期刊文献+
共找到318篇文章
< 1 2 16 >
每页显示 20 50 100
Combination Model for Sentiment Classification Based on Multi-feature Fusion
1
作者 Wenqing Zhao Yaqin Yang 《通讯和计算机(中英文版)》 2012年第8期890-895,共6页
关键词 朴素贝叶斯分类器 多特征融合 组合模型 情感 组合模式 选择模型 召回率 信息
在线阅读 下载PDF
Sentiment Classification Based on Piecewise Pooling Convolutional Neural Network 被引量:2
2
作者 Yuhong Zhang Qinqin Wang +1 位作者 Yuling Li Xindong Wu 《Computers, Materials & Continua》 SCIE EI 2018年第8期285-297,共13页
Recently,the effectiveness of neural networks,especially convolutional neural networks,has been validated in the field of natural language processing,in which,sentiment classification for online reviews is an importan... Recently,the effectiveness of neural networks,especially convolutional neural networks,has been validated in the field of natural language processing,in which,sentiment classification for online reviews is an important and challenging task.Existing convolutional neural networks extract important features of sentences without local features or the feature sequence.Thus,these models do not perform well,especially for transition sentences.To this end,we propose a Piecewise Pooling Convolutional Neural Network(PPCNN)for sentiment classification.Firstly,with a sentence presented by word vectors,convolution operation is introduced to obtain the convolution feature map vectors.Secondly,these vectors are segmented according to the positions of transition words in sentences.Thirdly,the most significant feature of each local segment is extracted using max pooling mechanism,and then the different aspects of features can be extracted.Specifically,the relative sequence of these features is preserved.Finally,after processed by the dropout algorithm,the softmax classifier is trained for sentiment classification.Experimental results show that the proposed method PPCNN is effective and superior to other baseline methods,especially for datasets with transition sentences. 展开更多
关键词 sentiment classification convolutional neural network piecewise pooling feature extract
在线阅读 下载PDF
Phase classification of high entropy alloys with composition,common physical,elemental-property descriptors and periodic table representation
3
作者 Shuai LI Jia YANG +2 位作者 Shu LI Dong-rong LIU Ming-yu ZHANG 《Transactions of Nonferrous Metals Society of China》 2025年第6期1855-1874,共20页
Phase classification has a clear guiding significance for the design of high entropy alloys.For mutually exclusive and non-mutually exclusive classifications,the composition descriptors,commonly used physical paramete... Phase classification has a clear guiding significance for the design of high entropy alloys.For mutually exclusive and non-mutually exclusive classifications,the composition descriptors,commonly used physical parameter descriptors,elemental-property descriptors,and descriptors extracted from the periodic table representation(PTR)by the convolutional neural network were collected.Appropriate selection among features with rich information is helpful for phase classification.Based on random forest,the accuracy of the four-label classification and balanced accuracy of the five-label classification were improved to be 0.907 and 0.876,respectively.The roles of the four important features were summarized by interpretability analysis,and a new important feature was found.The model extrapolation ability and the influence of Mo were demonstrated by phase prediction in(CoFeNiMn)_(1-x)Mo_(x).The phase information is helpful for the hardness prediction,the classification results were coupled with the PTR of hardness data,and the prediction error(the root mean square error)was reduced to 56.69. 展开更多
关键词 high entropy alloy phase classification feature engineering periodic table representation convolutional neural network hardness prediction
在线阅读 下载PDF
HOG-VGG:VGG Network with HOG Feature Fusion for High-Precision PolSAR Terrain Classification 被引量:1
4
作者 Jiewen Li Zhicheng Zhao +2 位作者 Yanlan Wu Jiaqiu Ai Jun Shi 《Journal of Harbin Institute of Technology(New Series)》 CAS 2024年第5期1-15,共15页
This article proposes a VGG network with histogram of oriented gradient(HOG) feature fusion(HOG-VGG) for polarization synthetic aperture radar(PolSAR) image terrain classification.VGG-Net has a strong ability of deep ... This article proposes a VGG network with histogram of oriented gradient(HOG) feature fusion(HOG-VGG) for polarization synthetic aperture radar(PolSAR) image terrain classification.VGG-Net has a strong ability of deep feature extraction,which can fully extract the global deep features of different terrains in PolSAR images,so it is widely used in PolSAR terrain classification.However,VGG-Net ignores the local edge & shape features,resulting in incomplete feature representation of the PolSAR terrains,as a consequence,the terrain classification accuracy is not promising.In fact,edge and shape features play an important role in PolSAR terrain classification.To solve this problem,a new VGG network with HOG feature fusion was specifically proposed for high-precision PolSAR terrain classification.HOG-VGG extracts both the global deep semantic features and the local edge & shape features of the PolSAR terrains,so the terrain feature representation completeness is greatly elevated.Moreover,HOG-VGG optimally fuses the global deep features and the local edge & shape features to achieve the best classification results.The superiority of HOG-VGG is verified on the Flevoland,San Francisco and Oberpfaffenhofen datasets.Experiments show that the proposed HOG-VGG achieves much better PolSAR terrain classification performance,with overall accuracies of 97.54%,94.63%,and 96.07%,respectively. 展开更多
关键词 PolSAR terrain classification high⁃precision HOG⁃VGG feature representation completeness elevation multi⁃level feature fusion
在线阅读 下载PDF
Hyperspectral image classification based on spatial and spectral features and sparse representation 被引量:4
5
作者 杨京辉 王立国 钱晋希 《Applied Geophysics》 SCIE CSCD 2014年第4期489-499,511,共12页
To minimize the low classification accuracy and low utilization of spatial information in traditional hyperspectral image classification methods, we propose a new hyperspectral image classification method, which is ba... To minimize the low classification accuracy and low utilization of spatial information in traditional hyperspectral image classification methods, we propose a new hyperspectral image classification method, which is based on the Gabor spatial texture features and nonparametric weighted spectral features, and the sparse representation classification method(Gabor–NWSF and SRC), abbreviated GNWSF–SRC. The proposed(GNWSF–SRC) method first combines the Gabor spatial features and nonparametric weighted spectral features to describe the hyperspectral image, and then applies the sparse representation method. Finally, the classification is obtained by analyzing the reconstruction error. We use the proposed method to process two typical hyperspectral data sets with different percentages of training samples. Theoretical analysis and simulation demonstrate that the proposed method improves the classification accuracy and Kappa coefficient compared with traditional classification methods and achieves better classification performance. 展开更多
关键词 HYPERSPECTRAL classification sparse representation spatial features spectral features
在线阅读 下载PDF
A Self-Supervised Hybrid Similarity Framework for Underwater Coral Species Classification
6
作者 Yu-Shiuan Tsai Zhen-Rong Wu Jian-Zhi Liu 《Computers, Materials & Continua》 2025年第8期3431-3457,共27页
Few-shot learning has emerged as a crucial technique for coral species classification,addressing the challenge of limited labeled data in underwater environments.This study introduces an optimized few-shot learning mo... Few-shot learning has emerged as a crucial technique for coral species classification,addressing the challenge of limited labeled data in underwater environments.This study introduces an optimized few-shot learning model that enhances classification accuracy while minimizing reliance on extensive data collection.The proposed model integrates a hybrid similarity measure combining Euclidean distance and cosine similarity,effectively capturing both feature magnitude and directional relationships.This approach achieves a notable accuracy of 71.8%under a 5-way 5-shot evaluation,outperforming state-of-the-art models such as Prototypical Networks,FEAT,and ESPT by up to 10%.Notably,the model demonstrates high precision in classifying Siderastreidae(87.52%)and Fungiidae(88.95%),underscoring its effectiveness in distinguishing subtle morphological differences.To further enhance performance,we incorporate a self-supervised learning mechanism based on contrastive learning,enabling the model to extract robust representations by leveraging local structural patterns in corals.This enhancement significantly improves classification accuracy,particularly for species with high intra-class variation,leading to an overall accuracy of 76.52%under a 5-way 10-shot evaluation.Additionally,the model exploits the repetitive structures inherent in corals,introducing a local feature aggregation strategy that refines classification through spatial information integration.Beyond its technical contributions,this study presents a scalable and efficient approach for automated coral reef monitoring,reducing annotation costs while maintaining high classification accuracy.By improving few-shot learning performance in underwater environments,our model enhances monitoring accuracy by up to 15%compared to traditional methods,offering a practical solution for large-scale coral conservation efforts. 展开更多
关键词 Few-shot learning self-supervised learning contrastive representation learning hybrid similarity measures local feature aggregation voting-based classification marine species recognition underwater computer vision
在线阅读 下载PDF
SA-MSVM:Hybrid Heuristic Algorithm-based Feature Selection for Sentiment Analysis in Twitter
7
作者 C.P.Thamil Selvi R.PushpaLaksmi 《Computer Systems Science & Engineering》 SCIE EI 2023年第3期2439-2456,共18页
One of the drastically growing and emerging research areas used in most information technology industries is Bigdata analytics.Bigdata is created from social websites like Facebook,WhatsApp,Twitter,etc.Opinions about ... One of the drastically growing and emerging research areas used in most information technology industries is Bigdata analytics.Bigdata is created from social websites like Facebook,WhatsApp,Twitter,etc.Opinions about products,persons,initiatives,political issues,research achievements,and entertainment are discussed on social websites.The unique data analytics method cannot be applied to various social websites since the data formats are different.Several approaches,techniques,and tools have been used for big data analytics,opinion mining,or sentiment analysis,but the accuracy is yet to be improved.The proposed work is motivated to do sentiment analysis on Twitter data for cloth products using Simulated Annealing incorporated with the Multiclass Support Vector Machine(SA-MSVM)approach.SA-MSVM is a hybrid heuristic approach for selecting and classifying text-based sentimental words following the Natural Language Processing(NLP)process applied on tweets extracted from the Twitter dataset.A simulated annealing algorithm searches for relevant features and selects and identifies sentimental terms that customers criticize.SA-MSVM is implemented,experimented with MATLAB,and the results are verified.The results concluded that SA-MSVM has more potential in sentiment analysis and classification than the existing Support Vector Machine(SVM)approach.SA-MSVM has obtained 96.34%accuracy in classifying the product review compared with the existing systems. 展开更多
关键词 Bigdata analytics Twitter dataset for cloth product heuristic approaches sentiment analysis feature selection classification
在线阅读 下载PDF
An Improved Time Series Symbolic Representation Based on Multiple Features and Vector Frequency Difference
8
作者 Lijuan Yan Xiaotao Wu Jiaqing Xiao 《Journal of Computer and Communications》 2022年第6期44-62,共19页
Symbolic Aggregate approXimation (SAX) is an efficient symbolic representation method that has been widely used in time series data mining. Its major limitation is that it relies exclusively on the mean values of segm... Symbolic Aggregate approXimation (SAX) is an efficient symbolic representation method that has been widely used in time series data mining. Its major limitation is that it relies exclusively on the mean values of segmented time series to derive the symbols. So, many important features of time series are not considered, such as extreme value, trend, fluctuation and so on. To solve this issue, we propose in this paper an improved Symbolic Aggregate approXimation based on multiple features and Vector Frequency Difference (SAX_VFD). SAX_VFD discriminates between time series by adopting an adaptive feature selection method. Furthermore, SAX_VFD is endowed with a new distance that takes into account the vector frequency difference between the symbolic sequence. We demonstrate the utility of the SAX_VFD on the time series classification task. The experimental results show that the proposed method has a better performance in terms of accuracy and dimensionality reduction compared to the so far published SAX based reduction techniques. 展开更多
关键词 Time Series representation SAX feature Selection classification
在线阅读 下载PDF
基于元优化特征解耦的多模态跨域情感分析算法 被引量:1
9
作者 贾熹滨 李宸 +4 位作者 王珞 张沐晨 刘潇健 张旸旸 温家凯 《计算机研究与发展》 北大核心 2025年第11期2697-2709,共13页
多模态情感分析旨在利用多模态点评等数据识别用户情感倾向.为实现存在域偏移的跨域应用,常用无监督领域自适应方法.然而,该类方法着重于领域不变特征提取,忽略了目标领域特定特征的重要作用.为此,提出基于元优化的领域不变及领域特定... 多模态情感分析旨在利用多模态点评等数据识别用户情感倾向.为实现存在域偏移的跨域应用,常用无监督领域自适应方法.然而,该类方法着重于领域不变特征提取,忽略了目标领域特定特征的重要作用.为此,提出基于元优化的领域不变及领域特定特征解耦网络.首先,通过嵌入情感适配器对预训练大模型微调,建立图文融合情感特征编码器.进而,构建基于因子分解的特征解耦模块,分别利用领域对抗及领域分类、协同独立性约束,实现知识可传递的领域不变特征编码的同时,提取领域特定特征以增强目标域情感分类性能.为保证特征解耦与情感分类的总体优化方向一致性,提出基于元学习的元优化训练策略,实现情感分析网络的协同优化.基于MVSA和Yelp数据集构建的双向情感迁移任务的对比实验表明,较之其他先进的图文情感迁移算法,所提算法于双向情感迁移任务的精确率、召回率和F1值3项评价指标均取得了优异的性能. 展开更多
关键词 多模态情感分析 无监督领域自适应 跨领域情感分类 特征解耦 元优化
在线阅读 下载PDF
基于双邻域和特征选择的潜在低秩稀疏投影
10
作者 殷海双 李睿 《吉林大学学报(信息科学版)》 2025年第1期195-202,共8页
针对潜在低秩表示学习的投影矩阵不能解释提取特征重要程度和保持数据的局部几何结构的问题,提出了一种基于双邻域和特征选择的潜在低秩稀疏投影算法(LLRSP:Latent Low-Rank And Sparse Projection)。该算法首先融合低秩约束和正交重构... 针对潜在低秩表示学习的投影矩阵不能解释提取特征重要程度和保持数据的局部几何结构的问题,提出了一种基于双邻域和特征选择的潜在低秩稀疏投影算法(LLRSP:Latent Low-Rank And Sparse Projection)。该算法首先融合低秩约束和正交重构保持数据的主要能量,然后对投影矩阵施加行稀疏约束进行特征选择,使特征更加紧凑和具有可解释性。此外引入l_(2,1)范数对误差分量进行正则化使模型对噪声更具健壮性。最后在低维数据和低秩表示系数矩阵上施加邻域保持正则化以保留数据的局部几何结构。公开数据集上的大量实验结果表明,所提方法与其他先进算法相比具有更好的性能。 展开更多
关键词 特征提取 特征选择 降维 潜在低秩表示 图像分类
在线阅读 下载PDF
多模态分级特征映射与融合表征方法研究 被引量:1
11
作者 郭小宇 马静 陈杰 《计算机工程与应用》 北大核心 2025年第6期171-182,共12页
多模态特征表征是多模态任务的基础。为解决多模态特征表征方法融合层次单一、未能充分映射不同模态间的关联关系的问题,提出了一种多模态分级特征映射与融合表征方法。该方法在文本模型RoBERTa与图像模型DenseNet的基础上,从两个模型... 多模态特征表征是多模态任务的基础。为解决多模态特征表征方法融合层次单一、未能充分映射不同模态间的关联关系的问题,提出了一种多模态分级特征映射与融合表征方法。该方法在文本模型RoBERTa与图像模型DenseNet的基础上,从两个模型的中间层抽取由低级别到高级别的特征,基于特征重用的思想映射与融合文本与图像模态不同级别的特征,捕捉文本与图像模态之间的内部关联,充分融合两种模态之间的特征。将分级特征映射与融合表征馈入分类器,应用于多模态舆情的情感分类中,同时将构建的表征方法与基线表征方法进行对比分析。实验结果表明,提出的表征方法在微博舆情和MVSA-Multiple数据集上的情感分类性能均超越了所有基线模型,其中在微博数据集上F1值提升了0.0137,在MVSA-Multiple数据集上F1值提升了0.0222。图像特征能够提升文本单模态特征下的情感分类准确率,但是其提升程度与融合策略密切相关;多模态分级特征映射与融合表征方法能够有效映射文本与图像特征之间的关系,提升多模态舆情的情感分类效果。 展开更多
关键词 多模态特征融合 分级特征 映射与融合 情感分类 特征表示
在线阅读 下载PDF
基于大批次对抗策略和强化特征提取的文本情感分类方法
12
作者 陈嘉昊 段利国 +3 位作者 常轩伟 李爱萍 崔娟娟 郝渊斌 《计算机科学》 北大核心 2025年第10期247-257,共11页
文本情感分类任务旨在对短文本语句进行分析并判断其对应的情感类别。为解决现有模型在情感分类方面缺乏大规模高质量语料数据集、文本特征非均匀重要性提取不足等问题,提出了一种基于大批次对抗策略和强化特征提取的文本情感分类方法... 文本情感分类任务旨在对短文本语句进行分析并判断其对应的情感类别。为解决现有模型在情感分类方面缺乏大规模高质量语料数据集、文本特征非均匀重要性提取不足等问题,提出了一种基于大批次对抗策略和强化特征提取的文本情感分类方法。首先将文本数据集输入预训练语言模型BERT中,得到相应的词嵌入向量表示;再利用BiLSTM进一步学习序列中的上下文依赖关系;之后将局部注意力机制与TextCNN的局部感受野加权结合,实现强化特征提取能力;最后将BiLSTM的输出与TextCNN的输出进行拼接,得到两个空间的深层特征融合,再交由分类器进行情感分类的判断。整个训练过程采取大批次对抗策略,在词嵌入空间中加入对抗性扰动并进行多次迭代,进而提高模型的鲁棒性。在多个数据集上的实验结果验证了该模型的有效性。 展开更多
关键词 短文本 情感分类 对抗策略 特征提取 词嵌入
在线阅读 下载PDF
结合多模态字形信息的中文情感分类
13
作者 刘濠葳 王中卿 《中文信息学报》 北大核心 2025年第8期128-138,共11页
近年来,中文属性级情感分类的研究受到广泛关注。中文使用的汉字是一种象形文字,其字符本身蕴含着丰富的字形信息。然而,目前已有的研究大部分都是只利用单一的文本模态,忽略了图像模态下汉字字形信息的作用。为了解决这一问题,该文提... 近年来,中文属性级情感分类的研究受到广泛关注。中文使用的汉字是一种象形文字,其字符本身蕴含着丰富的字形信息。然而,目前已有的研究大部分都是只利用单一的文本模态,忽略了图像模态下汉字字形信息的作用。为了解决这一问题,该文提出了一种结合多模态字形信息的中文情感分类方法。该方法首先将汉字序列转换为图片,并使用三种不同的多模态融合模型,分别利用特征相加、特征拼接和基于注意力机制的特征融合方式对文本与多种不同字体的汉字的字形信息进行融合,从而帮助模型学习到更多的多模态特征,增强模型的表达能力。在一份淘宝商品评论数据集上的实验结果表明,相较于基准模型,该文提出的结合字形信息的模型能有效提高属性级情感分类的准确率和F1值。 展开更多
关键词 情感分类 多模态 字形信息 特征融合
在线阅读 下载PDF
差异特征导向的解耦多模态情感分析
14
作者 李志欣 刘鸣琦 《广西师范大学学报(自然科学版)》 北大核心 2025年第3期57-71,共15页
特征解耦能够将不同模态特征解耦为相似特征和差异特征,以缓和模态间的贡献度差异。但由于差异特征不仅包含互补信息,同时也包含一致信息,因此差异特征存在显著分布差异。传统特征解耦方法忽视了差异特征内在的冲突,从而导致预测不准确... 特征解耦能够将不同模态特征解耦为相似特征和差异特征,以缓和模态间的贡献度差异。但由于差异特征不仅包含互补信息,同时也包含一致信息,因此差异特征存在显著分布差异。传统特征解耦方法忽视了差异特征内在的冲突,从而导致预测不准确。为了解决这一问题,本文提出一种差异特征导向的解耦多模态情感分析方法,利用特征表示学习和对比学习的思想,提取更为有效的特征并扩大差异特征间的差异。首先部署一个特征提取模块,针对3种模态使用不同的特征提取方法以提取到更为有效的特征;其次使用共同编码器与独立编码器解耦3种模态特征,并使用一个多模态变压器进行特征融合;最后,为了扩大差异特征间的差异,设计用于优化的损失函数。在2个大规模基准数据集上进行实验,并与多个当前先进方法进行比较,在绝大部分指标上都超越当前先进方法,验证了本文方法的有效性与鲁棒性。 展开更多
关键词 多模态情感分析 特征解耦 预训练BERT 对比学习 表示学习
在线阅读 下载PDF
基于双阶段高阶Transformer的遥感图像场景分类 被引量:1
15
作者 吴倩倩 倪康 郑志忠 《遥感学报》 北大核心 2025年第3期792-807,共16页
Transformer模型因其强大的全局特征建模和长距离依赖关系的表征能力现已广泛应用于遥感图像场景分类领域,但遥感场景图像存在空间结构复杂、目标尺度变化大等挑战,直接采用ViT (Vision Transformer)中固定尺寸的图像分块方式和深度特... Transformer模型因其强大的全局特征建模和长距离依赖关系的表征能力现已广泛应用于遥感图像场景分类领域,但遥感场景图像存在空间结构复杂、目标尺度变化大等挑战,直接采用ViT (Vision Transformer)中固定尺寸的图像分块方式和深度特征表示不能有效刻画遥感场景图像的空间特征信息。针对上述问题,本文提出一种基于双阶段高阶Transformer即THViT (Two-stage High-order Vision Transformer)的遥感图像场景分类方法。该方法以LV-ViT-S网络为主干网,包含粗—细动态分类双阶段,该阶段首先通过将遥感图像分割为较大尺度的图像块,进行易分类遥感场景图像的分类工作;然后根据类注意力机制和信息区域提取模块完成对遥感场景图像的再分块,该阶段可完成较复杂遥感场景图像的分类。同时,为了提升深度特征的可判别性,THViT引入布朗协方差高阶特征表示,从统计学角度,有效捕获遥感场景图像的判别深度特征表示。另外,为了克服Transformer网络仅使用分类Tokens作为分类特征的局限性,本文将分类Tokens和高阶特征Tokens同时输入Softmax分类器,提升遥感图像场景分类性能,并验证了高阶特征Tokens对遥感图像场景分类的有效性。实验结果表明:与CFDNN、GLDBS、GAN、GCN、D-CapsNet、SCCov、ViT、Swin-T、LV-ViT-S和SCViT等相关算法对比,THViT在NWPU45 (NWPU-RESISC45 Dataset)和AID (Aerial Image Dataset)数据集上均有较优异的性能表现。 展开更多
关键词 遥感图像 场景分类 Transformer网络 特征表示 高阶特征
原文传递
基于双向交叉注意力的多尺度特征融合情感分类
16
作者 梁一鸣 范菁 柴汶泽 《计算机应用》 北大核心 2025年第9期2773-2782,共10页
针对现有情感分类模型在深层情感理解上的局限性、传统注意力机制的单向性束缚以及自然语言处理(NLP)中的类别不平衡等问题,提出一种融合多尺度BERT(Bidirectional Encoder Representations from Transformers)特征和双向交叉注意力机... 针对现有情感分类模型在深层情感理解上的局限性、传统注意力机制的单向性束缚以及自然语言处理(NLP)中的类别不平衡等问题,提出一种融合多尺度BERT(Bidirectional Encoder Representations from Transformers)特征和双向交叉注意力机制的情感分类模型M-BCA(Multi-scale BERT features with Bidirectional Cross Attention)。首先,从BERT的低层、中层和高层分别提取多尺度特征,以捕捉句子文本的表面信息、语法信息和深层语义信息;其次,利用三通道门控循环单元(GRU)进一步提取深层语义特征,从而增强模型对文本的理解能力;最后,为促进不同尺度特征之间的交互与学习,引入双向交叉注意力机制,从而增强多尺度特征之间的相互作用。此外,针对不平衡数据问题,设计数据增强策略,并采用混合损失函数优化模型对少数类别样本的学习。实验结果表明,在细粒度情感分类任务中,M-BCA表现优异。M-BCA在处理分布不平衡的多分类情感数据集时,它的性能显著优于大多数基线模型。此外,M-BCA在少数类别样本的分类任务中表现突出,尤其是在NLPCC 2014与Online_Shopping_10_Cats数据集上,MBCA的少数类别的Macro-Recall领先其他所有对比模型。可见,该模型在细粒度情感分类任务中取得了显著的性能提升,并适用于处理不平衡数据集。 展开更多
关键词 BERT 细粒度情感分类 多尺度特征融合 数据增强 混合损失函数 双向交叉注意力
在线阅读 下载PDF
基于词素切分的低资源语言文本分类 被引量:1
17
作者 沙尔旦尔·帕尔哈提 木塔力甫·沙塔尔 +1 位作者 阿力木江·亚森 阿布都热合曼·卡的尔 《计算机工程与设计》 北大核心 2025年第2期530-536,共7页
针对维-哈-柯等派生类低资源语言文本分类中特征空间维数巨增、特征提取效率低等问题,提出一种基于Bi-LSTM_CRF的词素切和基于Bi-LSTM_Attention的文本分类方法。对实验文本进行词素切分及词干提取以有效减少特征空间维数,采用BERT嵌入... 针对维-哈-柯等派生类低资源语言文本分类中特征空间维数巨增、特征提取效率低等问题,提出一种基于Bi-LSTM_CRF的词素切和基于Bi-LSTM_Attention的文本分类方法。对实验文本进行词素切分及词干提取以有效减少特征空间维数,采用BERT嵌入向量表示较好地保留文本语义信息。将Bi-LSTM与Attention机制结合构建文本分类模型,有效提取文本词干之间长距离依赖关系特征,以此提高维-哈-柯语文本分类的效果,分别得到了96.68%、96.72%和96.54%的分类准确率。实验结果表明,高效词素切分和嵌入向量表示方法能够提高维-哈-柯等低资源语言文本分类的效果。 展开更多
关键词 维-哈-柯语 词素切分 词干提取 词干嵌入向量 特征表示 神经网络 文本分类
在线阅读 下载PDF
基于多交互特征融合的方面级情感分类方法
18
作者 邱晓莹 张华辉 +1 位作者 徐航 吴敏敏 《吉林大学学报(信息科学版)》 2025年第4期913-924,共12页
针对现有方面级情感分类模型存在方面词与上下文交互不充分、分类精度低的问题,提出一种基于多交互特征融合的方面级情感分类方法(ASMFF:Aspect-level Sentiment classification method based on Multi-interaction Feature Fusion)。首... 针对现有方面级情感分类模型存在方面词与上下文交互不充分、分类精度低的问题,提出一种基于多交互特征融合的方面级情感分类方法(ASMFF:Aspect-level Sentiment classification method based on Multi-interaction Feature Fusion)。首先,将上下文和方面词分别进行特殊标记,输入BERT(Bidirectional Encoder Representations from Transformers)编码层进行文本特征向量提取。其次,将文本特征向量输入AOA(Attention Over Attention)和IAN(Interactive Attention Networks)网络提取交互注意力特征向量。最后,将得到的两种交互特征向量进行融合学习,通过交叉熵损失函数进行概率计算、损失回传和参数更新。在Laptop、Restaurant和Twitter 3个公开数据集上的实验结果表明,ASMFF模型的分类准确率分别为80.25%、84.38%、75.29%,相比基线模型有显著提升。 展开更多
关键词 方面级情感分类 自然语言处理 交互注意力网络 多交互特征融合
在线阅读 下载PDF
中文文本可读性的自动评估:方法、工具和应用
19
作者 姜悦 高珊 +1 位作者 叶子恒 张浩敏 《国际中文教育(中英文)》 2025年第3期2-16,75,共16页
汉语作为第一语言全球使用人数最多,以其作为第二语言的学习者数量也在不断增加。为不同背景的汉语学习者提供科学的分级阅读材料,对于学习者语言能力发展和阅读能力提升具有重要意义。本文通过系统分析2010—2024年44项相关中英文文献... 汉语作为第一语言全球使用人数最多,以其作为第二语言的学习者数量也在不断增加。为不同背景的汉语学习者提供科学的分级阅读材料,对于学习者语言能力发展和阅读能力提升具有重要意义。本文通过系统分析2010—2024年44项相关中英文文献,深入探讨了中文文本可读性自动评估的研究现状与发展趋势,重点关注其对国际中文教育实践的启示。研究发现,当前,中文可读性研究在语料库建设方面主要基于教材语料,针对二语学习者的语料除教材外,集中于中文水平考试(HSK)材料等有限文本类型。在语言特征表征方面,研究证实语法点等特异性特征对二语学习者具有更高的预测效度。就方法论演进而言,研究呈现从传统线性回归向深度学习转变的趋势,特别是在国际中文教材分级领域。 展开更多
关键词 文本可读性 中文文本 分类方法 文本表征 中文可读性平台 国际中文教育
在线阅读 下载PDF
基于KMeans-EDA算法的非均衡评论情感分类研究 被引量:1
20
作者 郭卡 《山东理工大学学报(自然科学版)》 CAS 2024年第4期45-52,共8页
学习者真实的评价是反映在线课程优缺点的重要指标,快速准确地获得其反馈,对于在线课程的优化极为重要。为深入挖掘学习者的在线学习行为,继而为在线教学提供有效的数据基础,爬取了中国大学MOOC平台的课程评论文本,基于Bert模型的结构,... 学习者真实的评价是反映在线课程优缺点的重要指标,快速准确地获得其反馈,对于在线课程的优化极为重要。为深入挖掘学习者的在线学习行为,继而为在线教学提供有效的数据基础,爬取了中国大学MOOC平台的课程评论文本,基于Bert模型的结构,建立了基于自注意力文本表征的机器学习模型,能够实现对评论文本的精确情感分类,从而获得学习者内隐的情感状态。由于爬取数据中负面评论较少,故设计了KMeans-EDA自适应均衡采样训练策略,解决了训练过程中模型偏向多数类的问题,提升了模型对负面评论的识别能力。实验结果表明,该策略可以将模型对评论文本的F1-score值从0.6902提升到0.7399。 展开更多
关键词 在线课程 评论文本 文本情感分类 预训练特征表示 非均衡训练
在线阅读 下载PDF
上一页 1 2 16 下一页 到第
使用帮助 返回顶部