In the era of Big Data,we are faced with an inevitable and challenging problem of“overload information”.To alleviate this problem,it is important to use effective automatic text summarization techniques to obtain th...In the era of Big Data,we are faced with an inevitable and challenging problem of“overload information”.To alleviate this problem,it is important to use effective automatic text summarization techniques to obtain the key information quickly and efficiently from the huge amount of text.In this paper,we propose a hybrid method of extractive text summarization based on deep learning and graph ranking algorithms(ETSDG).In this method,a pre-trained deep learning model is designed to yield useful sentence embeddings.Given the association between sentences in raw documents,a traditional LexRank algorithm with fine-tuning is adopted fin ETSDG.In order to improve the performance of the extractive text summarization method,we further integrate the traditional LexRank algorithm with deep learning.Testing results on the data set DUC2004 show that ETSDG has better performance in ROUGE metrics compared with certain benchmark methods.展开更多
Online short-term rental platforms,such as Airbnb,have been becoming popular,and a better pricing strategy is imperative for hosts of new listings.In this paper,we analyzed the relationship between the description of ...Online short-term rental platforms,such as Airbnb,have been becoming popular,and a better pricing strategy is imperative for hosts of new listings.In this paper,we analyzed the relationship between the description of each listing and its price,and proposed a text-based price recommendation system called TAPE to recommend a reasonable price for newly added listings.We used deep learning techniques(e.g.,feedforward network,long short-term memory,and mean shift)to design and implement TAPE.Using two chronologically extracted datasets of the same four cities,we revealed important factors(e.g.,indoor equipment and high-density area)that positively or negatively affect each property’s price,and evaluated our preliminary and enhanced models.Our models achieved a Root-Mean-Square Error(RMSE)of 33.73 in Boston,20.50 in London,34.68 in Los Angeles,and 26.31 in New York City,which are comparable to an existing model that uses more features.展开更多
文摘In the era of Big Data,we are faced with an inevitable and challenging problem of“overload information”.To alleviate this problem,it is important to use effective automatic text summarization techniques to obtain the key information quickly and efficiently from the huge amount of text.In this paper,we propose a hybrid method of extractive text summarization based on deep learning and graph ranking algorithms(ETSDG).In this method,a pre-trained deep learning model is designed to yield useful sentence embeddings.Given the association between sentences in raw documents,a traditional LexRank algorithm with fine-tuning is adopted fin ETSDG.In order to improve the performance of the extractive text summarization method,we further integrate the traditional LexRank algorithm with deep learning.Testing results on the data set DUC2004 show that ETSDG has better performance in ROUGE metrics compared with certain benchmark methods.
文摘Online short-term rental platforms,such as Airbnb,have been becoming popular,and a better pricing strategy is imperative for hosts of new listings.In this paper,we analyzed the relationship between the description of each listing and its price,and proposed a text-based price recommendation system called TAPE to recommend a reasonable price for newly added listings.We used deep learning techniques(e.g.,feedforward network,long short-term memory,and mean shift)to design and implement TAPE.Using two chronologically extracted datasets of the same four cities,we revealed important factors(e.g.,indoor equipment and high-density area)that positively or negatively affect each property’s price,and evaluated our preliminary and enhanced models.Our models achieved a Root-Mean-Square Error(RMSE)of 33.73 in Boston,20.50 in London,34.68 in Los Angeles,and 26.31 in New York City,which are comparable to an existing model that uses more features.