期刊文献+
共找到409,616篇文章
< 1 2 250 >
每页显示 20 50 100
Wearable Biodevices Based on Two-Dimensional Materials:From Flexible Sensors to Smart Integrated Systems 被引量:1
1
作者 Yingzhi Sun Weiyi He +3 位作者 Can Jiang Jing Li Jianli Liu Mingjie Liu 《Nano-Micro Letters》 2025年第5期207-255,共49页
The proliferation of wearable biodevices has boosted the development of soft,innovative,and multifunctional materials for human health monitoring.The integration of wearable sensors with intelligent systems is an over... The proliferation of wearable biodevices has boosted the development of soft,innovative,and multifunctional materials for human health monitoring.The integration of wearable sensors with intelligent systems is an overwhelming tendency,providing powerful tools for remote health monitoring and personal health management.Among many candidates,two-dimensional(2D)materials stand out due to several exotic mechanical,electrical,optical,and chemical properties that can be efficiently integrated into atomic-thin films.While previous reviews on 2D materials for biodevices primarily focus on conventional configurations and materials like graphene,the rapid development of new 2D materials with exotic properties has opened up novel applications,particularly in smart interaction and integrated functionalities.This review aims to consolidate recent progress,highlight the unique advantages of 2D materials,and guide future research by discussing existing challenges and opportunities in applying 2D materials for smart wearable biodevices.We begin with an in-depth analysis of the advantages,sensing mechanisms,and potential applications of 2D materials in wearable biodevice fabrication.Following this,we systematically discuss state-of-the-art biodevices based on 2D materials for monitoring various physiological signals within the human body.Special attention is given to showcasing the integration of multi-functionality in 2D smart devices,mainly including self-power supply,integrated diagnosis/treatment,and human–machine interaction.Finally,the review concludes with a concise summary of existing challenges and prospective solutions concerning the utilization of2D materials for advanced biodevices. 展开更多
关键词 Two-dimensional material Wearable biodevice Flexible sensor Smart integrated system Healthcare
在线阅读 下载PDF
Near‑Sensor Edge Computing System Enabled by a CMOS Compatible Photonic Integrated Circuit Platform Using Bilayer AlN/Si Waveguides 被引量:1
2
作者 Zhihao Ren Zixuan Zhang +4 位作者 Yangyang Zhuge Zian Xiao Siyu Xu Jingkai Zhou Chengkuo Lee 《Nano-Micro Letters》 2025年第11期1-20,共20页
The rise of large-scale artificial intelligence(AI)models,such as ChatGPT,Deep-Seek,and autonomous vehicle systems,has significantly advanced the boundaries of AI,enabling highly complex tasks in natural language proc... The rise of large-scale artificial intelligence(AI)models,such as ChatGPT,Deep-Seek,and autonomous vehicle systems,has significantly advanced the boundaries of AI,enabling highly complex tasks in natural language processing,image recognition,and real-time decisionmaking.However,these models demand immense computational power and are often centralized,relying on cloud-based architectures with inherent limitations in latency,privacy,and energy efficiency.To address these challenges and bring AI closer to real-world applications,such as wearable health monitoring,robotics,and immersive virtual environments,innovative hardware solutions are urgently needed.This work introduces a near-sensor edge computing(NSEC)system,built on a bilayer AlN/Si waveguide platform,to provide real-time,energy-efficient AI capabilities at the edge.Leveraging the electro-optic properties of AlN microring resonators for photonic feature extraction,coupled with Si-based thermo-optic Mach-Zehnder interferometers for neural network computations,the system represents a transformative approach to AI hardware design.Demonstrated through multimodal gesture and gait analysis,the NSEC system achieves high classification accuracies of 96.77%for gestures and 98.31%for gaits,ultra-low latency(<10 ns),and minimal energy consumption(<0.34 pJ).This groundbreaking system bridges the gap between AI models and real-world applications,enabling efficient,privacy-preserving AI solutions for healthcare,robotics,and next-generation human-machine interfaces,marking a pivotal advancement in edge computing and AI deployment. 展开更多
关键词 Photonic integrated circuits Edge computing Aluminum nitride Neural networks Wearable sensors
在线阅读 下载PDF
Recent progress on artificial intelligence-enhanced multimodal sensors integrated devices and systems 被引量:2
3
作者 Haihua Wang Mingjian Zhou +5 位作者 Xiaolong Jia Hualong Wei Zhenjie Hu Wei Li Qiumeng Chen Lei Wang 《Journal of Semiconductors》 2025年第1期179-192,共14页
Multimodal sensor fusion can make full use of the advantages of various sensors,make up for the shortcomings of a single sensor,achieve information verification or information security through information redundancy,a... Multimodal sensor fusion can make full use of the advantages of various sensors,make up for the shortcomings of a single sensor,achieve information verification or information security through information redundancy,and improve the reliability and safety of the system.Artificial intelligence(AI),referring to the simulation of human intelligence in machines that are programmed to think and learn like humans,represents a pivotal frontier in modern scientific research.With the continuous development and promotion of AI technology in Sensor 4.0 age,multimodal sensor fusion is becoming more and more intelligent and automated,and is expected to go further in the future.With this context,this review article takes a comprehensive look at the recent progress on AI-enhanced multimodal sensors and their integrated devices and systems.Based on the concept and principle of sensor technologies and AI algorithms,the theoretical underpinnings,technological breakthroughs,and pragmatic applications of AI-enhanced multimodal sensors in various fields such as robotics,healthcare,and environmental monitoring are highlighted.Through a comparative study of the dual/tri-modal sensors with and without using AI technologies(especially machine learning and deep learning),AI-enhanced multimodal sensors highlight the potential of AI to improve sensor performance,data processing,and decision-making capabilities.Furthermore,the review analyzes the challenges and opportunities afforded by AI-enhanced multimodal sensors,and offers a prospective outlook on the forthcoming advancements. 展开更多
关键词 sensor multimodal sensors machine learning deep learning intelligent system
在线阅读 下载PDF
The Calibration Method of Line Structured Light Sensor for Integrated Position and Pose Detection of Highway Guardrail Inspection Robots
4
作者 WANG Rui BAI Jiadi +4 位作者 XUE Yingqi PENG Lu FENG Xiaofan DING Ailing WEI Baojiang 《Wuhan University Journal of Natural Sciences》 2025年第4期367-378,共12页
The accuracy of center height detection for corrugated beam guardrails is significantly affected by robot posture in the mobile highway guardrail detection systems based on structured light vision.To address the probl... The accuracy of center height detection for corrugated beam guardrails is significantly affected by robot posture in the mobile highway guardrail detection systems based on structured light vision.To address the problem,this paper proposes an integrated calibration method for structured light vision sensors.In the proposed system,the sensor is mounted on a crawler-type mobile robot,which scans and measures the center height of guardrails while in motion.However,due to external disturbances such as uneven road surfaces and vehicle vibrations,the posture of the robot may deviate,causing displacement of the sensor platform and resulting in spatial 3D measurement errors.To overcome this issue,the system integrates inertial measurement unit(IMU)data into the sensor calibration process,enabling realtime correction of posture deviations through sensor fusion.This approach achieves a unified calibration of the structured light vision system,effectively compensates for posture-induced errors,and enhances detection accuracy.A prototype was developed and tested in both laboratory and real highway environments.Experimental results demonstrate that the proposed method enables accurate center height detection of guardrails under complex road conditions,significantly reduces posture-related measurement errors,and greatly improves the efficiency and reliability of traditional detection methods. 展开更多
关键词 highway corrugated guardrail structured light visual scanning structured light sensor calibration guardrail detection robot robot motion posture parameters
原文传递
A Flexible‑Integrated Multimodal Hydrogel‑Based Sensing Patch 被引量:1
5
作者 Peng Wang Guoqing Wang +4 位作者 Guifen Sun Chenchen Bao Yang Li Chuizhou Meng Zhao Yao 《Nano-Micro Letters》 2025年第7期107-125,共19页
Sleep monitoring is an important part of health management because sleep quality is crucial for restoration of human health.However,current commercial products of polysomnography are cumbersome with connecting wires a... Sleep monitoring is an important part of health management because sleep quality is crucial for restoration of human health.However,current commercial products of polysomnography are cumbersome with connecting wires and state-of-the-art flexible sensors are still interferential for being attached to the body.Herein,we develop a flexible-integrated multimodal sensing patch based on hydrogel and its application in unconstraint sleep monitoring.The patch comprises a bottom hydrogel-based dualmode pressure–temperature sensing layer and a top electrospun nanofiber-based non-contact detection layer as one integrated device.The hydrogel as core substrate exhibits strong toughness and water retention,and the multimodal sensing of temperature,pressure,and non-contact proximity is realized based on different sensing mechanisms with no crosstalk interference.The multimodal sensing function is verified in a simulated real-world scenario by a robotic hand grasping objects to validate its practicability.Multiple multimodal sensing patches integrated on different locations of a pillow are assembled for intelligent sleep monitoring.Versatile human–pillow interaction information as well as their evolution over time are acquired and analyzed by a one-dimensional convolutional neural network.Track of head movement and recognition of bad patterns that may lead to poor sleep are achieved,which provides a promising approach for sleep monitoring. 展开更多
关键词 Multimodal sensing Proximity sensor Pressure sensor Temperature sensor Electrospun nanofibers
在线阅读 下载PDF
Multisensory mechanisms of gait and balance in Parkinson’s disease:an integrative review 被引量:1
6
作者 Stiven Roytman Rebecca Paalanen +4 位作者 Giulia Carli Uros Marusic Prabesh Kanel Teus van Laar Nico I.Bohnen 《Neural Regeneration Research》 SCIE CAS 2025年第1期82-92,共11页
Understanding the neural underpinning of human gait and balance is one of the most pertinent challenges for 21st-century translational neuroscience due to the profound impact that falls and mobility disturbances have ... Understanding the neural underpinning of human gait and balance is one of the most pertinent challenges for 21st-century translational neuroscience due to the profound impact that falls and mobility disturbances have on our aging population.Posture and gait control does not happen automatically,as previously believed,but rather requires continuous involvement of central nervous mechanisms.To effectively exert control over the body,the brain must integrate multiple streams of sensory information,including visual,vestibular,and somatosensory signals.The mechanisms which underpin the integration of these multisensory signals are the principal topic of the present work.Existing multisensory integration theories focus on how failure of cognitive processes thought to be involved in multisensory integration leads to falls in older adults.Insufficient emphasis,however,has been placed on specific contributions of individual sensory modalities to multisensory integration processes and cross-modal interactions that occur between the sensory modalities in relation to gait and balance.In the present work,we review the contributions of somatosensory,visual,and vestibular modalities,along with their multisensory intersections to gait and balance in older adults and patients with Parkinson’s disease.We also review evidence of vestibular contributions to multisensory temporal binding windows,previously shown to be highly pertinent to fall risk in older adults.Lastly,we relate multisensory vestibular mechanisms to potential neural substrates,both at the level of neurobiology(concerning positron emission tomography imaging)and at the level of electrophysiology(concerning electroencephalography).We hope that this integrative review,drawing influence across multiple subdisciplines of neuroscience,paves the way for novel research directions and therapeutic neuromodulatory approaches,to improve the lives of older adults and patients with neurodegenerative diseases. 展开更多
关键词 aging BALANCE encephalography functional magnetic resonance imaging GAIT multisensory integration Parkinson’s disease positron emission tomography SOMATOsensorY VESTIBULAR visual
暂未订购
An in-situ hybrid laser-induced integrated sensor system with antioxidative copper 被引量:3
7
作者 Kaichen Xu Zimo Cai +5 位作者 Huayu Luo Xingyu Lin Geng Yang Haibo Xie Seung Hwan Ko Huayong Yang 《International Journal of Extreme Manufacturing》 CSCD 2024年第6期535-546,共12页
Integration of sensors with engineering thermoplastics allows to track their health and surrounding stimuli.As one of vital backbones to construct sensor systems,copper(Cu)is highly conductive and cost-effective,yet t... Integration of sensors with engineering thermoplastics allows to track their health and surrounding stimuli.As one of vital backbones to construct sensor systems,copper(Cu)is highly conductive and cost-effective,yet tends to easily oxidize during and after processing.Herein,an in-situ integrated sensor system on engineering thermoplastics via hybrid laser direct writing is proposed,which primarily consists of laser-passivated functional Cu interconnects and laser-induced carbon-based sensors.Through a one-step photothermal treatment,the resulting functional Cu interconnects after reductive sintering and passivation are capable of resisting long-term oxidation failure at high temperatures(up to 170℃)without additional encapsulations.Interfacing with signal processing units,such an all-in-one system is applied for long-term and real-time temperature monitoring.This integrated sensor system with facile laser manufacturing strategies holds potentials for health monitoring and fault diagnosis of advanced equipment such as aircrafts,automobiles,high-speed trains,and medical devices. 展开更多
关键词 hybrid laser direct writing in-situ integrated sensor systems engineering thermoplastics functional copper inks laser-induced passivation
在线阅读 下载PDF
Integration of AI with artificial sensory systems for multidimensional intelligent augmentation 被引量:1
8
作者 Changyu Tian Youngwook Cho +3 位作者 Youngho Song Seongcheol Park Inho Kim Soo-Yeon Cho 《International Journal of Extreme Manufacturing》 2025年第4期35-54,共20页
Artificial sensory systems mimic the five human senses to facilitate data interaction between the real and virtual worlds.Accurate data analysis is crucial for converting external stimuli from each artificial sense in... Artificial sensory systems mimic the five human senses to facilitate data interaction between the real and virtual worlds.Accurate data analysis is crucial for converting external stimuli from each artificial sense into user-relevant information,yet conventional signal processing methods struggle with the massive scale,noise,and artificial sensory systems characteristics of data generated by artificial sensory devices.Integrating artificial intelligence(AI)is essential for addressing these challenges and enhancing the performance of artificial sensory systems,making it a rapidly growing area of research in recent years.However,no studies have systematically categorized the output functions of these systems or analyzed the associated AI algorithms and data processing methods.In this review,we present a systematic overview of the latest AI techniques aimed at enhancing the cognitive capabilities of artificial sensory systems replicating the five human senses:touch,taste,vision,smell,and hearing.We categorize the AI-enabled capabilities of artificial sensory systems into four key areas:cognitive simulation,perceptual enhancement,adaptive adjustment,and early warning.We introduce specialized AI algorithms and raw data processing methods for each function,designed to enhance and optimize sensing performance.Finally,we offer a perspective on the future of AI-integrated artificial sensory systems,highlighting technical challenges and potential real-world application scenarios for further innovation.Integration of AI with artificial sensory systems will enable advanced multimodal perception,real-time learning,and predictive capabilities.This will drive precise environmental adaptation and personalized feedback,ultimately positioning these systems as foundational technologies in smart healthcare,agriculture,and automation. 展开更多
关键词 artificialsensorysystem artificial intelligence sensor deep learning signal processing
在线阅读 下载PDF
Tb(Ⅲ)functionalized MOF based self-calibrating sensor integrated with logic gate operation for efficient epinephrine detection in serum 被引量:3
9
作者 Dongsheng Zhao Wenqian Li +4 位作者 Rongmei Wen Wencui Li Xin Liu Xiutang Zhang Liming Fan 《Journal of Rare Earths》 SCIE EI CAS CSCD 2024年第5期987-994,I0006,共9页
By anchoring Tb^(3+)ions on its free carboxyl groups of the nanocaged NiMOF,a dual-emission self-calibrating sensor of Tb^(3+)@NiMOF was fabricated through coordination post-synthetic modification(PSM)strategy.With Tb... By anchoring Tb^(3+)ions on its free carboxyl groups of the nanocaged NiMOF,a dual-emission self-calibrating sensor of Tb^(3+)@NiMOF was fabricated through coordination post-synthetic modification(PSM)strategy.With Tb^(3+)ions as the secondary fluorescent signal and sensing active sites,Tb^(3+)@NiMOF presents great potentials in visually and efficiently monitoring EPI in serum,with high sensitivity and selectivity,fast response,excellent recyclable,and the low detection limit(LOD,3.06 ng/mL).Furthermore,a tandem combinational logic gate based intelligent detection system was constructed to improve the practicability and convenience of epinephrine(EPI)detection in serum by comparing the light emitted colour with the series standard colour cards preset in the smartphone.This work provides a promising approach of developing metal-organic frameworks(MOFs)based self-calibrating sensors for intelligent detection of bioactive molecules. 展开更多
关键词 Metal-organic framework Post-synthetic modification Self-calibrating sensor Logic gate operation Epinephrine detection Rare earths
原文传递
Peroral endoscopic myotomy for achalasia and patients with normal lower-esophageal-sphincter integrated relaxation pressure:A propensity-score-matched retrospective study 被引量:1
10
作者 Xiao Li Xiao-Bin Zhang +9 位作者 Jia-Kang Shao Bo Zhang Long-Song Li Rui-Qing Zhu Jia-Le Zou Jia-Feng Wang Xin Zhao Qing-Zhen Wu Ning-Li Chai En-Qiang Linghu 《World Journal of Gastroenterology》 2025年第12期27-36,共10页
BACKGROUND Most patients who were included in previous studies on achalasia had increased lower esophageal sphincter(LES)pressure.Peroral endoscopic myotomy(POEM)has been confirmed to be effective at relieving the cli... BACKGROUND Most patients who were included in previous studies on achalasia had increased lower esophageal sphincter(LES)pressure.Peroral endoscopic myotomy(POEM)has been confirmed to be effective at relieving the clinical symptoms of achalasia associated with increased LES pressure.AIM To identify the safety and efficacy of POEM for patients with normal LES integrated relaxation pressure(LES-IRP).METHODS The clinical data of patients who underwent POEM successfully in The First Medical Center of Chinese PLA General Hospital were retrospectively analyzed.A total of 481 patients who underwent preoperative high-resolution manometry(HRM)at our hospital were ultimately included in this research.According to the HRM results,the patients were divided into two groups:71 patients were included in the normal LES-IRP group(LES-IRP<15 mmHg)and 410 patients were included in the increased LES-IRP group(LES-IRP≥15 mmHg).Clinical characteristics,procedure-related parameters,adverse events,and outcomes were compared between the two groups to evaluate the safety and efficacy of POEM for patients with normal LES-IRP.RESULTS Among the 481 patients included in our study,209 were males and 272 were females,with a mean age of 44.2 years.All patients underwent POEM without severe adverse events.The median pre-treatment Eckardt scores of the normal LES-IRP and increased LES-IRP groups were 7.0 and 7.0(P=0.132),respectively,decreasing to 1.0 and 1.0 post-treatment(P=0.572).The clinical success rate of the normal LES-IRP group was 87.3%(62/71),and that of the increased LES-IRP group was 91.2%(374/410)(P=0.298).Reflux symptoms were measured by the GerdQ questionnaire,and the percentages of patients with GerdQ scores≥9 in the normal LES-IRP and increased LES-IRP groups were 8.5%and 10.7%,respectively(P=0.711).After matching,the rates of clinical success and the rates of GerdQ score≥9 were not significantly different between the two groups.CONCLUSION Our results suggest that POEM is safe and effective for achalasia and patients with normal LES-IRP.In addition,in patients with normal LES-IRP,compared with those with increased LES-IRP,POEM was not associated with a greater incidence of reflux symptoms. 展开更多
关键词 Peroral endoscopic myotomy ACHALASIA Lower esophageal sphincter integrated relaxation pressure Safety Efficacy
暂未订购
LiDAR-Visual SLAM with Integrated Semantic and Texture Information for Enhanced Ecological Monitoring Vehicle Localization
11
作者 Yiqing Lu Liutao Zhao Qiankun Zhao 《Computers, Materials & Continua》 SCIE EI 2025年第1期1401-1416,共16页
Ecological monitoring vehicles are equipped with a range of sensors and monitoring devices designed to gather data on ecological and environmental factors.These vehicles are crucial in various fields,including environ... Ecological monitoring vehicles are equipped with a range of sensors and monitoring devices designed to gather data on ecological and environmental factors.These vehicles are crucial in various fields,including environmental science research,ecological and environmental monitoring projects,disaster response,and emergency management.A key method employed in these vehicles for achieving high-precision positioning is LiDAR(lightlaser detection and ranging)-Visual Simultaneous Localization and Mapping(SLAM).However,maintaining highprecision localization in complex scenarios,such as degraded environments or when dynamic objects are present,remains a significant challenge.To address this issue,we integrate both semantic and texture information from LiDAR and cameras to enhance the robustness and efficiency of data registration.Specifically,semantic information simplifies the modeling of scene elements,reducing the reliance on dense point clouds,which can be less efficient.Meanwhile,visual texture information complements LiDAR-Visual localization by providing additional contextual details.By incorporating semantic and texture details frompaired images and point clouds,we significantly improve the quality of data association,thereby increasing the success rate of localization.This approach not only enhances the operational capabilities of ecological monitoring vehicles in complex environments but also contributes to improving the overall efficiency and effectiveness of ecological monitoring and environmental protection efforts. 展开更多
关键词 LiDAR-Visual simultaneous localization and mapping integrated semantic texture information
在线阅读 下载PDF
Geographical Engineering and Its Role in Promoting Integrated Geography Research 被引量:1
12
作者 LIU Yansui SU Sixin LI Xuhong 《Chinese Geographical Science》 2025年第1期1-23,共23页
Throughout the contemporary Chinese history of geography,geographical engineering has consistently played a pivotal role as a fundamental scientific activity.It possesses its distinct ontological basis and value orien... Throughout the contemporary Chinese history of geography,geographical engineering has consistently played a pivotal role as a fundamental scientific activity.It possesses its distinct ontological basis and value orientation,rendering it inseparable from being merely a derivative of geographical science or technology.This paper defines geographical engineering and introduces its development history through the lens of Chinese geographical engineering praxises.Furthermore,it is highlighted the logical and functional consistency between the theory of human-earth system and the praxis of geographical engineering.Six modern cases of geographical engineering projects are presented in detail to demonstrate the points and characteristics of different types of modern geographical engineering.Geographical engineering serves as an engine for promoting integrated geography research,and in response to the challenge posed by fragmented geographies,this paper advocates for an urgent revitalization of geographical engineering.The feasibility of revitalizing geographical engineering is guaranteed because it aligns with China’s national strategies. 展开更多
关键词 geographical engineering geographical science and engineering integrated geography research human-earth system Chinese geography
在线阅读 下载PDF
Integrated Optical True Time Delay Phased Array Antenna Systems 被引量:1
13
作者 Qi Zihang Yang Linhui +1 位作者 Zhao Wenyu Li Xiuping 《China Communications》 2025年第5期152-172,共21页
The integrated optical true time delay phased array antenna system has the advantages of high bandwidth,small size,low loss and strong antiinterference capability,etc.The high integration of the optically controlled p... The integrated optical true time delay phased array antenna system has the advantages of high bandwidth,small size,low loss and strong antiinterference capability,etc.The high integration of the optically controlled phased array antenna system is a necessary trend for the future development of the phased array,and it is also a major focus and difficulty in the current research of integrated microwave photonics.This paper firstly introduces the basic principle and development history of optical true time delay phased array antenna system based on microwave photonics,and briefly introduces the main implementation methods and integration platform of optical true time delay.Then,the application and development prospect of optical true time delay technology in beam control of phased array antenna system are mainly presented.Finally,according to the current research progress,the possible research directions of integrated optically controlled phased array antenna systems in the future are proposed. 展开更多
关键词 microwave photonics optical switch optical true time delay phased array antenna siliconbased integration
在线阅读 下载PDF
The evolution of integrated perovskite-organic solar cells: from early challenges to cutting-edge material innovations 被引量:1
14
作者 Zia Ur Rehman Francesco Lamberti Zhubing He 《Journal of Semiconductors》 2025年第5期30-46,共17页
Integrated perovskite-organic solar cells(IPOSCs) offer a promising hybrid approach that combines the advantages of perovskite and organic solar cells, enabling efficient photon absorption across a broad spectrum with... Integrated perovskite-organic solar cells(IPOSCs) offer a promising hybrid approach that combines the advantages of perovskite and organic solar cells, enabling efficient photon absorption across a broad spectrum with a simplified architecture. However, challenges such as limited charge mobility in organic bulk heterojunction(BHJ) layers, and energy-level mismatch at the perovskite/BHJ interface still sustain. Recent advancements in non-fullerene acceptors(NFAs), interfacial engineering, and emerging materials have improved charge transfer/transport, and overall power conversion efficiency(PCE) of IPOSCs.This review explores key developments in IPOSCs, focusing on low-bandgap materials for near-infrared absorption, energy alignment optimization, and strategies to enhance photocurrent density and device performance. Future innovations in material selection and device architecture will be crucial for further improving the efficiency of IPOSCs, bringing them closer to practical application in next-generation photovoltaic technologies. 展开更多
关键词 perovskite solar cells organic bulk heterojunction solar cells integrated perovskite-organic solar cells DONOR ACCEPTOR
在线阅读 下载PDF
Physics-integrated neural networks for improved mineral volumes and porosity estimation from geophysical well logs 被引量:1
15
作者 Prasad Pothana Kegang Ling 《Energy Geoscience》 2025年第2期394-410,共17页
Accurate estimation of mineralogy from geophysical well logs is crucial for characterizing geological formations,particularly in hydrocarbon exploration,CO_(2) sequestration,and geothermal energy development.Current t... Accurate estimation of mineralogy from geophysical well logs is crucial for characterizing geological formations,particularly in hydrocarbon exploration,CO_(2) sequestration,and geothermal energy development.Current techniques,such as multimineral petrophysical analysis,offer details into mineralogical distribution.However,it is inherently time-intensive and demands substantial geological expertise for accurate model evaluation.Furthermore,traditional machine learning techniques often struggle to predict mineralogy accurately and sometimes produce estimations that violate fundamental physical principles.To address this,we present a new approach using Physics-Integrated Neural Networks(PINNs),that combines data-driven learning with domain-specific physical constraints,embedding petrophysical relationships directly into the neural network architecture.This approach enforces that predictions adhere to physical laws.The methodology is applied to the Broom Creek Deep Saline aquifer,a CO_(2) sequestration site in the Williston Basin,to predict the volumes of key mineral constituents—quartz,dolomite,feldspar,anhydrite,illite—along with porosity.Compared to traditional artificial neural networks (ANN),the PINN approach demonstrates higher accuracy and better generalizability,significantly enhancing predictive performance on unseen well datasets.The average mean error across the three blind wells is 0.123 for ANN and 0.042 for PINN,highlighting the superior accuracy of the PINN approach.This method reduces uncertainties in reservoir characterization by improving the reliability of mineralogy and porosity predictions,providing a more robust tool for decision-making in various subsurface geoscience applications. 展开更多
关键词 Physics integrated neural networks PETROPHYSICS Well logs Oil and gas Reservoir characterization MINERALOGY Machine learning
在线阅读 下载PDF
Deep reinforcement learning based integrated evasion and impact hierarchical intelligent policy of exo-atmospheric vehicles 被引量:1
16
作者 Leliang REN Weilin GUO +3 位作者 Yong XIAN Zhenyu LIU Daqiao ZHANG Shaopeng LI 《Chinese Journal of Aeronautics》 2025年第1期409-426,共18页
Exo-atmospheric vehicles are constrained by limited maneuverability,which leads to the contradiction between evasive maneuver and precision strike.To address the problem of Integrated Evasion and Impact(IEI)decision u... Exo-atmospheric vehicles are constrained by limited maneuverability,which leads to the contradiction between evasive maneuver and precision strike.To address the problem of Integrated Evasion and Impact(IEI)decision under multi-constraint conditions,a hierarchical intelligent decision-making method based on Deep Reinforcement Learning(DRL)was proposed.First,an intelligent decision-making framework of“DRL evasion decision”+“impact prediction guidance decision”was established:it takes the impact point deviation correction ability as the constraint and the maximum miss distance as the objective,and effectively solves the problem of poor decisionmaking effect caused by the large IEI decision space.Second,to solve the sparse reward problem faced by evasion decision-making,a hierarchical decision-making method consisting of maneuver timing decision and maneuver duration decision was proposed,and the corresponding Markov Decision Process(MDP)was designed.A detailed simulation experiment was designed to analyze the advantages and computational complexity of the proposed method.Simulation results show that the proposed model has good performance and low computational resource requirement.The minimum miss distance is 21.3 m under the condition of guaranteeing the impact point accuracy,and the single decision-making time is 4.086 ms on an STM32F407 single-chip microcomputer,which has engineering application value. 展开更多
关键词 Exo-atmospheric vehicle integrated evasion and impact Deep reinforcement learning Hierarchical intelligent policy Single-chip microcomputer Miss distance
原文传递
Integrated Equipment with Functions of Current Flow Control and Fault Isolation for Multiterminal DC Grids
17
作者 Shuo Zhang Guibin Zou 《Energy Engineering》 EI 2025年第1期85-99,共15页
The multi-terminal direct current(DC)grid has extinctive superiorities over the traditional alternating current system in integrating large-scale renewable energy.Both the DC circuit breaker(DCCB)and the current flow ... The multi-terminal direct current(DC)grid has extinctive superiorities over the traditional alternating current system in integrating large-scale renewable energy.Both the DC circuit breaker(DCCB)and the current flow controller(CFC)are demanded to ensure the multiterminal DC grid to operates reliably and flexibly.However,since the CFC and the DCCB are all based on fully controlled semiconductor switches(e.g.,insulated gate bipolar transistor,integrated gate commutated thyristor,etc.),their separation configuration in the multiterminal DC grid will lead to unaffordable implementation costs and conduction power losses.To solve these problems,integrated equipment with both current flow control and fault isolation abilities is proposed,which shares the expensive and duplicated components of CFCs and DCCBs among adjacent lines.In addition,the complicated coordination control of CFCs and DCCBs can be avoided by adopting the integrated equipment in themultiterminal DC grid.In order to examine the current flow control and fault isolation abilities of the integrated equipment,the simulation model of a specific meshed four-terminal DC grid is constructed in the PSCAD/EMTDC software.Finally,the comparison between the integrated equipment and the separate solution is presented a specific result or conclusion needs to be added to the abstract. 展开更多
关键词 integrated equipment multiterminal direct current grid current flow control fault isolation
在线阅读 下载PDF
Study of bonding layer for integrated structure of space gravitational wave detector telescope
18
作者 ZHAO Hong-chao LIU Chang +2 位作者 ZHOU Wen-ke ZHU Han-bin CHEN Wen-duo 《中国光学(中英文)》 北大核心 2025年第3期715-724,共10页
To detect space gravitational waves in the extremely low-frequency band,the telescope and optic-al platform require high stability and reliability.However,the cantilevered design presents challenges,espe-cially in the... To detect space gravitational waves in the extremely low-frequency band,the telescope and optic-al platform require high stability and reliability.However,the cantilevered design presents challenges,espe-cially in the glass-metal hetero-bonding process.This study focuses on the analysis and experimental re-search of the bonding layer in the integrated structure.By optimizing the structural configuration and select-ing suitable bonding processes,the reliability of the telescope system is enhanced.The research indicates that using J-133 adhesive achieves the best performance,with a bonding layer thickness of 0.30 mm and a metal substrate surface roughness of Ra 0.8.These findings significantly enhance the reliability of the optical sys-tem while minimizing potential risks. 展开更多
关键词 space gravitational-wave detector integrated structure glass-metal hetero-bonding
在线阅读 下载PDF
Bilevel Optimal Scheduling of Island Integrated Energy System Considering Multifactor Pricing
19
作者 Xin Zhang Mingming Yao +3 位作者 Daiwen He Jihong Zhang Peihong Yang Xiaoming Zhang 《Energy Engineering》 EI 2025年第1期349-378,共30页
In this paper,a bilevel optimization model of an integrated energy operator(IEO)–load aggregator(LA)is constructed to address the coordinate optimization challenge of multiple stakeholder island integrated energy sys... In this paper,a bilevel optimization model of an integrated energy operator(IEO)–load aggregator(LA)is constructed to address the coordinate optimization challenge of multiple stakeholder island integrated energy system(IIES).The upper level represents the integrated energy operator,and the lower level is the electricity-heatgas load aggregator.Owing to the benefit conflict between the upper and lower levels of the IIES,a dynamic pricing mechanism for coordinating the interests of the upper and lower levels is proposed,combined with factors such as the carbon emissions of the IIES,as well as the lower load interruption power.The price of selling energy can be dynamically adjusted to the lower LA in the mechanism,according to the information on carbon emissions and load interruption power.Mutual benefits and win-win situations are achieved between the upper and lower multistakeholders.Finally,CPLEX is used to iteratively solve the bilevel optimization model.The optimal solution is selected according to the joint optimal discrimination mechanism.Thesimulation results indicate that the sourceload coordinate operation can reduce the upper and lower operation costs.Using the proposed pricingmechanism,the carbon emissions and load interruption power of IEO-LA are reduced by 9.78%and 70.19%,respectively,and the capture power of the carbon capture equipment is improved by 36.24%.The validity of the proposed model and method is verified. 展开更多
关键词 Bilevel optimal scheduling load aggregator integrated energy operator carbon emission dynamic pricing mechanism
在线阅读 下载PDF
Moving Toward Human-Like Perception and Sensation Systems-From Integrated Intelligent Systems to Decentralized Smart Devices
20
作者 Zhongda Sun Tianyiyi He +7 位作者 Zhihao Ren Chan Wang Xinmiao Liu Zixuan Zhang Jingkai Zhou Xinge Guo Yanqin Yang Chengkuo Lee 《SmartSys》 2025年第1期1-27,共27页
Artificial Intelligence(AI)has shown the power to enhance the functionality of sensors and enable intelligent human‐machine interfaces through machine learning‐based data analysis.However,the good performance of AI ... Artificial Intelligence(AI)has shown the power to enhance the functionality of sensors and enable intelligent human‐machine interfaces through machine learning‐based data analysis.However,the good performance of AI is always accompanied by a large amount of data and high computational complexity.Though cloud computing appears to be the right solution to this issue with the advent of the 5G era,a certain intelligence of the edge terminal is also important to make the entire integrated intelligent system more efficient.The current development of microelectronic,wearable,AI,and neuromorphic technologies pave the way to realize advanced edge computing by integrating silicon‐based high‐computing‐power neuromorphic chips with anthropomorphic wearable sensory devices and show the potential to achieve human‐like self‐sustainable decentralized intelligence to enable the next‐generation of AI.Hence,in this review,we systematically introduce the related progress in terms of wearable electronics that can mimic the biological features of humans'sensory systems and the development of neuromorphic/in‐sensor computing technologies.Discussion on implementing the integrated human‐like perception and sensation system with silicone‐based computing chips and non‐silicone‐based wearable functional units and our perspectives are also provided. 展开更多
关键词 AI sensors artificial intelligence in‐sensor computing neuromorphic computing triboelectric nanogenerator
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部