A high temperature displacement sensor based on the principle of eddy-current is investigated. A new temperature compensation technique by using eddy-current effect is presented to satisfy the special requirement at h...A high temperature displacement sensor based on the principle of eddy-current is investigated. A new temperature compensation technique by using eddy-current effect is presented to satisfy the special requirement at high temperature up to 550℃. The experiment shows that the temperature compensation technique leads to good temperature stability for the sensors. The variation of the sensitivity as well as the temperature drift of the sensor with temperature compensation technique is only about 7.4% and 90-350 mV at 550 ℃ compared with that at room temperature, and that of the sensor without temperature compensation technique is about 31.2% and 2-3 V at 550 ℃ compared with that at room temperature. A new dynamic calibration method for the eddy-current displacement sensor is presented, which is very easy to be realized especially in high frequency and at high temperatures. The high temperature displacement sensors developed are successfully used at temperature up to 550 ℃ in a magnetic bearing system for more than 100 h.展开更多
In recent years,a large number of small volume,low cost micro electro mechanical systems(MEMS)digital three-axis angular rate gyroscopes have been developed and widely used in civil and military fields.However,these...In recent years,a large number of small volume,low cost micro electro mechanical systems(MEMS)digital three-axis angular rate gyroscopes have been developed and widely used in civil and military fields.However,these kinds of gyroscopes have poor performances in initial zero-bias,temperature drift,In-Run bias stability,bias repeatability,etc.,their output errors need to be compensated before being used.Based on a lot of experiments,the temperature drift and the initial zero-bias are the major error sources in the MEMS gyroscopes output data.Due to the poor repeatability of temperature drift,the temperature compensation coefficients need to be recalculated every time before using.In order to recalculate parameters of the temperature compensation model quickly,a 1st-order polynomial model of temperature is established,then a forgetting factor recursive least squares estimator will be adopted to identify the model parameters in real time.Static and dynamic experimental data shows that this method removed/compensated the temperature drift and initial zero-bias from the output of the gyroscopes effectively.展开更多
We propose a compensation technique based on pulse reference for intensity-modulated optical fiber sensors that can compensate the power fluctuation of the light source, the change of optical components transmission l...We propose a compensation technique based on pulse reference for intensity-modulated optical fiber sensors that can compensate the power fluctuation of the light source, the change of optical components transmission loss, and the coupler splitting ratio. The theoretical principle of this compensation technique is analyzed and a temperature sensor based on fiber coating-covered optical microfiber is carried out to demonstrate the compensation effect. The system noise is measured to be 0.0005 dB with the temperature sensitivity reaching -0.063 dB/℃, and the output drift is 0.006 dB in 2 h at room temperature. The output shows a slight variation (0.0061 dB) when the light source and the common liKht path suffer a 3 dB attenuation fluctuation.展开更多
We modify the pulse-reference-based compensation technique and propose a low-noise and highly stable optical fiber temperature sensor based on a zinc telluride film-coated fiber tip. The system noise is measured to be...We modify the pulse-reference-based compensation technique and propose a low-noise and highly stable optical fiber temperature sensor based on a zinc telluride film-coated fiber tip. The system noise is measured to be 0.0005 dB, which makes it possible for the detection of the minor reflectivity change of the film at different temperatures. The temperature sensitivity is 0.0034 d B/℃, so the resolution can achieve 0.2℃. The maximum difference of the temperature output values of the sensor at 20℃ at different points in time is 0.39℃. The low cost, ultra-small size, high stability, and good repeatability of the sensor make it a promising temperature sensing device for practical application.展开更多
Based on the asymmetric base region transistor, a pressure sensor with temperature compensation circuit is proposed in this paper. The pressure sensitive structure of the proposed sensor is constructed by a C-type sil...Based on the asymmetric base region transistor, a pressure sensor with temperature compensation circuit is proposed in this paper. The pressure sensitive structure of the proposed sensor is constructed by a C-type silicon cup and a Wheatstone bridge with four piezoresistors(R_1, R_2, R_3 and R_4/locating on the edge of a square silicon membrane. The chip was designed and fabricated on a silicon on insulator(SOI) wafer by micro electromechanical system(MEMS) technology and bipolar transistor process. When the supply voltage is 5.0 V, the corresponding temperature coefficient of the sensitivity(TCS) for the sensor before and after temperature compensation are -1862 and -1067 ppm/℃, respectively. Through varying the ratio of the base region resistances r_1 and r_2, the TCS for the sensor with the compensation circuit is -127 ppm/℃. It is possible to use this compensation circuit to improve the temperature characteristics of the pressure sensor.展开更多
基金This project is supported by European Community Project, National NaturalScience Foundation of China (No.50437010) and Aviation Science Founda-tion of China (No.99C52072).
文摘A high temperature displacement sensor based on the principle of eddy-current is investigated. A new temperature compensation technique by using eddy-current effect is presented to satisfy the special requirement at high temperature up to 550℃. The experiment shows that the temperature compensation technique leads to good temperature stability for the sensors. The variation of the sensitivity as well as the temperature drift of the sensor with temperature compensation technique is only about 7.4% and 90-350 mV at 550 ℃ compared with that at room temperature, and that of the sensor without temperature compensation technique is about 31.2% and 2-3 V at 550 ℃ compared with that at room temperature. A new dynamic calibration method for the eddy-current displacement sensor is presented, which is very easy to be realized especially in high frequency and at high temperatures. The high temperature displacement sensors developed are successfully used at temperature up to 550 ℃ in a magnetic bearing system for more than 100 h.
文摘In recent years,a large number of small volume,low cost micro electro mechanical systems(MEMS)digital three-axis angular rate gyroscopes have been developed and widely used in civil and military fields.However,these kinds of gyroscopes have poor performances in initial zero-bias,temperature drift,In-Run bias stability,bias repeatability,etc.,their output errors need to be compensated before being used.Based on a lot of experiments,the temperature drift and the initial zero-bias are the major error sources in the MEMS gyroscopes output data.Due to the poor repeatability of temperature drift,the temperature compensation coefficients need to be recalculated every time before using.In order to recalculate parameters of the temperature compensation model quickly,a 1st-order polynomial model of temperature is established,then a forgetting factor recursive least squares estimator will be adopted to identify the model parameters in real time.Static and dynamic experimental data shows that this method removed/compensated the temperature drift and initial zero-bias from the output of the gyroscopes effectively.
基金supported by the National Natural Science Foundation of China(Nos.61505258 and 11574397)the Scientific Research Project of the National University of Defense Technology(No.JC15-11-02)
文摘We propose a compensation technique based on pulse reference for intensity-modulated optical fiber sensors that can compensate the power fluctuation of the light source, the change of optical components transmission loss, and the coupler splitting ratio. The theoretical principle of this compensation technique is analyzed and a temperature sensor based on fiber coating-covered optical microfiber is carried out to demonstrate the compensation effect. The system noise is measured to be 0.0005 dB with the temperature sensitivity reaching -0.063 dB/℃, and the output drift is 0.006 dB in 2 h at room temperature. The output shows a slight variation (0.0061 dB) when the light source and the common liKht path suffer a 3 dB attenuation fluctuation.
基金supported by the National Natural Science Foundation of China(Nos.11574397,61775238,61705262,and 61705263)the Scientific Research Project of National University of Defense Technology(No.JC15-11-02)
文摘We modify the pulse-reference-based compensation technique and propose a low-noise and highly stable optical fiber temperature sensor based on a zinc telluride film-coated fiber tip. The system noise is measured to be 0.0005 dB, which makes it possible for the detection of the minor reflectivity change of the film at different temperatures. The temperature sensitivity is 0.0034 d B/℃, so the resolution can achieve 0.2℃. The maximum difference of the temperature output values of the sensor at 20℃ at different points in time is 0.39℃. The low cost, ultra-small size, high stability, and good repeatability of the sensor make it a promising temperature sensing device for practical application.
基金supported by the National Natural Science Foundation of China(No.61471159)the Natural Science Foundation of Heilongjiang Province(No.F201433)+1 种基金the University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province(No.2015018)the Special Funds for Science and Technology Innovation Talents of Harbin in China(No.2016RAXXJ016)
文摘Based on the asymmetric base region transistor, a pressure sensor with temperature compensation circuit is proposed in this paper. The pressure sensitive structure of the proposed sensor is constructed by a C-type silicon cup and a Wheatstone bridge with four piezoresistors(R_1, R_2, R_3 and R_4/locating on the edge of a square silicon membrane. The chip was designed and fabricated on a silicon on insulator(SOI) wafer by micro electromechanical system(MEMS) technology and bipolar transistor process. When the supply voltage is 5.0 V, the corresponding temperature coefficient of the sensitivity(TCS) for the sensor before and after temperature compensation are -1862 and -1067 ppm/℃, respectively. Through varying the ratio of the base region resistances r_1 and r_2, the TCS for the sensor with the compensation circuit is -127 ppm/℃. It is possible to use this compensation circuit to improve the temperature characteristics of the pressure sensor.