other gases such as CH4 and N2.Unfortunately,those membranes are not strong enough mechanically and highly crystalline,which hinders their broader applications for separation membranes.In this review discussions are made,as much in detail as possible,on the strategies to improve gas separation performance of PEO-based membranes.Some of techniques such as synthesis of graft copolymers that contain PEO,cross-linking of polymers and blending with long chains polymers contributed significantly to improvement of membrane.Incorporation of ionic liquids/nanoparticles has also been found effective.However,surface modification of nanoparticles has been done chemically or physically to enhance their compatibility with polymer matrix.As a result of all such efforts,an excellent performance,i.e.,CO2 permeability up to 200 Barrer,CO2/N2 selectivity up to 200 and CO2/CH4 selectivity up to 70,could be achieved.Another method is to introduce functional groups into PEO-based polymers which boosted CO2 permeability up to 200 Barrer with CO2/CH4 selectivity between 40 and 50.The CO2 permeability of PEO-based membranes increases,without much change in selectivity,when the length of ethylene oxide is increased.
基金TheNationalNaturalScienceFoundationofChina (No .2 9836 16 0 )
文摘Membrane separation, a new technology for removing VOCs including pervaporation, vapor permeation, membrane contactor, and membrane bioreactor was presented. Comparing with traditional techniques, these special techniques are an efficient and energy saving technology. Vapor permeation can be applied to recovery of organic solvents from exhaust streams. Membrane contactor could be used for removing or recovering VOCs from air or wastewater. Pervaporation and vapor permeation are viable methods for removing VOCs from wastewater to yield a VOC concentrate which could either be destroyed by conventional means, or be recycled for reuse.
基金Supported by the National Natural Science Foundation of China(21276123,21490581)the National High Technology Research and Development Program of China(2012AA03A606)+1 种基金the "Summit of the Six Top Talents" Program of Jiangsu Province(2011-XCL-021)the Open Research Fund Program of Collaborative Innovation Center of Membrane Separation and Water Treatment(2016YB01)
文摘A series of organosilica sols are prepared by the polymeric sol–gel method using 1,2-bis(triethoxysilyl)ethane(BTESE)as the precursor.Particle size distributions of the BTESE-derived sols are systematically investigated by carefully adjusting the synthesis parameters(i.e.,water ratios,acid ratios and solvent ratios)in the sol process.In certain conditions,increasing the water ratio or the acid ratio tends to cause larger sol sizes and bimodal particle size distributions.However,higher solvent ratios lead to smaller sol sizes and unimodal particle size distributions.The organosilica membranes prepared from the optimized sols show excellent H_2 permeances(up to 4.2×10^(-7)mol·m^(-2)·s^(-1)·Pa^(-1))and gas permselectitivies(H_2/CO_2 is 9.5,H_2/N_2 is 50 and H_2/CH_4 is 68).This study offers significant insights into the relationship between the sol synthesis parameters,sol sizes and membrane performance.