Along with the proliferating research interest in semantic communication(Sem Com),joint source channel coding(JSCC)has dominated the attention due to the widely assumed existence in efficiently delivering information ...Along with the proliferating research interest in semantic communication(Sem Com),joint source channel coding(JSCC)has dominated the attention due to the widely assumed existence in efficiently delivering information semantics.Nevertheless,this paper challenges the conventional JSCC paradigm and advocates for adopting separate source channel coding(SSCC)to enjoy a more underlying degree of freedom for optimization.We demonstrate that SSCC,after leveraging the strengths of the Large Language Model(LLM)for source coding and Error Correction Code Transformer(ECCT)complemented for channel coding,offers superior performance over JSCC.Our proposed framework also effectively highlights the compatibility challenges between Sem Com approaches and digital communication systems,particularly concerning the resource costs associated with the transmission of high-precision floating point numbers.Through comprehensive evaluations,we establish that assisted by LLM-based compression and ECCT-enhanced error correction,SSCC remains a viable and effective solution for modern communication systems.In other words,separate source channel coding is still what we need.展开更多
The development of degradable and chemically recyclable polymers is a promising strategy to address pressing environmental and resource-related challenges.Despite significant progress,there is a need for continuous de...The development of degradable and chemically recyclable polymers is a promising strategy to address pressing environmental and resource-related challenges.Despite significant progress,there is a need for continuous development of such recyclable polymers.Herein,PPDOPLLA-PU copolymers were synthesized from poly(p-dioxanone)-diol(PPDO-diol)and poly(L-lactide)-diol(PLLA-diol)by chain extension reaction.The chemical structures and microphase structures of PPDO-PLLA-PU were characterized,and their crystalline properties,mechanical properties,and degradation behaviors were further investigated.Significantly,the distribution of PLLA phase in the copolymer matrix showed a rod-like microstructure with a slight orientation,despite the thermodynamic incompatibility of PPDO and PLLA segments.Moreover,on the basis of this microphase separation,PPDO spherulites can crystallize using the interface of the two phases as nucleation sites.Accordingly,the combined effect of above two contributes to the enhanced mechanical properties.In addition,PPDO-PLLA-PU copolymers have good processability and recyclability,making them valuable for a wide range of applications.展开更多
To mitigate the sand burial of highways in sandy regions,a separated subgrade design was widely adopted in the embankments of high-grade highways,but the problem of sand deposition on subgrade slopes and pavements sti...To mitigate the sand burial of highways in sandy regions,a separated subgrade design was widely adopted in the embankments of high-grade highways,but the problem of sand deposition on subgrade slopes and pavements still happens frequently.Based on the theory of wind-sand two-phase flow,this paper constructed a three-dimensional model of the separated subgrade,the wind-sand flow transport law around the subgrade with varying median strip widths and concave depths was simulated by Fluent software.After comparison and analysis of seven subgrade models,the flow field distribution,wind speed horizontal variation,and erosion-deposition characteristics were investigated.The findings are as follows:(1)The width of the median strip in the separated subgrade had significant influences on the wind-sand flow.The smooth passage of wind-sand flow over the road surface was facilitated with the increase of the median strip width.However,sand deposition in the median strip happened.It can lead to secondary sand damage of downwind subgrade and increase the work load of road sand removal for subsequent maintenance.(2)The obstruction to airflow and sand accumulation was aggravated with greater concave depth of the median strip.Therefore,it is advisable to minimize the concave depth of the median strip in case of more sand damage.(3)A median strip width exceeding 12 m(possibly without guardrails)for an integral embankment without enough road land is recommended.Conversely,median strip width of over 40 m for separate subgrade with unrestricted land is suggested.(4)In the case of sand deposition in the existing separated subgrade,the median strip can be filled by sand deposition or other materials,then was covered with gravel to form a flat ground like Gobi smooth surface,which can let the wind-blown sand flow pass through the subgrade section without sand deposition.展开更多
To address the challenges associated with existing separated zone oil production technologies,such as incompatibility with pump inspection operations,short effective working life,and poor communication reliability,an ...To address the challenges associated with existing separated zone oil production technologies,such as incompatibility with pump inspection operations,short effective working life,and poor communication reliability,an innovative electromagnetic coupling intelligent zonal oil production technology has been proposed.The core and accessory tools have been developed and applied in field tests.This technology employs a pipe string structure incorporation a release sub,which separates the production and allocation pipe strings.When the two strings are docked downhole,electromagnetic coupling enables close-range wireless transmission of electrical power and signals between the strings,powering multiple downhole intelligent production allocators(IPAs)and enabling two-way communication.Core tools adapted to the complex working conditions downhole were developed,including downhole electricity&signal transmission equipment based on electromagnetic coupling(EST),IPAs,and ground communication controllers(GCCs).Accessory tools,including large-diameter release sub anchor and cable-crossing packers,have also been technically finalized.Field tests conducted on ten wells in Daqing Oilfield demonstrated that the downhole docking of the two strings was convenient and reliable,and the EST worked stably.Real-time monitoring of flow rate,pressure and temperature in separate layers and regulation of zonal fluid production were also achieved.This technology has enhanced reservoir understanding and achieved practical production results of increased oil output with reduced water cut.展开更多
Herein,a new type of two-dimensional(2D)/2D Ti_(3)C_(2)/TiO_(2) heterojunction was developed for efficient photocatalytic nitrogen reduction reaction(NRR),in which TiO_(2) nanosheets(TiO_(2) Ns)were designed as the ma...Herein,a new type of two-dimensional(2D)/2D Ti_(3)C_(2)/TiO_(2) heterojunction was developed for efficient photocatalytic nitrogen reduction reaction(NRR),in which TiO_(2) nanosheets(TiO_(2) Ns)were designed as the main catalyst,while Ti_(3)C_(2) MXene served as the co-catalyst.Experimental and theoretical results revealed that Ti_(3)C_(2) MXene introduced electron-rich unsaturated Ti sites,serving as highly active sites for both the adsorption and activation of N_(2) on the Ti_(3)C_(2)/TiO_(2) heterojunction.Furthermore,the 2D/2D Ti_(3)C_(2)/TiO_(2) heterostructure greatly promoted the directional separation and transfer of charge carriers,facilitated by the internal electric field.This structural feature enabled the spatial separation of the N_(2) reduction and H2 O oxidation half-reactions on the distinct surfaces of Ti_(3)C_(2)(001)and TiO_(2)(001),con-sequently reducing the reaction energy barrier for each respective process.The synergistic effects arising from the interface and surface interactions within the heterojunction conspicuously improved the photo-catalytic NRR activity.As a result,the optimized Ti_(3)C_(2)/TiO_(2) heterojunction exhibited a high NH_(3) produc-tion rate of 24.4μmol g−1 h−1 in the absence of sacrificial agents,representing a remarkable 12.8-fold increase compared to individual TiO_(2) Ns.This work provides new insights into rational design of high-performance heterogeneous photocatalysts and offers a deeper understanding of the mechanism under-lying surface active sites in the photocatalytic NRR process.展开更多
Exchange bias effect is observed in the phase separated La0.33Pr0.34Ca0.33MnO3 thin films. High exchange bias field of about 1 kOe is achieved at 4 K. The exchange bias effect in La0.33Pr0.34Ca0.33MnO3 thin films migh...Exchange bias effect is observed in the phase separated La0.33Pr0.34Ca0.33MnO3 thin films. High exchange bias field of about 1 kOe is achieved at 4 K. The exchange bias effect in La0.33Pr0.34Ca0.33MnO3 thin films might originate from the intrinsic phase separation of the La0.33Pr0.34Ca0.33MnO3 or surface effect. The dependence of exchange bias effect on temperature, cooling field, and thickness is also investigated. This work would open an avenue to the application in the magnetic memory devices based on the phase separated manganites.展开更多
Endophytic fungi are widely found in almost all kinds of plants. Many endophytic fungi can produce some physio-logical active compounds, which are same to or analog to those isolated from their hosts. Producing physio...Endophytic fungi are widely found in almost all kinds of plants. Many endophytic fungi can produce some physio-logical active compounds, which are same to or analog to those isolated from their hosts. Producing physiological active com-pounds through microbial fermentation can give a new way to resolve resource limitation and to find out alternative source. Through the methods of organic solvent extraction, thin layer chromatography (TLC) and column chromatography, compound I was isolated, purified from the liquid fermentation metabolites of the taxoids-produced endophytic fungi (Alternaria. alternata var. taxi 1011 Y. Xiang et LU An-guo) that was screened from the bark of Taxus. cuspidata Sieb.et Zucc.. Compound I was identified as one kind of taxoids type III, based on the analyzing results by using the methods of ultraviolet spectroscopy (UV), infrared spectroscopy (IR), mass spectrometry (MS) and nuclear magnetic resonance spectroscopy (NMR). This study provides a com-pleted method for separation and purification of the endophytic fungi as well as structure identification of its fermentation me-tabolite展开更多
In this paper we shall offer a separation axiom for frames inspired by the Hausdorff separation axiom for topological spaces. We call it separated condition. This is a condition on topology OX equivalent to the ...In this paper we shall offer a separation axiom for frames inspired by the Hausdorff separation axiom for topological spaces. We call it separated condition. This is a condition on topology OX equivalent to the T O space X being Hausdorff. The class of separated frames includes that of strong Hausdorff frames and that of S frames. We shall show that the class of separated frames is a class closed under the formation of coproducts and subspaces, and the space Fil( L ) is Hausdorff for any separated frame L . Therefore there is a contravariant adjunction between the category TOP 2 of Hausdorff topological spaces and the category FRAM 2 of separated frames.展开更多
The process through which a laminar flow undergoes transition to turbulence is of great fundamental and practical interest. Such a process is hugely complex as there are many diverse routes for a laminar flow to becom...The process through which a laminar flow undergoes transition to turbulence is of great fundamental and practical interest. Such a process is hugely complex as there are many diverse routes for a laminar flow to become turbulent flow. The transition process is usually initiated by flow instabilities—a primary instability stage followed by a secondary instability stage. This forms a rational framework for the early stage of a transition process and it is crucially important to understand the physics of instabilities leading to turbulence. This article reviews the results of studies on secondary instability of separated shear layers in separation bubbles and summaries the current status of our understanding in this area.展开更多
Numerical studies of the flow past a circular cylinder at Reynolds number 1.4 × 105 and NACA0021 airfoil at the angle of attack 60° have been carried out by scale-adaptive simulation (SAS) and detached edd...Numerical studies of the flow past a circular cylinder at Reynolds number 1.4 × 105 and NACA0021 airfoil at the angle of attack 60° have been carried out by scale-adaptive simulation (SAS) and detached eddy simu- lation (DES), in comparison with the existing experimental data. The new version of the model developed by Egorov and Menter is assessed, and advantages and disadvantages of the SAS simulation are analyzed in detail to provide guidance for industrial application in the future. Moreover, the mechanism of the scale-adaptive characteristics in separated regions is discussed, which is obscure in previous analyses. It is con- cluded that: the mean flow properties satisfactorily agree with the experimental results for the SAS simulation, although the prediction of the second order turbulent statistics in the near wake region is just reasonable. The SAS model can produce a larger magnitude of the turbulent kinetic energy in the recir- culation bubble, and, consequently, a smaller recirculation region and a more rapid recovery of the mean velocity out- side the recirculation region than the DES approach with the same grid resolution. The vortex shedding is slightly less irregular with the SAS model than with the DES approach, probably due to the higher dissipation of the SAS simulation under the condition of the coarse mesh.展开更多
Wall pressure fluctuations generated by Turbulent Boundary Layers(TBL) provide a significant contribution in reducing the structural vibration and the aircraft cabin noise. However,it is difficult to evaluate these fl...Wall pressure fluctuations generated by Turbulent Boundary Layers(TBL) provide a significant contribution in reducing the structural vibration and the aircraft cabin noise. However,it is difficult to evaluate these fluctuations accurately through a wind tunnel test because of the pollution caused by the background noise generated by the jet or the valve of the wind tunnel. In this study, a new technology named Subsection Approaching Method(SAM) is proposed to separate the wall pressure fluctuations from the background noise induced by the jet or the valve for a transonic wind tunnel test. The SAM demonstrates good performance on separating the background noise from the total pressure compared to the other method in this study. The investigation considers the effects of the sound intensity and the decay factor on the sound-source separation. The results show that the SAM can derive wall pressure fluctuations effectively even when the level of background noise is considerably higher than the level of the wall pressure fluctuations caused by the TBL. In addition, the computational precision is also analyzed based on the broad band noise tested in the wind tunnel. Two methods to improve the precision of the computation with the SAM are also suggested: decreasing the loop gain and increasing the sensors for the signal analysis.展开更多
Suppression of photogenerated charge recombination is crucial for efficient photocatalytic hydrogen production.Homojunctions have garnered more attention than heterojunctions due to their superior crystal binding and ...Suppression of photogenerated charge recombination is crucial for efficient photocatalytic hydrogen production.Homojunctions have garnered more attention than heterojunctions due to their superior crystal binding and band structure matching.However,most homojunctions suffer from redox interference caused by continuous oxidizing and reducing phases that impede the ability to improve photocatalytic activity.Consequently,the preparation of homojunction photocatalysts with completely spatial separation of both in charge and redox phases remains challenging.Here,the preparation of a two-dimensional(2D)homojunction CeO_(2) with a back-to-back geometry and fully separated oxidizing and reducing phases is reported.The prepared CeO_(2) is composed of nanosheets with twocontrasting smooth and rough surfaces.Experimental and theoretical results indicate that the rough surface contains more highly reducing CeO_(2){220}and strongly visiblelight-absorbing CeO_(2){200}facets than the smooth surface.The 2D homojunction CeO_(2) produces three-times more hydrogen than normal CeO_(2) nanosheets,and even more than that of CeO_(2) nanosheets loaded with gold nanoparticles.This work presents a new homojunction photocatalyst model with completely spatial separation of both in charge and redox phases that is expected to inspire further research into homojunction photocatalysts.展开更多
By introducing a more general auxiliary ordinary differential equation (ODE), a modified variable separated ODE method is developed for solving the mKdV-sinh-Gordon equation. As a result, many explicit and exact sol...By introducing a more general auxiliary ordinary differential equation (ODE), a modified variable separated ODE method is developed for solving the mKdV-sinh-Gordon equation. As a result, many explicit and exact solutions including some new formal solutions are successfully picked up for the mKdV-sinh-Gordon equation by this approach.展开更多
Magnetically separated and N, S co-doped mesoporous carbon microspheres (NIS-MCMs/Fe304) are fabricated by encapsulating Si02 nanoparticles within N, S-containing polymer microspheres which were prepared using resor...Magnetically separated and N, S co-doped mesoporous carbon microspheres (NIS-MCMs/Fe304) are fabricated by encapsulating Si02 nanoparticles within N, S-containing polymer microspheres which were prepared using resorcinol/formaldehyde as the carbon source and cysteine as the nitrogen and sulfur co-precursors, followed by the carbonization process, silica template removal, and the introduction of Fe3O4 into the carbon mesopores. N/S-MCMs/Fe3O4 exhibits an enhanced Hg2+ adsorption capacity of 74.5 rag/g, and the adsorbent can be conveniently and rapidly separated from wastewater using an external magnetic field. This study opens up new opportunities to synthesize well- developed, carbon-based materials as an adsorbent for potential applications in the removal of mercury ions from wastewater.展开更多
This paper presents a separated law of hardening in plasticity with strain gradient effects. The value of the length parameter l contained in this model was estimated from the experimental data for copper.
Accurate prediction of unsteady separated turbulent flows remains one of the toughest tasks and a practi cal challenge for turbulence modeling. In this paper, a 2D flow past a circular cylinder at Reynolds number 3,90...Accurate prediction of unsteady separated turbulent flows remains one of the toughest tasks and a practi cal challenge for turbulence modeling. In this paper, a 2D flow past a circular cylinder at Reynolds number 3,900 is numerically investigated by using the technique of unsteady RANS (URANS). Some typical linear and nonlinear eddy viscosity turbulence models (LEVM and NLEVM) and a quadratic explicit algebraic stress model (EASM) are evaluated. Numerical results have shown that a high-performance cubic NLEVM, such as CLS, are superior to the others in simulating turbulent separated flows with unsteady vortex shedding.展开更多
The phase diagram of a ternary system of PVDF,dibutyl phthalate (DBP) and di(2-ethylhexyl) phthalate (DEHP) was determined in terms of a pseudo binary system with the same polymer concentration and different DBP conte...The phase diagram of a ternary system of PVDF,dibutyl phthalate (DBP) and di(2-ethylhexyl) phthalate (DEHP) was determined in terms of a pseudo binary system with the same polymer concentration and different DBP content in diluent mixture.The experimental results showed that as the DBP content increased in diluent mixture,the phase separation changed from liquid-liquid phase separation to solid-liquid phase separation,and both the cloudy point for L-L phase separation and crystallization temperature shifted...展开更多
基金supported in part by the National Key Research and Development Program of China under Grant No.2024YFE0200600the Zhejiang Provincial Natural Science Foundation of China under Grant No.LR23F010005the Huawei Cooperation Project under Grant No.TC20240829036。
文摘Along with the proliferating research interest in semantic communication(Sem Com),joint source channel coding(JSCC)has dominated the attention due to the widely assumed existence in efficiently delivering information semantics.Nevertheless,this paper challenges the conventional JSCC paradigm and advocates for adopting separate source channel coding(SSCC)to enjoy a more underlying degree of freedom for optimization.We demonstrate that SSCC,after leveraging the strengths of the Large Language Model(LLM)for source coding and Error Correction Code Transformer(ECCT)complemented for channel coding,offers superior performance over JSCC.Our proposed framework also effectively highlights the compatibility challenges between Sem Com approaches and digital communication systems,particularly concerning the resource costs associated with the transmission of high-precision floating point numbers.Through comprehensive evaluations,we establish that assisted by LLM-based compression and ECCT-enhanced error correction,SSCC remains a viable and effective solution for modern communication systems.In other words,separate source channel coding is still what we need.
基金financially supported by the National Key R&D Program of China(No.2021YFB3801901)the National Natural Science Foundation of China(Nos.52403138 and U19A2095)+1 种基金Institutional Research Fund from Sichuan University(No.2020SCUNL205)Fundamental Research Funds for the Central Universities,and 111 Project(No.B20001)。
文摘The development of degradable and chemically recyclable polymers is a promising strategy to address pressing environmental and resource-related challenges.Despite significant progress,there is a need for continuous development of such recyclable polymers.Herein,PPDOPLLA-PU copolymers were synthesized from poly(p-dioxanone)-diol(PPDO-diol)and poly(L-lactide)-diol(PLLA-diol)by chain extension reaction.The chemical structures and microphase structures of PPDO-PLLA-PU were characterized,and their crystalline properties,mechanical properties,and degradation behaviors were further investigated.Significantly,the distribution of PLLA phase in the copolymer matrix showed a rod-like microstructure with a slight orientation,despite the thermodynamic incompatibility of PPDO and PLLA segments.Moreover,on the basis of this microphase separation,PPDO spherulites can crystallize using the interface of the two phases as nucleation sites.Accordingly,the combined effect of above two contributes to the enhanced mechanical properties.In addition,PPDO-PLLA-PU copolymers have good processability and recyclability,making them valuable for a wide range of applications.
基金supported by the Third Xinjiang Scientific Expedition and Research Program-Investigation and Risk Assessment of Drought and Aeolian Disasters in Tarim River Basin(No.2021xjkk0300)the National Natural Science Foundation of China(No.62466056)the subject of'the technical scheme and application demonstration of sand disaster prevention and control of Xinjiang expressway to engineering practice,Xinjiang Transportation Investment(Group)Co.,Ltd.(No.XJJTZKX-FWCG-202401-0043).
文摘To mitigate the sand burial of highways in sandy regions,a separated subgrade design was widely adopted in the embankments of high-grade highways,but the problem of sand deposition on subgrade slopes and pavements still happens frequently.Based on the theory of wind-sand two-phase flow,this paper constructed a three-dimensional model of the separated subgrade,the wind-sand flow transport law around the subgrade with varying median strip widths and concave depths was simulated by Fluent software.After comparison and analysis of seven subgrade models,the flow field distribution,wind speed horizontal variation,and erosion-deposition characteristics were investigated.The findings are as follows:(1)The width of the median strip in the separated subgrade had significant influences on the wind-sand flow.The smooth passage of wind-sand flow over the road surface was facilitated with the increase of the median strip width.However,sand deposition in the median strip happened.It can lead to secondary sand damage of downwind subgrade and increase the work load of road sand removal for subsequent maintenance.(2)The obstruction to airflow and sand accumulation was aggravated with greater concave depth of the median strip.Therefore,it is advisable to minimize the concave depth of the median strip in case of more sand damage.(3)A median strip width exceeding 12 m(possibly without guardrails)for an integral embankment without enough road land is recommended.Conversely,median strip width of over 40 m for separate subgrade with unrestricted land is suggested.(4)In the case of sand deposition in the existing separated subgrade,the median strip can be filled by sand deposition or other materials,then was covered with gravel to form a flat ground like Gobi smooth surface,which can let the wind-blown sand flow pass through the subgrade section without sand deposition.
基金Supported by the National Natural Science Foundation of China(52374067)PetroChina Scientific Research and Technology Development Project(2021ZG12)PetroChina Technology Project(2023ZZ09).
文摘To address the challenges associated with existing separated zone oil production technologies,such as incompatibility with pump inspection operations,short effective working life,and poor communication reliability,an innovative electromagnetic coupling intelligent zonal oil production technology has been proposed.The core and accessory tools have been developed and applied in field tests.This technology employs a pipe string structure incorporation a release sub,which separates the production and allocation pipe strings.When the two strings are docked downhole,electromagnetic coupling enables close-range wireless transmission of electrical power and signals between the strings,powering multiple downhole intelligent production allocators(IPAs)and enabling two-way communication.Core tools adapted to the complex working conditions downhole were developed,including downhole electricity&signal transmission equipment based on electromagnetic coupling(EST),IPAs,and ground communication controllers(GCCs).Accessory tools,including large-diameter release sub anchor and cable-crossing packers,have also been technically finalized.Field tests conducted on ten wells in Daqing Oilfield demonstrated that the downhole docking of the two strings was convenient and reliable,and the EST worked stably.Real-time monitoring of flow rate,pressure and temperature in separate layers and regulation of zonal fluid production were also achieved.This technology has enhanced reservoir understanding and achieved practical production results of increased oil output with reduced water cut.
基金supported by the National Natural Science Foundation of China(No.21773089)the Henan Center for Outstanding Overseas Scientist(No.GZS2024004).
文摘Herein,a new type of two-dimensional(2D)/2D Ti_(3)C_(2)/TiO_(2) heterojunction was developed for efficient photocatalytic nitrogen reduction reaction(NRR),in which TiO_(2) nanosheets(TiO_(2) Ns)were designed as the main catalyst,while Ti_(3)C_(2) MXene served as the co-catalyst.Experimental and theoretical results revealed that Ti_(3)C_(2) MXene introduced electron-rich unsaturated Ti sites,serving as highly active sites for both the adsorption and activation of N_(2) on the Ti_(3)C_(2)/TiO_(2) heterojunction.Furthermore,the 2D/2D Ti_(3)C_(2)/TiO_(2) heterostructure greatly promoted the directional separation and transfer of charge carriers,facilitated by the internal electric field.This structural feature enabled the spatial separation of the N_(2) reduction and H2 O oxidation half-reactions on the distinct surfaces of Ti_(3)C_(2)(001)and TiO_(2)(001),con-sequently reducing the reaction energy barrier for each respective process.The synergistic effects arising from the interface and surface interactions within the heterojunction conspicuously improved the photo-catalytic NRR activity.As a result,the optimized Ti_(3)C_(2)/TiO_(2) heterojunction exhibited a high NH_(3) produc-tion rate of 24.4μmol g−1 h−1 in the absence of sacrificial agents,representing a remarkable 12.8-fold increase compared to individual TiO_(2) Ns.This work provides new insights into rational design of high-performance heterogeneous photocatalysts and offers a deeper understanding of the mechanism under-lying surface active sites in the photocatalytic NRR process.
基金V. ACKNOWLEDGEMENTS This work was supported by the National Natural Science Foundation of China (No.11374279 and No.11034006), the National Basic Research Program of China (No.2014CB921102), the Strategic Priority Research Program of the Chinese Academy of Sciences (No.XDB01020000), the Specialized Research Fund for the Doctoral Program of Higher Education (No.20113402110046), and the Fundamental Research Funds for the Central Universities (No.WK2340000035).
文摘Exchange bias effect is observed in the phase separated La0.33Pr0.34Ca0.33MnO3 thin films. High exchange bias field of about 1 kOe is achieved at 4 K. The exchange bias effect in La0.33Pr0.34Ca0.33MnO3 thin films might originate from the intrinsic phase separation of the La0.33Pr0.34Ca0.33MnO3 or surface effect. The dependence of exchange bias effect on temperature, cooling field, and thickness is also investigated. This work would open an avenue to the application in the magnetic memory devices based on the phase separated manganites.
文摘Endophytic fungi are widely found in almost all kinds of plants. Many endophytic fungi can produce some physio-logical active compounds, which are same to or analog to those isolated from their hosts. Producing physiological active com-pounds through microbial fermentation can give a new way to resolve resource limitation and to find out alternative source. Through the methods of organic solvent extraction, thin layer chromatography (TLC) and column chromatography, compound I was isolated, purified from the liquid fermentation metabolites of the taxoids-produced endophytic fungi (Alternaria. alternata var. taxi 1011 Y. Xiang et LU An-guo) that was screened from the bark of Taxus. cuspidata Sieb.et Zucc.. Compound I was identified as one kind of taxoids type III, based on the analyzing results by using the methods of ultraviolet spectroscopy (UV), infrared spectroscopy (IR), mass spectrometry (MS) and nuclear magnetic resonance spectroscopy (NMR). This study provides a com-pleted method for separation and purification of the endophytic fungi as well as structure identification of its fermentation me-tabolite
文摘In this paper we shall offer a separation axiom for frames inspired by the Hausdorff separation axiom for topological spaces. We call it separated condition. This is a condition on topology OX equivalent to the T O space X being Hausdorff. The class of separated frames includes that of strong Hausdorff frames and that of S frames. We shall show that the class of separated frames is a class closed under the formation of coproducts and subspaces, and the space Fil( L ) is Hausdorff for any separated frame L . Therefore there is a contravariant adjunction between the category TOP 2 of Hausdorff topological spaces and the category FRAM 2 of separated frames.
文摘The process through which a laminar flow undergoes transition to turbulence is of great fundamental and practical interest. Such a process is hugely complex as there are many diverse routes for a laminar flow to become turbulent flow. The transition process is usually initiated by flow instabilities—a primary instability stage followed by a secondary instability stage. This forms a rational framework for the early stage of a transition process and it is crucially important to understand the physics of instabilities leading to turbulence. This article reviews the results of studies on secondary instability of separated shear layers in separation bubbles and summaries the current status of our understanding in this area.
基金the National Basic Research Program of China ("973" Project) (Grant No. 2009CB724104)
文摘Numerical studies of the flow past a circular cylinder at Reynolds number 1.4 × 105 and NACA0021 airfoil at the angle of attack 60° have been carried out by scale-adaptive simulation (SAS) and detached eddy simu- lation (DES), in comparison with the existing experimental data. The new version of the model developed by Egorov and Menter is assessed, and advantages and disadvantages of the SAS simulation are analyzed in detail to provide guidance for industrial application in the future. Moreover, the mechanism of the scale-adaptive characteristics in separated regions is discussed, which is obscure in previous analyses. It is con- cluded that: the mean flow properties satisfactorily agree with the experimental results for the SAS simulation, although the prediction of the second order turbulent statistics in the near wake region is just reasonable. The SAS model can produce a larger magnitude of the turbulent kinetic energy in the recir- culation bubble, and, consequently, a smaller recirculation region and a more rapid recovery of the mean velocity out- side the recirculation region than the DES approach with the same grid resolution. The vortex shedding is slightly less irregular with the SAS model than with the DES approach, probably due to the higher dissipation of the SAS simulation under the condition of the coarse mesh.
文摘Wall pressure fluctuations generated by Turbulent Boundary Layers(TBL) provide a significant contribution in reducing the structural vibration and the aircraft cabin noise. However,it is difficult to evaluate these fluctuations accurately through a wind tunnel test because of the pollution caused by the background noise generated by the jet or the valve of the wind tunnel. In this study, a new technology named Subsection Approaching Method(SAM) is proposed to separate the wall pressure fluctuations from the background noise induced by the jet or the valve for a transonic wind tunnel test. The SAM demonstrates good performance on separating the background noise from the total pressure compared to the other method in this study. The investigation considers the effects of the sound intensity and the decay factor on the sound-source separation. The results show that the SAM can derive wall pressure fluctuations effectively even when the level of background noise is considerably higher than the level of the wall pressure fluctuations caused by the TBL. In addition, the computational precision is also analyzed based on the broad band noise tested in the wind tunnel. Two methods to improve the precision of the computation with the SAM are also suggested: decreasing the loop gain and increasing the sensors for the signal analysis.
基金financially supported by the National Natural Science Foundation of China (Nos.22205084 and21805191)the Start-Up Funding of Jiangsu University of Science and Technology (No.1112932203)+2 种基金Guangdong Basic and Applied Basic Research Foundation (No.2020A1515010982)Shenzhen Stable Support Project (No.20200812122947002)Shenzhen Peacock Plan (No.20210802524B)。
文摘Suppression of photogenerated charge recombination is crucial for efficient photocatalytic hydrogen production.Homojunctions have garnered more attention than heterojunctions due to their superior crystal binding and band structure matching.However,most homojunctions suffer from redox interference caused by continuous oxidizing and reducing phases that impede the ability to improve photocatalytic activity.Consequently,the preparation of homojunction photocatalysts with completely spatial separation of both in charge and redox phases remains challenging.Here,the preparation of a two-dimensional(2D)homojunction CeO_(2) with a back-to-back geometry and fully separated oxidizing and reducing phases is reported.The prepared CeO_(2) is composed of nanosheets with twocontrasting smooth and rough surfaces.Experimental and theoretical results indicate that the rough surface contains more highly reducing CeO_(2){220}and strongly visiblelight-absorbing CeO_(2){200}facets than the smooth surface.The 2D homojunction CeO_(2) produces three-times more hydrogen than normal CeO_(2) nanosheets,and even more than that of CeO_(2) nanosheets loaded with gold nanoparticles.This work presents a new homojunction photocatalyst model with completely spatial separation of both in charge and redox phases that is expected to inspire further research into homojunction photocatalysts.
基金Project supported by the National Natural Science Foundation of China (Grant No 10672053)
文摘By introducing a more general auxiliary ordinary differential equation (ODE), a modified variable separated ODE method is developed for solving the mKdV-sinh-Gordon equation. As a result, many explicit and exact solutions including some new formal solutions are successfully picked up for the mKdV-sinh-Gordon equation by this approach.
基金financially supported by the National Natural Science Foundation of China (Nos. 21207099, 21273162, and 21473122)the Science and Technology Commission of Shanghai Municipality, China (No. 14DZ2261100)+1 种基金the Fundamental Research Funds for the Central Universitiesthe Large Equipment Test Foundation of Tongji University
文摘Magnetically separated and N, S co-doped mesoporous carbon microspheres (NIS-MCMs/Fe304) are fabricated by encapsulating Si02 nanoparticles within N, S-containing polymer microspheres which were prepared using resorcinol/formaldehyde as the carbon source and cysteine as the nitrogen and sulfur co-precursors, followed by the carbonization process, silica template removal, and the introduction of Fe3O4 into the carbon mesopores. N/S-MCMs/Fe3O4 exhibits an enhanced Hg2+ adsorption capacity of 74.5 rag/g, and the adsorbent can be conveniently and rapidly separated from wastewater using an external magnetic field. This study opens up new opportunities to synthesize well- developed, carbon-based materials as an adsorbent for potential applications in the removal of mercury ions from wastewater.
基金The project supported by the National Natural Science Foundation of China
文摘This paper presents a separated law of hardening in plasticity with strain gradient effects. The value of the length parameter l contained in this model was estimated from the experimental data for copper.
文摘Accurate prediction of unsteady separated turbulent flows remains one of the toughest tasks and a practi cal challenge for turbulence modeling. In this paper, a 2D flow past a circular cylinder at Reynolds number 3,900 is numerically investigated by using the technique of unsteady RANS (URANS). Some typical linear and nonlinear eddy viscosity turbulence models (LEVM and NLEVM) and a quadratic explicit algebraic stress model (EASM) are evaluated. Numerical results have shown that a high-performance cubic NLEVM, such as CLS, are superior to the others in simulating turbulent separated flows with unsteady vortex shedding.
基金the National Basic Research Program of China (No.2003CB615705)the National Natural Science Foundation of China (No.50433010).
文摘The phase diagram of a ternary system of PVDF,dibutyl phthalate (DBP) and di(2-ethylhexyl) phthalate (DEHP) was determined in terms of a pseudo binary system with the same polymer concentration and different DBP content in diluent mixture.The experimental results showed that as the DBP content increased in diluent mixture,the phase separation changed from liquid-liquid phase separation to solid-liquid phase separation,and both the cloudy point for L-L phase separation and crystallization temperature shifted...