期刊文献+
共找到286篇文章
< 1 2 15 >
每页显示 20 50 100
Research on Small-Scale Characteristics of Urban Vitality Space Driven by Multi-Source Sentiment Data:With “Xidan The New” and “Beijing Fun” in Beijing as Examples
1
作者 Zhang Ruoshi Gong Yao +2 位作者 Luo Yinjing Qian Fang(Translated) Lai Yuan(Proofread) 《China City Planning Review》 CSCD 2024年第4期44-54,共11页
Against the background of urban regeneration,“reducing quantity and improving quality” has been the core demand for planning and development in Beijing’s central urban areas,which applies to the development of urba... Against the background of urban regeneration,“reducing quantity and improving quality” has been the core demand for planning and development in Beijing’s central urban areas,which applies to the development of urban vitality spaces of the city as well.In the meantime,in the digital age,users’ sentiment needs for urban spaces continuously increase,making it necessary to consider the sentiment connection between people and the built environment when creating vitality spaces.This study uses two typical examples of urban regeneration vitality spaces in Beijing,“Xidan The New” and “Beijing Fun,” and uses the sentiment connection theory that is based on multiple disciplines as a lever to introduce the thinking,technology,and methods of data science,focusing on the lack of attention to small-scale built environment features in vitality space research.The study integrates the from-top-to-bottom sentiment connection scale data,the qualitative research data,and the from-bottom-to-top big data sentiment analysis to explore the characteristics of small-scale vitality space that can stimulate positive sentiment experiences for users and to bring the discussion of spatial vitality back to the human scale and real three-dimensional spatial experience.In the end,this study summarizes the elements of small-scale spatial vitality and constructs evaluation indicators for sentiment connection to vitality spaces.The goal is to expand and refine the research scope of urban vitality spaces,update corresponding design and evaluation methods,and ensure that the spatial expression of “vitality” truly reflects liveliness and responds to human nature. 展开更多
关键词 urban vitality space small-scale space characteristics multi-source sentiment data sentiment connection between human and built environment
原文传递
Big Data Stream Analytics for Near Real-Time Sentiment Analysis 被引量:1
2
作者 Otto K. M. Cheng Raymond Lau 《Journal of Computer and Communications》 2015年第5期189-195,共7页
In the era of big data, huge volumes of data are generated from online social networks, sensor networks, mobile devices, and organizations’ enterprise systems. This phenomenon provides organizations with unprecedente... In the era of big data, huge volumes of data are generated from online social networks, sensor networks, mobile devices, and organizations’ enterprise systems. This phenomenon provides organizations with unprecedented opportunities to tap into big data to mine valuable business intelligence. However, traditional business analytics methods may not be able to cope with the flood of big data. The main contribution of this paper is the illustration of the development of a novel big data stream analytics framework named BDSASA that leverages a probabilistic language model to analyze the consumer sentiments embedded in hundreds of millions of online consumer reviews. In particular, an inference model is embedded into the classical language modeling framework to enhance the prediction of consumer sentiments. The practical implication of our research work is that organizations can apply our big data stream analytics framework to analyze consumers’ product preferences, and hence develop more effective marketing and production strategies. 展开更多
关键词 BIG data data STREAM ANALYTICS sentiment Analysis ONLINE Review
暂未订购
A Sentiment Analysis Approach to Discover Public Panic: Based on Weibo Covid-19 Data
3
作者 Wanjun Wu 《Social Networking》 2022年第3期33-39,共7页
Background: Weibo is a Twitter-like micro-blog platform in China where people post their real-life events as well as express their feelings in short texts. Since the outbreak of the Covid-19 pandemic, thousands of peo... Background: Weibo is a Twitter-like micro-blog platform in China where people post their real-life events as well as express their feelings in short texts. Since the outbreak of the Covid-19 pandemic, thousands of people have expressed their concerns and worries about the outbreak via Weibo, showing the existence of public panic. Methods: This paper comes up with a sentiment analysis approach to discover public panic. First, we used Octoparse to obtain Weibo posts about the hot topic Covid-19 Pandemic. Second, we break down those sentences into independent words and clean the data by removing stop words. Then, we use the sentiment score function that deals with negative words, adverbs, and sentiment words to get the sentiment score of each Weibo post. Results: We observe the distribution of sentiment scores and get the benchmark to evaluate public panic. Also, we apply the same process to test the mass sentiment under other topics to test the efficiency of the sentiment function, which shows that our function works well. 展开更多
关键词 sentiment Analysis data Analysis Covid-19 Micro-Blogdata
在线阅读 下载PDF
Twitter Sentiment in Data Streams with Perceptron
4
作者 Nathan Aston Jacob Liddle Wei Hu 《Journal of Computer and Communications》 2014年第3期11-16,共6页
With the huge increase in popularity of Twitter in recent years, the ability to draw information regarding public sentiment from Twitter data has become an area of immense interest. Numerous methods of determining the... With the huge increase in popularity of Twitter in recent years, the ability to draw information regarding public sentiment from Twitter data has become an area of immense interest. Numerous methods of determining the sentiment of tweets, both in general and in regard to a specific topic, have been developed, however most of these functions are in a batch learning environment where instances may be passed over multiple times. Since Twitter data in real world situations are far similar to a stream environment, we proposed several algorithms which classify the sentiment of tweets in a data stream. We were able to determine whether a tweet was subjective or objective with an error rate as low as 0.24 and an F-score as high as 0.85. For the determination of positive or negative sentiment in subjective tweets, an error rate as low as 0.23 and an F-score as high as 0.78 were achieved. 展开更多
关键词 sentiment Analysis TWITTER Grams PERCEPTRON data STREAM
暂未订购
Sentiment Analysis on Twitter Data Using Term Frequency-Inverse Document Frequency
5
作者 Akash Addiga Sikha Bagui 《Journal of Computer and Communications》 2022年第8期117-128,共12页
This study is an exploratory analysis of applying natural language processing techniques such as Term Frequency-Inverse Document Frequency and Sentiment Analysis on Twitter data. The uniqueness of this work is establi... This study is an exploratory analysis of applying natural language processing techniques such as Term Frequency-Inverse Document Frequency and Sentiment Analysis on Twitter data. The uniqueness of this work is established by determining the overall sentiment of a politician’s tweets based on TF-IDF values of terms used in their published tweets. By calculating the TF-IDF value of terms from the corpus, this work displays the correlation between TF-IDF score and polarity. The results of this work show that calculating the TF-IDF score of the corpus allows for a more accurate representation of the overall polarity since terms are given a weight based on their uniqueness and relevance rather than just the frequency at which they appear in the corpus. 展开更多
关键词 sentiment Analysis Twitter data Term Frequency Inverse Term Frequency Term Frequency-Inverse Document Frequency (TF-IDF) Social Media
在线阅读 下载PDF
Integrated Real-Time Big Data Stream Sentiment Analysis Service 被引量:1
6
作者 Sun Sunnie Chung Danielle Aring 《Journal of Data Analysis and Information Processing》 2018年第2期46-66,共21页
Opinion (sentiment) analysis on big data streams from the constantly generated text streams on social media networks to hundreds of millions of online consumer reviews provides many organizations in every field with o... Opinion (sentiment) analysis on big data streams from the constantly generated text streams on social media networks to hundreds of millions of online consumer reviews provides many organizations in every field with opportunities to discover valuable intelligence from the massive user generated text streams. However, the traditional content analysis frameworks are inefficient to handle the unprecedentedly big volume of unstructured text streams and the complexity of text analysis tasks for the real time opinion analysis on the big data streams. In this paper, we propose a parallel real time sentiment analysis system: Social Media Data Stream Sentiment Analysis Service (SMDSSAS) that performs multiple phases of sentiment analysis of social media text streams effectively in real time with two fully analytic opinion mining models to combat the scale of text data streams and the complexity of sentiment analysis processing on unstructured text streams. We propose two aspect based opinion mining models: Deterministic and Probabilistic sentiment models for a real time sentiment analysis on the user given topic related data streams. Experiments on the social media Twitter stream traffic captured during the pre-election weeks of the 2016 Presidential election for real-time analysis of public opinions toward two presidential candidates showed that the proposed system was able to predict correctly Donald Trump as the winner of the 2016 Presidential election. The cross validation results showed that the proposed sentiment models with the real-time streaming components in our proposed framework delivered effectively the analysis of the opinions on two presidential candidates with average 81% accuracy for the Deterministic model and 80% for the Probabilistic model, which are 1% - 22% improvements from the results of the existing literature. 展开更多
关键词 sentiment ANALYSIS REAL-TIME Text ANALYSIS OPINION ANALYSIS BIG data An-alytics
在线阅读 下载PDF
面向时序数据的多维度网络舆情演化分析研究
7
作者 李旸 王志华 +3 位作者 李大宇 赵鑫 詹雅慧 王素格 《大数据》 2026年第1期29-42,共14页
针对当前网络舆情演化研究存在的视角单一、主题挖掘不全、情感分析不深、群体行为发现不准等局限,提出了一项多维度网络舆情演化分析框架。首先,依据社会影响力,划分了舆情演化的4个生命周期阶段。其次,基于BERTopic模型和相似性计算... 针对当前网络舆情演化研究存在的视角单一、主题挖掘不全、情感分析不深、群体行为发现不准等局限,提出了一项多维度网络舆情演化分析框架。首先,依据社会影响力,划分了舆情演化的4个生命周期阶段。其次,基于BERTopic模型和相似性计算分析了主题演化过程,利用大语言模型分析了情感波动,基于交互关系划分了用户群体并识别了意见领袖。最后,对不同周期和地域的社会影响力与情感差异进行了可视化呈现。以时序舆情数据中“印花税调整”事件为例,研究发现在舆情的4个生命周期,民众关注的话题、情感倾向、用户群体以及意见领袖均发生了变化,东部地区对“印花税调整”事件的情感反应更积极,且舆情主题和情感持续时间更长。该研究可为揭示舆情演化规律、实施有效舆情监控提供技术支持。 展开更多
关键词 时序数据 网络舆情 多维度演化 主题演化 情感波动 用户群体
在线阅读 下载PDF
基于对比学习与大语言模型增强的多模态方面级情感分析模型
8
作者 余传明 蒋展 孙邹驰 《现代情报》 北大核心 2026年第2期77-90,共14页
[目的/意义]针对多模态方面级情感分析(MABSA)研究领域存在的数据稀疏、数据不平衡等问题,探索大语言模型在MABSA任务中的应用和性能效果。[方法/过程]本文提出一种基于大语言模型数据增强和HiLo注意力对比学习的多模态方面级情感分析模... [目的/意义]针对多模态方面级情感分析(MABSA)研究领域存在的数据稀疏、数据不平衡等问题,探索大语言模型在MABSA任务中的应用和性能效果。[方法/过程]本文提出一种基于大语言模型数据增强和HiLo注意力对比学习的多模态方面级情感分析模型HLCL-GLM4。该模型调用ChatGLM4-Flash进行数据增强,采用Faster R-CNN和BART词嵌入分别获取文本和图像模态特征,将图像特征通过HiLo注意力机制进行建模,并使用一种自监督的对比学习策略进行模态特征学习和融合,提升样本多样性和情感语义的丰富性。[结果/结论]实验结果表明,HLCL-GLM4在Twitter-15和Twitter-17数据集上均取得了优异的性能。具体地,相较于最优基线模型,HLCL-GLM4在Twitter-15数据集的F1值提升1.6%,在Twitter-17数据集的F1值提升0.8%。 展开更多
关键词 多模态方面级情感分析 对比学习 大语言模型 提示工程 数据增强
在线阅读 下载PDF
A Recommendation Mechanism for Web Publishing Based on Sentiment Analysis of Microblog 被引量:2
9
作者 TIAN Pingfang ZHU Zhonghua +1 位作者 XIONG Li XU Fangfang 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2015年第2期146-152,共7页
Microblog is a social platform with huge user community and mass data. We propose a semantic recommendation mechanism based on sentiment analysis for microblog. Firstly, the keywords and sensibility words in this mech... Microblog is a social platform with huge user community and mass data. We propose a semantic recommendation mechanism based on sentiment analysis for microblog. Firstly, the keywords and sensibility words in this mechanism are extracted by natural language processing including segmentation, lexical analysis and strategy selection. Then, we query the background knowledge base based on linked open data (LOD) with the basic information of users. The experiment result shows that the accuracy of recommendation is within the range of 70% -89% with sentiment analysis and semantic query. Compared with traditional recommendation method, this method can satisfy users' requirement greatly. 展开更多
关键词 sentiment analysis microblog keyword extraction linked open data background knowledge base
原文传递
User-Level Sentiment Evolution Analysis in Microblog
10
作者 ZHANG Lumin JIA Yan ZHU Xiang ZHOU Bin HAN Yi 《China Communications》 SCIE CSCD 2014年第12期152-163,共12页
People's attitudes towards public events or products may change overtime,rather than staying on the same state.Understanding how sentiments change overtime is an interesting and important problem with many applica... People's attitudes towards public events or products may change overtime,rather than staying on the same state.Understanding how sentiments change overtime is an interesting and important problem with many applications.Given a certain public event or product,a user's sentiments expressed in microblog stream can be regarded as a vector.In this paper,we define a novel problem of sentiment evolution analysis,and develop a simple yet effective method to detect sentiment evolution in user-level for public events.We firstly propose a multidimensional sentiment model with hierarchical structure to model user's complicate sentiments.Based on this model,we use FP-growth tree algorithm to mine frequent sentiment patterns and perform sentiment evolution analysis by Kullback-Leibler divergence.Moreover,we develop an improve Affinity Propagation algorithm to detect why people change their sentiments.Experimental evaluations on real data sets show that sentiment evolution could be implemented effectively using our method proposed in this article. 展开更多
关键词 data mining sentiment evolution multidimensional sentiment model frequent sentiment patterns microblog
在线阅读 下载PDF
Trend Analysis of Large-Scale Twitter Data Based on Witnesses during a Hazardous Event: A Case Study on California Wildfire Evacuation
11
作者 Syed A. Morshed Khandakar Mamun Ahmed +1 位作者 Kamar Amine Kazi Ashraf Moinuddin 《World Journal of Engineering and Technology》 2021年第2期229-239,共11页
Social media data created a paradigm shift in assessing situational awareness during a natural disaster or emergencies such as wildfire, hurricane, tropical storm etc. Twitter as an emerging data source is an effectiv... Social media data created a paradigm shift in assessing situational awareness during a natural disaster or emergencies such as wildfire, hurricane, tropical storm etc. Twitter as an emerging data source is an effective and innovative digital platform to observe trend from social media users’ perspective who are direct or indirect witnesses of the calamitous event. This paper aims to collect and analyze twitter data related to the recent wildfire in California to perform a trend analysis by classifying firsthand and credible information from Twitter users. This work investigates tweets on the recent wildfire in California and classifies them based on witnesses into two types: 1) direct witnesses and 2) indirect witnesses. The collected and analyzed information can be useful for law enforcement agencies and humanitarian organizations for communication and verification of the situational awareness during wildfire hazards. Trend analysis is an aggregated approach that includes sentimental analysis and topic modeling performed through domain-expert manual annotation and machine learning. Trend analysis ultimately builds a fine-grained analysis to assess evacuation routes and provide valuable information to the firsthand emergency responders<span style="font-family:Verdana;">.</span> 展开更多
关键词 WILDFIRE EVACUATION TWITTER Large-Scale data Topic Model sentimental Analysis Trend Analysis
在线阅读 下载PDF
基于情感挖掘的网络舆情预警研究
12
作者 臧振春 李焕 崔春生 《情报杂志》 北大核心 2025年第11期153-159,共7页
[研究目的]为了防止网络事件演化发展为网络舆情,构建网络舆情预警模型识别舆情演化关键节点并量化风险,为政府部门及时采取防控措施遏制舆情发酵提供决策支持。[研究方法]基于微博平台实时舆情数据,整合数据挖掘、可视化分析和情感分... [研究目的]为了防止网络事件演化发展为网络舆情,构建网络舆情预警模型识别舆情演化关键节点并量化风险,为政府部门及时采取防控措施遏制舆情发酵提供决策支持。[研究方法]基于微博平台实时舆情数据,整合数据挖掘、可视化分析和情感分析技术,构建多维度预警指标体系:首先通过关键词分析捕捉事件核心争议点,继而运用SnowNLP情感分析进行情感分类并计算情绪强度,综合热度分析从爆发指数(EI)、情绪指数(SI)、传播指数(DI)和搜索引擎指数(SEI)四个维度构建舆情危险指数(HI)量化舆情发展态势,并在危险指数超出预设阈值时自动触发预警机制。[研究结果/结论]通过对“李佩霞事件”进行分析,模型不仅准确捕捉了网民情绪和事件核心争议点,而且及时发出了预警。预警结果与事件实际走向高度一致,验证了模型在网络舆情事件预警方面的有效性。 展开更多
关键词 网络舆情 舆情预警 情感分析 数据挖掘 危险指数
在线阅读 下载PDF
基于方面级情感分析与多源舆情融合的应急决策质量评价方法研究 被引量:2
13
作者 郭海湘 张蓓佳 +1 位作者 赵甜甜 张文凯 《灾害学》 北大核心 2025年第3期95-103,共9页
该文针对传统应急决策质量评价方法在突发事件实时优化中的局限性,提出一种多源细粒度情感融合驱动的动态评价框架。以“12·18”积石山地震为例,融合多源舆情数据构建评价体系,结合RoBERTa-BiLSTM-Attention+AER模型及q-阶正交模... 该文针对传统应急决策质量评价方法在突发事件实时优化中的局限性,提出一种多源细粒度情感融合驱动的动态评价框架。以“12·18”积石山地震为例,融合多源舆情数据构建评价体系,结合RoBERTa-BiLSTM-Attention+AER模型及q-阶正交模糊融合技术,实现跨平台舆情情感的精准解析。结果表明:(1)模型在案例数据集上F1值达80.51%,较次优模型提高4.53%,实现在信息不完整情景下,精确识别公众意见及情感;(2)设计的多源舆情融合机制有效对冲平台偏差,融合前后两平台间的Cohen's d值从0.231降至0.133和0.117;(3)积石山地震的决策质量呈“初期高效响应—中期协调波动—后期恢复优化”的U型时序演化特征。提出的三维优化框架有助于应急管理从事后归因转向事中干预,为决策优化提供实时反馈。 展开更多
关键词 应急决策 多源数据 方面级情感分析 注意力熵正则化
在线阅读 下载PDF
中国30个城市高评分五星级酒店在线评论大数据对比分析 被引量:2
14
作者 李颖 郭昱锟 +1 位作者 陈贝蕾 都乐 《开发研究》 2025年第1期106-118,共13页
五星级酒店作为高品质住宿服务的代表,其顾客评价体现了顾客对高品质酒店服务质量的满意程度。选取中国30个城市,对各个城市评分排名前20位的五星级酒店在携程旅行网的在线评论大数据进行词频分析、情感分析和语义网络分析。研究结果显... 五星级酒店作为高品质住宿服务的代表,其顾客评价体现了顾客对高品质酒店服务质量的满意程度。选取中国30个城市,对各个城市评分排名前20位的五星级酒店在携程旅行网的在线评论大数据进行词频分析、情感分析和语义网络分析。研究结果显示,不同地区的五星级酒店,顾客所重视的服务体验与程度存在共性与差异性。词频分析结果表明,顾客较为关注酒店品质、服务态度、房间质量,对于酒店性价比或者周边交通的关注度相对较低。通过情感分析和语义网络分析对顾客评价进行情感色彩判断,针对性地发现顾客要求,进一步验证了词频分析的结果。揭示了不同城市高评分五星级酒店顾客体验与偏好,为高评分五星级酒店品质提升提供策略支持,并为其他高星级酒店服务的优化提供经验借鉴。 展开更多
关键词 五星级酒店 评论大数据 语义网络 情感分析
在线阅读 下载PDF
基于动态前缀提示及数据增强的情感四元组提取方法 被引量:1
15
作者 钟将 刘雨轩 +3 位作者 戴启祝 王佳祺 赖心怡 胡雯月 《计算机学报》 北大核心 2025年第5期1082-1099,共18页
在方面级情感分析(Aspect-Based Sentiment Analysis, ABSA)中,情感四元组提取是一个能全面分析情感且最具挑战性的任务。当前基于生成式的方法存在两方面局限性:(1)依赖于提示设计,无法针对任务动态优化,导致提示次优的问题;(2)未能充... 在方面级情感分析(Aspect-Based Sentiment Analysis, ABSA)中,情感四元组提取是一个能全面分析情感且最具挑战性的任务。当前基于生成式的方法存在两方面局限性:(1)依赖于提示设计,无法针对任务动态优化,导致提示次优的问题;(2)未能充分解决隐含情感数据不平衡的问题,导致在处理这类数据时性能不佳。为解决这些问题,本文提出了一种动态前缀提示方法(Dynamic Prefix Prompt),该方法利用可调整的前缀和注意力机制来动态优化提示。此外,本文设计了一种基于大语言模型的数据增强策略,该策略通过微调的方式来对齐数据扩充任务以平衡隐含情感数据。在两个真实应用的数据集上的实验表明,本文所提出的方法在Restaurants-ACOS和Laptop-ACOS数据集上F1分数分别提升3.60和2.20,同时在隐含情感数据中F1分数平均提升了4.23和4.67,达到目前最先进的水平,验证了本文方法的有效性和优越性。 展开更多
关键词 方面级情感分析 情感四元组提取 动态前缀提示 隐含情感数据 大语言模型 数据增强
在线阅读 下载PDF
方面语义增强的融合网络用于方面级情感分析
16
作者 郑诚 陈雪灵 《小型微型计算机系统》 北大核心 2025年第9期2105-2112,共8页
方面级情感分析旨在识别方面词表达的情感.最近,基于依赖树的图卷积网络已被证明在方面级情感分析任务中是有效的.然而,句法依赖树并不是特定于情感分析的工具,不能关注到特定的方面词.针对上述问题,本文提出一种方面语义增强的融合网... 方面级情感分析旨在识别方面词表达的情感.最近,基于依赖树的图卷积网络已被证明在方面级情感分析任务中是有效的.然而,句法依赖树并不是特定于情感分析的工具,不能关注到特定的方面词.针对上述问题,本文提出一种方面语义增强的融合网络模型,该模型将句法,语义和词法信息与方面词相结合,用于方面级情感分析.首先,使用快速梯度对抗训练算法进行数据增强.其次,为了充分利用句法依赖树中的有效信息,分别使用图卷积网络和注意力机制学习依赖树中的句法信息和词法信息.同时,将方面增强注意力机制与自注意力机制相结合,来增强句子的方面语义感知能力.最后,使用非对称损失作为损失函数.在基准数据集上进行了实验,验证了本文模型的有效性. 展开更多
关键词 自然语言处理 方面级情感分析 数据增强 注意力机制 句法依赖树
在线阅读 下载PDF
同行情感语调对企业数据资产的溢出效应
17
作者 于翔 牛彪 《证券市场导报》 北大核心 2025年第9期68-79,共12页
数据资产投资具有沉没成本高、回报周期长和收益难量化的特点,使得企业往往参考同行的态度和行为制定数据资产战略。作为传递管理层主观态度的重要载体,同行年报中关于数据资产的情感语调如何影响企业数据资产投资值得探索。本文以沪深... 数据资产投资具有沉没成本高、回报周期长和收益难量化的特点,使得企业往往参考同行的态度和行为制定数据资产战略。作为传递管理层主观态度的重要载体,同行年报中关于数据资产的情感语调如何影响企业数据资产投资值得探索。本文以沪深A股上市公司为样本,采用文本分析法实证检验同行情感语调对企业数据资产的溢出效应。研究发现,同行情感语调越积极,越能促使企业提升数据资产投资水平。一是在政府政策规制下,企业将重新审视发展战略,更容易受同行积极态度的影响,降低对风险和成本的担忧;二是在社会规范化认知下,企业为获得社会认可倾向于参照同行的积极行为,加大对数据资产的投资;三是同行的积极语调能给予企业信息导向,帮助企业分析判断适合自身的投资方向。进一步分析发现,同行信息披露频率和质量越高,目标企业资金基础和技术能力越好,同行情感语调对企业数据资产投资的影响越显著。同行积极的情感语调指引企业学习借鉴成功经验,深入挖掘和分析数据,为企业生产决策提供科学依据,提升企业运营效率与盈利能力,推动企业高质量发展。本文对提升企业数据资产水平、推动数字中国建设具有启示意义。 展开更多
关键词 数据资产 情感语调 溢出效应 同行企业
在线阅读 下载PDF
基于知识蒸馏和评论时间的文本情感分类新方法
18
作者 王友卫 刘奥 凤丽洲 《吉林大学学报(工学版)》 北大核心 2025年第5期1664-1674,共11页
针对现有的情感分类方法普遍未能充分考虑用户个性化特征且忽略时间因素对情感分类结果的影响的问题,提出一种基于知识蒸馏和评论时间的文本情感分类新方法。首先,为解决数据集中高质量标注数据较少的问题,采用RoFormer-Sim生成模型对... 针对现有的情感分类方法普遍未能充分考虑用户个性化特征且忽略时间因素对情感分类结果的影响的问题,提出一种基于知识蒸馏和评论时间的文本情感分类新方法。首先,为解决数据集中高质量标注数据较少的问题,采用RoFormer-Sim生成模型对训练文本数据增强;然后,引入评论时间属性,从用户历史评论中提取用户的个性化信息,提出基于多特征融合的评论文本情感得分预测模型;最后,为提高针对冷启动用户的泛化性能,引入知识蒸馏理论,利用SKEP模型对基于多特征融合的情感分类模型进行通用性增强。在从中文股吧爬取的真实数据集上的实验结果表明:与SKEP、ELECTRA等典型方法相比,本文方法在准确率上分别提高了3.1%和0.9%,在F_(1)值上分别提高了2.7%和1.0%,验证了其在改善情感分类表现方面的有效性。 展开更多
关键词 计算机应用 情感分类 知识蒸馏 数据增强 历史评论
原文传递
场所精神意象:基于UGC的城乡休闲打卡地情感分异研究
19
作者 王润 龙飞 +1 位作者 田大江 杜洋 《资源开发与市场》 2025年第2期292-302,共11页
基于北京暑期全域微博签到打卡数据,以城乡休闲场所为研究对象,基于大数据获取与处理、空间分析与可视化、自然语言处理等技术,探讨城乡休闲场所的空间分异、情感特征、情感归因以及场所精神的耦合机制。结果表明:(1)北京暑期休闲场所... 基于北京暑期全域微博签到打卡数据,以城乡休闲场所为研究对象,基于大数据获取与处理、空间分析与可视化、自然语言处理等技术,探讨城乡休闲场所的空间分异、情感特征、情感归因以及场所精神的耦合机制。结果表明:(1)北京暑期休闲场所到访呈现城区密集、郊区集聚于“景—水—轴—村”等特定空间要素,场所情感概率城乡交织,以正面情感为主,没有特定地理区位倾向;(2)所有休闲场所可以归纳为七大类27小类,其中文化体验场所表现出正面情感比例最高,其次为住宿露营场所和景区公园场所,其他类型大致相当;(3)场所情感主要来自场所功能质量、服务质量、周边环境、旅游感悟、心情体验等方面;(4)场所的主导功能质量、场所功能的综合性和多元性、场所在城乡休闲体系中的作用以及网络流量的引导等因素使场所表现出特定的功能和精神意象。 展开更多
关键词 场所精神 休闲打卡地 休闲大数据 情感分析
在线阅读 下载PDF
融合大语言模型和数据增强的文本情感分类模型研究 被引量:2
20
作者 杨巍 肖强 《情报杂志》 北大核心 2025年第8期172-179,197,共9页
[研究目的]探索应用大语言模型(LLMs)的内容理解能力和生成能力,提升现有情感分类模型的准确性。[研究方法]提出了融合LLMs内容理解能力和生成能力的文本情感分类模型LLMGen4Sent,以深入挖掘文本所蕴含的情感内涵,并通过增强数据和对比... [研究目的]探索应用大语言模型(LLMs)的内容理解能力和生成能力,提升现有情感分类模型的准确性。[研究方法]提出了融合LLMs内容理解能力和生成能力的文本情感分类模型LLMGen4Sent,以深入挖掘文本所蕴含的情感内涵,并通过增强数据和对比学习技术,提升样本的多样性和情感语义表征准确性。[研究结果/结论]实验结果表明,LLMGen4Sent在ChnSentiCorp和IMDB数据集上均取得了优异的性能;相对TextCNN模型,ACC准确率提升了12.22%、12.99%;相对Bert模型,ACC准确率提升了5.72%、5.88%;同时,通过消融实验也论证了LLMGen4Sent模型中各个模块的有效性。LLMGen4Sent模型能够有效捕捉文本的深层情感特征,并通过生成式数据增强技术和对比学习技术显著提高现有文本情感分类模型的准确性。 展开更多
关键词 情感分类模型 大语言模型 内容理解 数据增强 LLMGen4Sent
在线阅读 下载PDF
上一页 1 2 15 下一页 到第
使用帮助 返回顶部