The presence of chirality,a fundamental attribute found in nature,is of great significance in the field of pharmaceutical science.Chiral drugs are unique in that their molecular structure is non-superimposable on its ...The presence of chirality,a fundamental attribute found in nature,is of great significance in the field of pharmaceutical science.Chiral drugs are unique in that their molecular structure is non-superimposable on its mirror image.This stereoisomerism significantly impacts the functionality,metabolic pathway,effectiveness,and safety of chiral medications.The enantiomers of chiral drugs can exhibit diverse pharmacological effects in the human body.As a result,it is essential to separate and purify chiral drugs effectively.Despite the abundance of reports on chiral drug separation membranes,there is a dearth of comprehensive reviews.This paper aims to fill this gap by providing a thorough review from a materials perspective,with a focus on the design and construction of chiral drug separation membranes.Furthermore,it systematically analyzes the separation mechanisms employed by these membranes.The paper also delves into the challenges and prospects related to chiral drug separation membranes,with the intention of imparting valuable insights for further research and development in this field.展开更多
We report a robust pillar-layered metal-organic framework,Zn‑tfbdc‑dabco(tfbdc:tetrafluoroterephthal-ate,dabco:1,4-diazabicyclo[2.2.2]octane),featuring the fluorinated pore environment,for the preferential binding of ...We report a robust pillar-layered metal-organic framework,Zn‑tfbdc‑dabco(tfbdc:tetrafluoroterephthal-ate,dabco:1,4-diazabicyclo[2.2.2]octane),featuring the fluorinated pore environment,for the preferential binding of propane over propylene and thus highly inverse selective separation of propane/propylene mixture.The inverse propane-selective performance of Zn‑tfbdc‑dabco for the propane/propylene separation was validated by single-component gas adsorption isotherms,isosteric enthalpy of adsorption calculations,ideal adsorbed solution theory calculations,along with the breakthrough experiment.The customized fluorinated networks served as a propane-trap to form more interactions with the exposed hydrogen atoms of propane,as unveiled by the simulation studies at the molecular level.With the advantage of inverse propane-selective adsorption behavior,high adsorption capacity,good cycling stability,and low isosteric enthalpy of adsorption,Zn‑tfbdc‑dabco can be a promising candidate adsorbent for the challenging propane/propylene separation to realize one-step purification of the target propylene substance.展开更多
Metal-Organic Frameworks(MOFs)have emerged as promising materials for gas adsorption and separation due to their exceptional surface area,tunable porosity,and versatility in functionalization.This paper explores the m...Metal-Organic Frameworks(MOFs)have emerged as promising materials for gas adsorption and separation due to their exceptional surface area,tunable porosity,and versatility in functionalization.This paper explores the mechanisms of gas adsorption in MOFs,including physical adsorption,chemisorption,and synergistic effects,which contribute to their efficiency in capturing and separating gases.The applications of MOFs in key areas such as carbon dioxide capture,hydrogen storage,natural gas separation,and air purification are discussed,highlighting their potential to address pressing environmental and energy challenges.Additionally,the use of MOFs in selective gas separation,membranes,and adsorption-based technologies like Pressure Swing Adsorption(PSA)and Vacuum Swing Adsorption(VSA)is explored,emphasizing their advantages over traditional materials.Despite challenges related to scalability,stability,and cost,MOFs hold great promise for advancing gas separation technologies in the near future,offering more efficient,sustainable,and environmentally friendly solutions.展开更多
The limitations of swirl separation in removing microfine oil droplets in water have driven the development of hydrocyclone technology coupled with multiphase or multifield techniques.To enhance microfine oil droplets...The limitations of swirl separation in removing microfine oil droplets in water have driven the development of hydrocyclone technology coupled with multiphase or multifield techniques.To enhance microfine oil droplets separation,a novel hydrocyclone separation coupled with fiber coalescence(HCCFC) was designed.The interaction between fiber balls and oil droplets inside the hydrocyclone,including droplet coalescence and breakage,was investigated.The influence of different operating parameters on separation efficiency was discussed.The results showed that fiber balls promoted oil droplet coalescence when the inlet droplet size(D_(43)) was below 22.37 μm but caused droplet breakage above this threshold.The coalescence performance of HCCFC improved with increasing inlet oil content but declined beyond 450 mg·L^(-1).Separation experiments confirmed that HCCFC outperformed conventional hydrocyclone,with separation efficiency increasing by 2.9% to 20.0%.As the fiber ball content and inlet flow rate increased,the separation efficiency showed a trend of first increasing and then decreasing.Additionally,HCCFC's separation efficiency varied with inlet oil droplet size distribution,showing the most significant enhancement when D_(43) was 22.37 μm,where separation efficiency increased by 14.4%.These findings offer insights into the development and application of multiphase coupled with hydrocyclone technology.展开更多
Separating He from CH_(4)or N_(2)is crucial for natural gas He extraction,a prevailing industrial approach.Herein,molecular simulation and machine learning(ML)were combined to screen 801 experimentally synthesized COF...Separating He from CH_(4)or N_(2)is crucial for natural gas He extraction,a prevailing industrial approach.Herein,molecular simulation and machine learning(ML)were combined to screen 801 experimentally synthesized COFs for He/CH_(4)and He/N_(2)separation,either by means of adsorption or membrane separation.Top 10 COFs for 4 different gas separation purposes(CH_(4)/He or N_(2)/He separation with either adsorption or membrane)were identified respectively.The highest adsorption performance score(APSmix,defined as the product of working capacity and adsorption selectivity for mixture gas)reached 447.88 mol/kg and 49.45 mol/kg for CH_(4)/He and N_(2)/He,with corresponding adsorption selectivity of 115.56 and 30.33.He permeabilities of 1.5×10^(6)or 1.2×10^(6)Barrer were achieved for equimolar He/CH_(4)or He/N_(2)mixture gas separations,accompanied by permselectivity of 5.47 and 11.80 well surpassing 2008 Robeson's upper bound.Best performing COFs for adsorption separation are 3D COFs with pore diameter below 0.8 nm while those for membrane separation are 2D COFs with large pores.Additionally,ML models were developed to predict separation performance,with key descriptors identified.The mechanism for how COFs'structure affects their separation performance was also revealed.展开更多
The crisis of excessive increase in CO_(2)emissions has quickly become a serious issue and requires low-cost and bio-compatible solutions.The employee of membrane technology for CO_(2)gas separation has garnered signi...The crisis of excessive increase in CO_(2)emissions has quickly become a serious issue and requires low-cost and bio-compatible solutions.The employee of membrane technology for CO_(2)gas separation has garnered significant interest among researchers.However,this method encounters challenges related to selectivity and permeability.Therefore,modifying and reinforcing the polymer membranes to improve gas separation performance seems essential.Among the various methods for polymer membrane modification,modification with magnesium-based fillers to prepare a mixed matrix membrane(MMM)is considered an efficient method.Owing to magnesium metal's low weight,low density,high strength,and good selectivity,magnesium-based materials(Mg-based materials)have more porosity,higher available surface area,more adsorption sites,lighter weight,and more gas absorption tendency than other fillers,which makes them an attractive choice for the preparation of gas separation MMMs.This research deals with the introduction of Mg-based materials,various methods of synthesis of Mg-based materials,different methods of introducing Mg-based materials into the membrane matrix,and their effect on the performance of MMMs in CO_(2)gas separation applications.Therefore,this review can provide researchers with light horizons in using the high potential of Mg-based materials as efficient fillers in MMMs to achieve excellent permeability and selectivity and generally improve their performance in CO_(2)gas separation applications.展开更多
Pyridine(Py) and 3-methylpyridine(3-MP) are crucial intermediates in chemical industrial processes.Here,we provide a simple and energy-efficient approach for the isolation of Py and 3-MP by employing crystalline cucur...Pyridine(Py) and 3-methylpyridine(3-MP) are crucial intermediates in chemical industrial processes.Here,we provide a simple and energy-efficient approach for the isolation of Py and 3-MP by employing crystalline cucurbit[6]uril(Q[6]).The crystal exhibit high selectivity for Py from the mixture of Py and 3-MP in both vapor and liquid phases,with separation purities close to 100%.The selectivity is attributed to the varying stability of the host-vip complexes after the absorption of Py or 3-MP,as revealed by the single-crystal structure analysis.ITC experimental results and DFT calculations indicate that,compared to3-MP,Q[6] has a higher binding strength and lower binding energy with Py.In addition,pyridine can be removed from the Q[6] cavity through vacuum heating or organic solvent immersion,enabling Q[6]reuse via reversible vip loading.This method offers a promising approach for high-purity Py and 3-MP separation with significant economic and environmental benefits.展开更多
Chirality is not only a natural phenomenon but also a bridge between chemistry and life sciences.An effective way to obtain a single enantiomer is through racemates resolution.Recent literature shows that chiral metal...Chirality is not only a natural phenomenon but also a bridge between chemistry and life sciences.An effective way to obtain a single enantiomer is through racemates resolution.Recent literature shows that chiral metal-organic frameworks(CMOFs)have many applications in various fields because of their diverse topologies and functionalities.This review outlines the design idea and summarizes the latest synthesis strategies and applications of CMOFs.It highlights key advances and issues in the separation domain.In conclusion,the review provides perspectives on the challenges and prospective advancements of CMOFs materials and CMOFs-based separation technologies.展开更多
Due to the lack of effective screening systems in the rare earth waste recycling industry,the composition of rare earth elements in rare earth waste is complex and difficult to separate.In response to such problems,by...Due to the lack of effective screening systems in the rare earth waste recycling industry,the composition of rare earth elements in rare earth waste is complex and difficult to separate.In response to such problems,by studying the reaction behavior between various elements in rare earth waste and cobalt chloride,we propose a process path for the separation and recovery of iron,cerium and other rare earth elements using cobalt chloride roasting.The experiments on simulated wastes show that the leaching rates of the Nd,Sm,Gd,Pr can reach 98.31%,94.5%,93.87%and 72.05%under the optimal process conditions,respectively.Ce and iron remain in the leaching residue in the form of CeO_(2)and CoFe_(2)O_(4),respectively.And through a simple magnetic separation process,CeO_(2)and CoFe_(2)O_(4)can be enriched in non-magnetic leaching residue and magnetic leaching residue,respectively.The cerium content in the leaching residue composed of cobalt ferrite is only 1.95%.Therefore,this method is beneficial to the separation and high-value utilization of iron,cerium,and other rare earth elements in the waste system.The research results can provide theoretical reference for the low-cost and high-value recovery of rare earth secondary resources.展开更多
The production of high-purity H_(2) is the building block of hydrogen economy,which can greatly promote the construction of related technologies and infrastructure.Efficient H_(2)/CH_(4) separation is a necessary unit...The production of high-purity H_(2) is the building block of hydrogen economy,which can greatly promote the construction of related technologies and infrastructure.Efficient H_(2)/CH_(4) separation is a necessary unit in producing high-purity energy and reducing greenhouse gas emissions,which can meet the industrial demand and help to address the energy issue and achieve global carbon neutrality goals.Membrane separation technology,as a promising strategy for H_(2) purification,has attracted much attention due to its high efficiency,energy conservation and versatile applications.This article reviews the latest research advances in the high-performance membranes for H_(2)/CH_(4) separation,and elu-cidates the effect of membrane materials,preparation methods and membrane structure on separation performance from the perspective of separation mechanisms.It also summarized the essential aspects of membrane design,such as microstructural regulation,multiphase coupling,the optimal usage conditions and simple analysis of economic benefits.Finally,the current challenges and future directions of membranes for H_(2)/CH_(4) separation were discussed,intending to provide in-depth reference and inspiration for the theoretical research and practical application of membrane separation technology.展开更多
Mineral fulvic acid(MFA)was used as an eco-friendly pyrite depressant to recover chalcopyrite by flotation with the use of the butyl xanthate as a collector.Flotation experiments showed that MFA produced a stronger in...Mineral fulvic acid(MFA)was used as an eco-friendly pyrite depressant to recover chalcopyrite by flotation with the use of the butyl xanthate as a collector.Flotation experiments showed that MFA produced a stronger inhibition effect on pyrite than on chalcopyrite.The separation of chalcopyrite from pyrite was realized by introducing 150 mg/L MFA at a pulp pH of approximately 8.0.The copper grade,copper recovery,and separation efficiency were 28.03%,84.79%,and 71.66%,respectively.Surface adsorption tests,zeta potential determinations,and localized electrochemical impedance spectroscopy tests showed that more MFA adsorbed on pyrite than on chalcopyrite,which weakened the subsequent interactions between pyrite and the collector.Atomic force microscope imaging further confirmed the adsorption of MFA on pyrite,and X-ray photoelectron spectroscopy results indicated that hydrophilic Fe-based species on the pyrite surfaces increased after exposure of pyrite to MFA,thereby decreasing the floatability of pyrite.展开更多
Melamine sponge is a major concern for oil-water separation due to its lightweight,high porosity(>99%),cost-effectiveness,impressive mechanical properties,and chemical/thermal stability.However,its amphiphilic natu...Melamine sponge is a major concern for oil-water separation due to its lightweight,high porosity(>99%),cost-effectiveness,impressive mechanical properties,and chemical/thermal stability.However,its amphiphilic nature hinders selective oil absorption in water.Recent strategies to enhance hydrophobicity are reviewed,including synthetic methods and materials,with comprehensive explanations of the mechanisms driven by surface energy and roughness.Key performance indicators for MS in oil-water separation,including adsorption capacity,wettability,stability,emulsion separation,reversible wettability switching,flame retardancy,mechanical properties,and recyclability,are thoroughly discussed.In conclusion,this review provides insights into the future potential and direction of functional melamine sponges in oil-water separation.展开更多
Reclaimed asphalt pavement(RAP)has significant recycling value because it contains nonrenewable resources including asphalt and aggregate.However,thus far,only a small part of RAP materials can be used in the con-stru...Reclaimed asphalt pavement(RAP)has significant recycling value because it contains nonrenewable resources including asphalt and aggregate.However,thus far,only a small part of RAP materials can be used in the con-struction of recycled asphalt pavement,and the usage is regarded as a low-value utilization in the underlying layers.One of the most important reasons for this shortcoming is the problem of false particle size and pseudo gradation of RAP materials.Therefore,identifying suitable asphalt-aggregate separation technology is essential for improving the utilization of RAP materials in recycled asphalt mixture and enhancing the construction quality of recycled asphalt pavement.To address this,the paper performed a systematic review of asphalt-aggregate separation technologies for processing RAP materials and their prospects.Firstly,based on the composition of the asphalt mixture and the characteristics of RAP materials after aging,the key RAP separation technologies were proposed.Then,the concept,principle,and implementation methods of physical,chemical,and biological sep-aration methods of RAP materials were comprehensively analyzed.Moreover,the advantages and disadvantages of various separation technologies were discussed by comparing them with the related technologies in the petrochemical industry.The application prospects of various asphalt-aggregate separation methods for RAP materials can provide a reference for upgrading and expanding solid waste recycling technology for asphalt pavement.展开更多
Comprehensive utilization of phosphogypsum(PG)has attracted much attention,especially for the recovery of rare earth elements(REEs)and gypsum due to the issues of stockpile,environmental pollution,and waste of associa...Comprehensive utilization of phosphogypsum(PG)has attracted much attention,especially for the recovery of rare earth elements(REEs)and gypsum due to the issues of stockpile,environmental pollution,and waste of associated resources.Traditional utilization methods suffered the issues of low REEs leaching efficiency,huge amount of CaSO_(4)saturated wastewater and high recovery cost.To solve these issues,this study investigated the occurrence of REEs in PG and the leaching of REEs.The results show that REEs in PG are in the forms of(1)REEs mineral inclusions,(2)REEs isomorphous substitution of Ca^(2+)in gypsum lattice,(3)dispersed soluble REEs salts.Acid leaching results demonstrate that(1)the dissolution of gypsum matrix is the control factor of REEs leaching;(2)H_(2)SO_(4)is a promising leachant considering the recycle of leachate;(3)the gypsum matrix suffers a recrystallization during the acid leaching and releases the soluble REEs from PG to aqueous solution.For the recovery of the undissolved REEs mineral inclusions,wet sieving concentrated 37.1 wt%of the REEs in a 10.7 wt%mass,increasing REEs content from 309 to 1071 ppm.Finally,a green process combining gravity separation and hydrometallurgy is proposed.This process owns the merits of wastewater free,considerable REEs recovery(about 10%increase compared with traditional processes),excellent gypsum purification(>95 wt%CaSO_(4)·2H_(2)O,with<0.06 wt%of soluble P_(2)O_(5) and<0.015 wt%of soluble F)and reagent saving(about 2/3less reagent consumption than non-cyclical leaching).展开更多
Copper and cobalt were recovered from SICOMINES mining waste rock in the Democratic Republic of Congo.The process mineralogy of the samples was analyzed using scanning electron microscopy and energy dispersive spectro...Copper and cobalt were recovered from SICOMINES mining waste rock in the Democratic Republic of Congo.The process mineralogy of the samples was analyzed using scanning electron microscopy and energy dispersive spectroscopy.The results showed that copper minerals exhibited various forms and uneven particle sizes,while cobalt existed in the form of highly dispersed asbolane,and large amounts of easily slimed gangue minerals were filled in the samples,making it difficult to separate copper and cobalt minerals.The particle size range plays a decisive role in selecting the separation method for the copper−cobalt ore.Gravity separation was suitable for particles ranging from 43 to 246μm,while flotation was more effective for particles below 43μm.After ore grinding and particle size classification,applying a combined gravity separation(shaking table)−flotation method yielded concentrated minerals with a copper recovery of 72.83%and a cobalt recovery of 31.13%.展开更多
The research,fabrication and development of piezoelectric nanofibrous materials offer effective solutions to the challenges related to energy consumption and non-renewable resources.However,enhancing their electrical ...The research,fabrication and development of piezoelectric nanofibrous materials offer effective solutions to the challenges related to energy consumption and non-renewable resources.However,enhancing their electrical output still remains a significant challenge.Here,a strategy of inducing constrained phase separation on single nanofibers via shear force was proposed.Employing electrospinning technology,a polyacrylonitrile/polyvinylidene difluoride(PAN/PVDF)nanofibrous membrane was fabricated in one step,which enabled simultaneous piezoelectric and triboelectric conversion within a single-layer membrane.Each nanofiber contained independent components of PAN and PVDF and exhibited a rough surface.The abundant frictional contact points formed between these heterogeneous components contributed to an enhanced endogenous triboelectric output,showcasing an excellent synergistic effect of piezoelectric and triboelectric response in the nanofibrous membrane.Additionally,the component mass ratio influenced the microstructure,piezoelectric conformation and piezoelectric performance of the PAN/PVDF nanofibrous membranes.Through comprehensive performance comparison,the optimal mass ratio of PAN to PVDF was determined to be 9∶1.The piezoelectric devices made of the optimal PAN/PVDF nanofibrous membranes with rough nanofiber surfaces generated an output voltage of 20 V,which was about 1.8 times that of the smooth one at the same component mass ratio.The strategy of constrained phase separation on the surface of individual nanofibers provides a new approach to enhance the output performance of single-layer piezoelectric nanofibrous materials.展开更多
Membrane technology holds significant potential for augmenting or partially substituting conventional separation techniques,such as heatdriven distillation,thereby reducing energy consumption.Organic solvent nanofiltr...Membrane technology holds significant potential for augmenting or partially substituting conventional separation techniques,such as heatdriven distillation,thereby reducing energy consumption.Organic solvent nanofiltration represents an advanced membrane separation technology capable of discerning molecules within a molecular weight range of approximately 100-1000 Da in organic solvents,offering low energy requirements and minimal carbon footprints.Molecular separation in non-polar solvent system,such as toluene,n-hexane,and n-heptane,has gained paramount importance due to their extensive use in the pharmaceutical,biochemical,and petrochemical industries.In this review,we presented recent advancements in membrane materials,membrane fabrication techniques and their promising applications for separation in nonpolar solvent system,encompassing hydrocarbon separation,bioactive molecule purification and organic solvent recovery.Furthermore,this review highlighted the challenges and opportunities associated with membrane scale-up strategies and the direct translation of this promising technology into industrial applications.展开更多
This paper focuses on the preparation of rare earth oxide products from rare earth chloride solutions during the rare earth extraction and separation processes,as well as the recycling of magnesium chloride solutions....This paper focuses on the preparation of rare earth oxide products from rare earth chloride solutions during the rare earth extraction and separation processes,as well as the recycling of magnesium chloride solutions.It proposes the idea of introducing spray pyrolysis technology into the rare earth extraction and separation processes.This paper briefly describes the development history of chloride spray pyrolysis technology,focusing on the research status and application progress of rare earth chloride solution and magnesium chloride solution spray pyrolysis technology,as well as spray pyrolysis equipment.The paper also analyzes the challenges and technical intricacies associated with applying spray pyrolysis technology to chloride solutions in the rare earth extraction and separation processes.Additionally,it explores future trends and proposes strategies to facilitate the full recycling of acids and bases,streamline the process flow,and enhance the prospects for green and low-carbon rare earth metallurgy.展开更多
Instrument separation is a critical complication during root canal therapy,impacting treatment success and long-term tooth preservation.The etiology of instrument separation is multifactorial,involving the intricate a...Instrument separation is a critical complication during root canal therapy,impacting treatment success and long-term tooth preservation.The etiology of instrument separation is multifactorial,involving the intricate anatomy of the root canal system,instrument-related factors,and instrumentation techniques.Instrument separation can hinder thorough cleaning,shaping,and obturation of the root canal,posing challenges to successful treatment outcomes.Although retrieval of separated instrument is often feasible,it carries risks including perforation,excessive removal of tooth structure and root fractures.Effective management of separated instruments requires a comprehensive understanding of the contributing factors,meticulous preoperative assessment,and precise evaluation of the retrieval difficulty.The application of appropriate retrieval techniques is essential to minimize complications and optimize clinical outcomes.The current manuscript provides a framework for understanding the causes,risk factors,and clinical management principles of instrument separation.By integrating effective strategies,endodontists can enhance decision-making,improve endodontic treatment success and ensure the preservation of natural dentition.展开更多
Separating oil/water mixtures via superhydrophobic stainless steel mesh(SSM)is a kind of efficient methods of treating oily wastewater,and the superhydrophobic SSM with a low cost,simple fabrication process and robust...Separating oil/water mixtures via superhydrophobic stainless steel mesh(SSM)is a kind of efficient methods of treating oily wastewater,and the superhydrophobic SSM with a low cost,simple fabrication process and robust usability remains a challenge.Herein,urushiol-based benzoxazine(U-D)with a strong substrate adhesion and low surface free energy was used to anchor SiO_(2) particles on the SSM surface to obtain a durable superhydrophobic SSM(PU-D/SiO_(2)/SSM)through a simple dip-coating process,meanwhile,epoxy resin was also introduced to further improve the adhesion between coating and SSM.PU-D/SiO_(2)/SSM could successfully separate various immiscible oil-water mixtures with a separation efficiency of over 96%and a flux up to 27100 L/m^(2) h only by gravity,respectively.Especially,the modified SSM could effectively remove water from water-in-oil emulsion with a separation efficiency of 99.7%.Moreover,PU-D/SiO_(2)/SSM had an outstanding reusability,whose water contact angle and separation efficiency only slightly decreased after 20 cycles of separating oil/water mixture.In addition,the modified SSM also displayed a satisfactory abrasion resistance,chemical stability and self-cleaning property.Thereby,the robust PU-D/SiO_(2)/SSM prepared by cheap raw materials and facile dip-coating method exhibits a high potential for separating oil/water mixtures.展开更多
基金supported by the Foundation Research Project of Kaili University(No.2025ZD007)the National Key Research and Development Program of China(No.2021YFB3801503)the Joint Research Program of Shaoxing University and Shaoxing Institute,Zhejiang University(No.2023LHLG006),China.
文摘The presence of chirality,a fundamental attribute found in nature,is of great significance in the field of pharmaceutical science.Chiral drugs are unique in that their molecular structure is non-superimposable on its mirror image.This stereoisomerism significantly impacts the functionality,metabolic pathway,effectiveness,and safety of chiral medications.The enantiomers of chiral drugs can exhibit diverse pharmacological effects in the human body.As a result,it is essential to separate and purify chiral drugs effectively.Despite the abundance of reports on chiral drug separation membranes,there is a dearth of comprehensive reviews.This paper aims to fill this gap by providing a thorough review from a materials perspective,with a focus on the design and construction of chiral drug separation membranes.Furthermore,it systematically analyzes the separation mechanisms employed by these membranes.The paper also delves into the challenges and prospects related to chiral drug separation membranes,with the intention of imparting valuable insights for further research and development in this field.
文摘We report a robust pillar-layered metal-organic framework,Zn‑tfbdc‑dabco(tfbdc:tetrafluoroterephthal-ate,dabco:1,4-diazabicyclo[2.2.2]octane),featuring the fluorinated pore environment,for the preferential binding of propane over propylene and thus highly inverse selective separation of propane/propylene mixture.The inverse propane-selective performance of Zn‑tfbdc‑dabco for the propane/propylene separation was validated by single-component gas adsorption isotherms,isosteric enthalpy of adsorption calculations,ideal adsorbed solution theory calculations,along with the breakthrough experiment.The customized fluorinated networks served as a propane-trap to form more interactions with the exposed hydrogen atoms of propane,as unveiled by the simulation studies at the molecular level.With the advantage of inverse propane-selective adsorption behavior,high adsorption capacity,good cycling stability,and low isosteric enthalpy of adsorption,Zn‑tfbdc‑dabco can be a promising candidate adsorbent for the challenging propane/propylene separation to realize one-step purification of the target propylene substance.
文摘Metal-Organic Frameworks(MOFs)have emerged as promising materials for gas adsorption and separation due to their exceptional surface area,tunable porosity,and versatility in functionalization.This paper explores the mechanisms of gas adsorption in MOFs,including physical adsorption,chemisorption,and synergistic effects,which contribute to their efficiency in capturing and separating gases.The applications of MOFs in key areas such as carbon dioxide capture,hydrogen storage,natural gas separation,and air purification are discussed,highlighting their potential to address pressing environmental and energy challenges.Additionally,the use of MOFs in selective gas separation,membranes,and adsorption-based technologies like Pressure Swing Adsorption(PSA)and Vacuum Swing Adsorption(VSA)is explored,emphasizing their advantages over traditional materials.Despite challenges related to scalability,stability,and cost,MOFs hold great promise for advancing gas separation technologies in the near future,offering more efficient,sustainable,and environmentally friendly solutions.
基金sponsored by the National Science Fund for Distinguished Young Scholars,China(22225804)the National Natural Science Foundation of China(22078102,22408101,22308105)。
文摘The limitations of swirl separation in removing microfine oil droplets in water have driven the development of hydrocyclone technology coupled with multiphase or multifield techniques.To enhance microfine oil droplets separation,a novel hydrocyclone separation coupled with fiber coalescence(HCCFC) was designed.The interaction between fiber balls and oil droplets inside the hydrocyclone,including droplet coalescence and breakage,was investigated.The influence of different operating parameters on separation efficiency was discussed.The results showed that fiber balls promoted oil droplet coalescence when the inlet droplet size(D_(43)) was below 22.37 μm but caused droplet breakage above this threshold.The coalescence performance of HCCFC improved with increasing inlet oil content but declined beyond 450 mg·L^(-1).Separation experiments confirmed that HCCFC outperformed conventional hydrocyclone,with separation efficiency increasing by 2.9% to 20.0%.As the fiber ball content and inlet flow rate increased,the separation efficiency showed a trend of first increasing and then decreasing.Additionally,HCCFC's separation efficiency varied with inlet oil droplet size distribution,showing the most significant enhancement when D_(43) was 22.37 μm,where separation efficiency increased by 14.4%.These findings offer insights into the development and application of multiphase coupled with hydrocyclone technology.
基金the support from the Natural Science Foundation of China(U23A20115)the Natural Science Foundation of China(22368027,22078104)+4 种基金Science and Technology Key Project of Guangdong Province(2025B0101060003)the Natural Science Foundation of Guangdong Province(2024A1515012725,2024A1515012724)Guangzhou Municipal Science and Technology Project(2024A04J6251)State Key Laboratory of Pulp and Paper Engineering 2024ZD03Fundamental Research Funds for the Central Universities(2025ZYGXZR023)。
文摘Separating He from CH_(4)or N_(2)is crucial for natural gas He extraction,a prevailing industrial approach.Herein,molecular simulation and machine learning(ML)were combined to screen 801 experimentally synthesized COFs for He/CH_(4)and He/N_(2)separation,either by means of adsorption or membrane separation.Top 10 COFs for 4 different gas separation purposes(CH_(4)/He or N_(2)/He separation with either adsorption or membrane)were identified respectively.The highest adsorption performance score(APSmix,defined as the product of working capacity and adsorption selectivity for mixture gas)reached 447.88 mol/kg and 49.45 mol/kg for CH_(4)/He and N_(2)/He,with corresponding adsorption selectivity of 115.56 and 30.33.He permeabilities of 1.5×10^(6)or 1.2×10^(6)Barrer were achieved for equimolar He/CH_(4)or He/N_(2)mixture gas separations,accompanied by permselectivity of 5.47 and 11.80 well surpassing 2008 Robeson's upper bound.Best performing COFs for adsorption separation are 3D COFs with pore diameter below 0.8 nm while those for membrane separation are 2D COFs with large pores.Additionally,ML models were developed to predict separation performance,with key descriptors identified.The mechanism for how COFs'structure affects their separation performance was also revealed.
文摘The crisis of excessive increase in CO_(2)emissions has quickly become a serious issue and requires low-cost and bio-compatible solutions.The employee of membrane technology for CO_(2)gas separation has garnered significant interest among researchers.However,this method encounters challenges related to selectivity and permeability.Therefore,modifying and reinforcing the polymer membranes to improve gas separation performance seems essential.Among the various methods for polymer membrane modification,modification with magnesium-based fillers to prepare a mixed matrix membrane(MMM)is considered an efficient method.Owing to magnesium metal's low weight,low density,high strength,and good selectivity,magnesium-based materials(Mg-based materials)have more porosity,higher available surface area,more adsorption sites,lighter weight,and more gas absorption tendency than other fillers,which makes them an attractive choice for the preparation of gas separation MMMs.This research deals with the introduction of Mg-based materials,various methods of synthesis of Mg-based materials,different methods of introducing Mg-based materials into the membrane matrix,and their effect on the performance of MMMs in CO_(2)gas separation applications.Therefore,this review can provide researchers with light horizons in using the high potential of Mg-based materials as efficient fillers in MMMs to achieve excellent permeability and selectivity and generally improve their performance in CO_(2)gas separation applications.
基金supported by the Guizhou Provincial Basic Research Program(Natural Science) Youth Guidance(Nos.[2024]110,[2024]378)Science and Technology Innovation Team of Natural Science Foundation of Guizhou Province(No.CXTD[2023]005)+3 种基金Science and Technology Innovation Team of Higher Education Department of Guizhou Province(No.QJJ[2023]053)Natural Science Special of Guizhou University(No.202137)Guizhou Provincial Key Laboratory Platform Project(No.ZSYS[2025]008)PhD Foundation of Guizhou University(No.[2021]83)。
文摘Pyridine(Py) and 3-methylpyridine(3-MP) are crucial intermediates in chemical industrial processes.Here,we provide a simple and energy-efficient approach for the isolation of Py and 3-MP by employing crystalline cucurbit[6]uril(Q[6]).The crystal exhibit high selectivity for Py from the mixture of Py and 3-MP in both vapor and liquid phases,with separation purities close to 100%.The selectivity is attributed to the varying stability of the host-vip complexes after the absorption of Py or 3-MP,as revealed by the single-crystal structure analysis.ITC experimental results and DFT calculations indicate that,compared to3-MP,Q[6] has a higher binding strength and lower binding energy with Py.In addition,pyridine can be removed from the Q[6] cavity through vacuum heating or organic solvent immersion,enabling Q[6]reuse via reversible vip loading.This method offers a promising approach for high-purity Py and 3-MP separation with significant economic and environmental benefits.
基金fund by the National Natural Science Foundation of China(Grant Nos.:82473880 and 82003705)the Shanghai Science and Technology Innovation Foundation(Grant Nos.:23010500200 and 23ZR1422700)the Postdoctoral Fellowship Program of CPSF(Program No.:GZC20231528).
文摘Chirality is not only a natural phenomenon but also a bridge between chemistry and life sciences.An effective way to obtain a single enantiomer is through racemates resolution.Recent literature shows that chiral metal-organic frameworks(CMOFs)have many applications in various fields because of their diverse topologies and functionalities.This review outlines the design idea and summarizes the latest synthesis strategies and applications of CMOFs.It highlights key advances and issues in the separation domain.In conclusion,the review provides perspectives on the challenges and prospective advancements of CMOFs materials and CMOFs-based separation technologies.
基金Project supported by China Baowu Low Carbon Metallurgy Innovation Foundation(BWLCF202121)Jiangxi Provincial Key Laboratory of Flash Green Development and Recycling(20193BCD40019)+2 种基金Academic and Technical Leaders of Major Disciplines in Jiangxi Province(20213BCJ22003)Jiangxi Provincial"Double Thousand Plan"Fund Project(jxsq2023201012)Yichun Science and Technology Plan Project(2023YBKJGG04)。
文摘Due to the lack of effective screening systems in the rare earth waste recycling industry,the composition of rare earth elements in rare earth waste is complex and difficult to separate.In response to such problems,by studying the reaction behavior between various elements in rare earth waste and cobalt chloride,we propose a process path for the separation and recovery of iron,cerium and other rare earth elements using cobalt chloride roasting.The experiments on simulated wastes show that the leaching rates of the Nd,Sm,Gd,Pr can reach 98.31%,94.5%,93.87%and 72.05%under the optimal process conditions,respectively.Ce and iron remain in the leaching residue in the form of CeO_(2)and CoFe_(2)O_(4),respectively.And through a simple magnetic separation process,CeO_(2)and CoFe_(2)O_(4)can be enriched in non-magnetic leaching residue and magnetic leaching residue,respectively.The cerium content in the leaching residue composed of cobalt ferrite is only 1.95%.Therefore,this method is beneficial to the separation and high-value utilization of iron,cerium,and other rare earth elements in the waste system.The research results can provide theoretical reference for the low-cost and high-value recovery of rare earth secondary resources.
基金financially supported by the Strategic Priority Research Program(A)of the Chinese Academy of Sciences(XDA0390000)open research fund of State Key Laboratory of Mesoscience and Engineering(MESO-23-D11).
文摘The production of high-purity H_(2) is the building block of hydrogen economy,which can greatly promote the construction of related technologies and infrastructure.Efficient H_(2)/CH_(4) separation is a necessary unit in producing high-purity energy and reducing greenhouse gas emissions,which can meet the industrial demand and help to address the energy issue and achieve global carbon neutrality goals.Membrane separation technology,as a promising strategy for H_(2) purification,has attracted much attention due to its high efficiency,energy conservation and versatile applications.This article reviews the latest research advances in the high-performance membranes for H_(2)/CH_(4) separation,and elu-cidates the effect of membrane materials,preparation methods and membrane structure on separation performance from the perspective of separation mechanisms.It also summarized the essential aspects of membrane design,such as microstructural regulation,multiphase coupling,the optimal usage conditions and simple analysis of economic benefits.Finally,the current challenges and future directions of membranes for H_(2)/CH_(4) separation were discussed,intending to provide in-depth reference and inspiration for the theoretical research and practical application of membrane separation technology.
基金supported by Fundamental Research Projects of Yunnan Province,China(Nos.202101BE070001-009,202301AU070189).
文摘Mineral fulvic acid(MFA)was used as an eco-friendly pyrite depressant to recover chalcopyrite by flotation with the use of the butyl xanthate as a collector.Flotation experiments showed that MFA produced a stronger inhibition effect on pyrite than on chalcopyrite.The separation of chalcopyrite from pyrite was realized by introducing 150 mg/L MFA at a pulp pH of approximately 8.0.The copper grade,copper recovery,and separation efficiency were 28.03%,84.79%,and 71.66%,respectively.Surface adsorption tests,zeta potential determinations,and localized electrochemical impedance spectroscopy tests showed that more MFA adsorbed on pyrite than on chalcopyrite,which weakened the subsequent interactions between pyrite and the collector.Atomic force microscope imaging further confirmed the adsorption of MFA on pyrite,and X-ray photoelectron spectroscopy results indicated that hydrophilic Fe-based species on the pyrite surfaces increased after exposure of pyrite to MFA,thereby decreasing the floatability of pyrite.
基金supported by the National Natural Science Foundation of China(Nos.52372093 and 52102145)the Key R&D Program of Shaanxi Province(Nos.2023GXLH-045 and 2022SF-168)+4 种基金the Xi’an Programs for Science and Technology Plan(Nos.2020KJRC0090 and 21XJZZ0045)the Opening Project of Shanxi Key Laboratory of Advanced Manufacturing Technology(No.XJZZ202001)the Xi’an Municipal Bureau of Science and Technology(No.21XJZZ0054)the Open Foundation of Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry,Ministry of Education,Shaanxi University of Science and Technology(No.KFKT2021-01)the Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry and Technology,Shaanxi University of Science and Technology(No.KFKT2021-01).
文摘Melamine sponge is a major concern for oil-water separation due to its lightweight,high porosity(>99%),cost-effectiveness,impressive mechanical properties,and chemical/thermal stability.However,its amphiphilic nature hinders selective oil absorption in water.Recent strategies to enhance hydrophobicity are reviewed,including synthetic methods and materials,with comprehensive explanations of the mechanisms driven by surface energy and roughness.Key performance indicators for MS in oil-water separation,including adsorption capacity,wettability,stability,emulsion separation,reversible wettability switching,flame retardancy,mechanical properties,and recyclability,are thoroughly discussed.In conclusion,this review provides insights into the future potential and direction of functional melamine sponges in oil-water separation.
基金This paper was financially supported by the National Natural Science Foundation of China(No.52178420 and 51878229)Research Project of Liaoning Provincial Transportation Investment Group Co.,Ltd.(202004)Key R&D projects in Liaoning Province(No.2020JH2/10300097).
文摘Reclaimed asphalt pavement(RAP)has significant recycling value because it contains nonrenewable resources including asphalt and aggregate.However,thus far,only a small part of RAP materials can be used in the con-struction of recycled asphalt pavement,and the usage is regarded as a low-value utilization in the underlying layers.One of the most important reasons for this shortcoming is the problem of false particle size and pseudo gradation of RAP materials.Therefore,identifying suitable asphalt-aggregate separation technology is essential for improving the utilization of RAP materials in recycled asphalt mixture and enhancing the construction quality of recycled asphalt pavement.To address this,the paper performed a systematic review of asphalt-aggregate separation technologies for processing RAP materials and their prospects.Firstly,based on the composition of the asphalt mixture and the characteristics of RAP materials after aging,the key RAP separation technologies were proposed.Then,the concept,principle,and implementation methods of physical,chemical,and biological sep-aration methods of RAP materials were comprehensively analyzed.Moreover,the advantages and disadvantages of various separation technologies were discussed by comparing them with the related technologies in the petrochemical industry.The application prospects of various asphalt-aggregate separation methods for RAP materials can provide a reference for upgrading and expanding solid waste recycling technology for asphalt pavement.
基金Project supported by the National Natural Science Foundation of China(52104354)the National Natural Science Foundation of China(51674036)+1 种基金Joint Fund for Nuclear Technology Innovation Sponsored by the National Natural Science Foundation of Chinathe China National Nuclear Corporation(U2067201)。
文摘Comprehensive utilization of phosphogypsum(PG)has attracted much attention,especially for the recovery of rare earth elements(REEs)and gypsum due to the issues of stockpile,environmental pollution,and waste of associated resources.Traditional utilization methods suffered the issues of low REEs leaching efficiency,huge amount of CaSO_(4)saturated wastewater and high recovery cost.To solve these issues,this study investigated the occurrence of REEs in PG and the leaching of REEs.The results show that REEs in PG are in the forms of(1)REEs mineral inclusions,(2)REEs isomorphous substitution of Ca^(2+)in gypsum lattice,(3)dispersed soluble REEs salts.Acid leaching results demonstrate that(1)the dissolution of gypsum matrix is the control factor of REEs leaching;(2)H_(2)SO_(4)is a promising leachant considering the recycle of leachate;(3)the gypsum matrix suffers a recrystallization during the acid leaching and releases the soluble REEs from PG to aqueous solution.For the recovery of the undissolved REEs mineral inclusions,wet sieving concentrated 37.1 wt%of the REEs in a 10.7 wt%mass,increasing REEs content from 309 to 1071 ppm.Finally,a green process combining gravity separation and hydrometallurgy is proposed.This process owns the merits of wastewater free,considerable REEs recovery(about 10%increase compared with traditional processes),excellent gypsum purification(>95 wt%CaSO_(4)·2H_(2)O,with<0.06 wt%of soluble P_(2)O_(5) and<0.015 wt%of soluble F)and reagent saving(about 2/3less reagent consumption than non-cyclical leaching).
基金National Key Research and Development Program of China(No.2020YFC1909202)Major Science and Technology Program of Yunnan Province,China(No.202202AB080012)for financial support。
文摘Copper and cobalt were recovered from SICOMINES mining waste rock in the Democratic Republic of Congo.The process mineralogy of the samples was analyzed using scanning electron microscopy and energy dispersive spectroscopy.The results showed that copper minerals exhibited various forms and uneven particle sizes,while cobalt existed in the form of highly dispersed asbolane,and large amounts of easily slimed gangue minerals were filled in the samples,making it difficult to separate copper and cobalt minerals.The particle size range plays a decisive role in selecting the separation method for the copper−cobalt ore.Gravity separation was suitable for particles ranging from 43 to 246μm,while flotation was more effective for particles below 43μm.After ore grinding and particle size classification,applying a combined gravity separation(shaking table)−flotation method yielded concentrated minerals with a copper recovery of 72.83%and a cobalt recovery of 31.13%.
基金National Natural Science Foundation of China(No.52373281)National Energy-Saving and Low-Carbon Materials Production and Application Demonstration Platform Program,China(No.TC220H06N)。
文摘The research,fabrication and development of piezoelectric nanofibrous materials offer effective solutions to the challenges related to energy consumption and non-renewable resources.However,enhancing their electrical output still remains a significant challenge.Here,a strategy of inducing constrained phase separation on single nanofibers via shear force was proposed.Employing electrospinning technology,a polyacrylonitrile/polyvinylidene difluoride(PAN/PVDF)nanofibrous membrane was fabricated in one step,which enabled simultaneous piezoelectric and triboelectric conversion within a single-layer membrane.Each nanofiber contained independent components of PAN and PVDF and exhibited a rough surface.The abundant frictional contact points formed between these heterogeneous components contributed to an enhanced endogenous triboelectric output,showcasing an excellent synergistic effect of piezoelectric and triboelectric response in the nanofibrous membrane.Additionally,the component mass ratio influenced the microstructure,piezoelectric conformation and piezoelectric performance of the PAN/PVDF nanofibrous membranes.Through comprehensive performance comparison,the optimal mass ratio of PAN to PVDF was determined to be 9∶1.The piezoelectric devices made of the optimal PAN/PVDF nanofibrous membranes with rough nanofiber surfaces generated an output voltage of 20 V,which was about 1.8 times that of the smooth one at the same component mass ratio.The strategy of constrained phase separation on the surface of individual nanofibers provides a new approach to enhance the output performance of single-layer piezoelectric nanofibrous materials.
基金supported by the National Natural Science Foundation of China(Grant No.2230081973)Shanghai Pilot Program for Basic Research(22TQ1400100-4).
文摘Membrane technology holds significant potential for augmenting or partially substituting conventional separation techniques,such as heatdriven distillation,thereby reducing energy consumption.Organic solvent nanofiltration represents an advanced membrane separation technology capable of discerning molecules within a molecular weight range of approximately 100-1000 Da in organic solvents,offering low energy requirements and minimal carbon footprints.Molecular separation in non-polar solvent system,such as toluene,n-hexane,and n-heptane,has gained paramount importance due to their extensive use in the pharmaceutical,biochemical,and petrochemical industries.In this review,we presented recent advancements in membrane materials,membrane fabrication techniques and their promising applications for separation in nonpolar solvent system,encompassing hydrocarbon separation,bioactive molecule purification and organic solvent recovery.Furthermore,this review highlighted the challenges and opportunities associated with membrane scale-up strategies and the direct translation of this promising technology into industrial applications.
基金supported by the National Key Research and Development Program of China(2022YFB3504501)the National Natural Science Foundation of China(52274355)。
文摘This paper focuses on the preparation of rare earth oxide products from rare earth chloride solutions during the rare earth extraction and separation processes,as well as the recycling of magnesium chloride solutions.It proposes the idea of introducing spray pyrolysis technology into the rare earth extraction and separation processes.This paper briefly describes the development history of chloride spray pyrolysis technology,focusing on the research status and application progress of rare earth chloride solution and magnesium chloride solution spray pyrolysis technology,as well as spray pyrolysis equipment.The paper also analyzes the challenges and technical intricacies associated with applying spray pyrolysis technology to chloride solutions in the rare earth extraction and separation processes.Additionally,it explores future trends and proposes strategies to facilitate the full recycling of acids and bases,streamline the process flow,and enhance the prospects for green and low-carbon rare earth metallurgy.
文摘Instrument separation is a critical complication during root canal therapy,impacting treatment success and long-term tooth preservation.The etiology of instrument separation is multifactorial,involving the intricate anatomy of the root canal system,instrument-related factors,and instrumentation techniques.Instrument separation can hinder thorough cleaning,shaping,and obturation of the root canal,posing challenges to successful treatment outcomes.Although retrieval of separated instrument is often feasible,it carries risks including perforation,excessive removal of tooth structure and root fractures.Effective management of separated instruments requires a comprehensive understanding of the contributing factors,meticulous preoperative assessment,and precise evaluation of the retrieval difficulty.The application of appropriate retrieval techniques is essential to minimize complications and optimize clinical outcomes.The current manuscript provides a framework for understanding the causes,risk factors,and clinical management principles of instrument separation.By integrating effective strategies,endodontists can enhance decision-making,improve endodontic treatment success and ensure the preservation of natural dentition.
基金Funded by the National Natural Science Foundation of China(No.22165019)。
文摘Separating oil/water mixtures via superhydrophobic stainless steel mesh(SSM)is a kind of efficient methods of treating oily wastewater,and the superhydrophobic SSM with a low cost,simple fabrication process and robust usability remains a challenge.Herein,urushiol-based benzoxazine(U-D)with a strong substrate adhesion and low surface free energy was used to anchor SiO_(2) particles on the SSM surface to obtain a durable superhydrophobic SSM(PU-D/SiO_(2)/SSM)through a simple dip-coating process,meanwhile,epoxy resin was also introduced to further improve the adhesion between coating and SSM.PU-D/SiO_(2)/SSM could successfully separate various immiscible oil-water mixtures with a separation efficiency of over 96%and a flux up to 27100 L/m^(2) h only by gravity,respectively.Especially,the modified SSM could effectively remove water from water-in-oil emulsion with a separation efficiency of 99.7%.Moreover,PU-D/SiO_(2)/SSM had an outstanding reusability,whose water contact angle and separation efficiency only slightly decreased after 20 cycles of separating oil/water mixture.In addition,the modified SSM also displayed a satisfactory abrasion resistance,chemical stability and self-cleaning property.Thereby,the robust PU-D/SiO_(2)/SSM prepared by cheap raw materials and facile dip-coating method exhibits a high potential for separating oil/water mixtures.