Star sensors are an important means of autonomous navigation and access to space information for satellites.They have been widely deployed in the aerospace field.To satisfy the requirements for high resolution,timelin...Star sensors are an important means of autonomous navigation and access to space information for satellites.They have been widely deployed in the aerospace field.To satisfy the requirements for high resolution,timeliness,and confidentiality of star images,we propose an edge computing algorithm based on the star sensor cloud.Multiple sensors cooperate with each other to forma sensor cloud,which in turn extends the performance of a single sensor.The research on the data obtained by the star sensor has very important research and application values.First,a star point extraction model is proposed based on the fuzzy set model by analyzing the star image composition,which can reduce the amount of data computation.Then,a mappingmodel between content and space is constructed to achieve low-rank image representation and efficient computation.Finally,the data collected by the wireless sensor is delivered to the edge server,and a differentmethod is used to achieve privacy protection.Only a small amount of core data is stored in edge servers and local servers,and other data is transmitted to the cloud.Experiments show that the proposed algorithm can effectively reduce the cost of communication and storage,and has strong privacy.展开更多
The current IT cloud computing is playing a vital role in most of the areas such as Education, Research, Health care, etc. The cloud computing technology involving in sensor networks embedded system and IOT (Inte...The current IT cloud computing is playing a vital role in most of the areas such as Education, Research, Health care, etc. The cloud computing technology involving in sensor networks embedded system and IOT (Internet of Things). At present scenario, the sensors collected the information from the particular environment, where the sensors are fixed and transfer the collected information to cloud storage, here the challenge is the data transmission i.e. data that traverse from sensor to cloud environment are the big issue and maximum number of data loss is very high especially in dynamic routing environment. If data loss is identified in any routing path then automatically the information will transfer to alternate routing path. In this paper, we introduce a new algorithm for automatic routing path selection that can be integrated with cloud technology. This algorithm supports when data loss is found in the particular path of a network, then it selects an alternate route to transfer the data. The proposed model is comparatively more efficient than the prior methodologies. The implementation of the proposed work is done on NS3 simulator, and the performance metric is analyzed.展开更多
Mobile edge users(MEUs)collect data from sensor devices and report to cloud systems,which can facilitate numerous applications in sensor‑cloud systems(SCS).However,because there is no effective way to access the groun...Mobile edge users(MEUs)collect data from sensor devices and report to cloud systems,which can facilitate numerous applications in sensor‑cloud systems(SCS).However,because there is no effective way to access the ground truth to verify the quality of sensing devices’data or MEUs’reports,malicious sensing devices or MEUs may report false data and cause damage to the platform.It is critical for selecting sensing devices and MEUs to report truthful data.To tackle this challenge,a novel scheme that uses unmanned aerial vehicles(UAV)to detect the truth of sensing devices and MEUs(UAV‑DT)is proposed to construct a clean data collection platform for SCS.In the UAV‑DT scheme,the UAV delivers check codes to sensor devices and requires them to provide routes to the specified destination node.Then,the UAV flies along the path that enables maximal truth detection and collects the information of the sensing devices forwarding data packets to the cloud during this period.The information collected by the UAV will be checked in two aspects to verify the credibility of the sensor devices.The first is to check whether there is an abnormality in the received and sent data packets of the sensing devices and an evaluation of the degree of trust is given;the second is to compare the data packets submitted by the sensing devices to MEUs with the data packets submitted by the MEUs to the platform to verify the credibility of MEUs.Then,based on the verified trust value,an incentive mechanism is proposed to select credible MEUs for data collection,so as to create a clean data collection sensor‑cloud network.The simulation results show that the proposed UAV‑DT scheme can identify the trust of sensing devices and MEUs well.As a result,the proportion of clean data collected is greatly improved.展开更多
This paper presents a prototype of an Integrated Cloud-Based Wireless Sensor Network (WSN) developed to monitor pH, conductivity and dissolved oxygen parameters from wastewater discharged into water sources. To provid...This paper presents a prototype of an Integrated Cloud-Based Wireless Sensor Network (WSN) developed to monitor pH, conductivity and dissolved oxygen parameters from wastewater discharged into water sources. To provide realtime online monitoring and Internet of Things (IoT) capability, the system collects and uploads sensor data to ThingSpeak cloud via GPRS internet connectivity with the help of AT commands in combination with HTTP GET method. Moreover, the system sends message alert to the responsible organ through GSM/GPRS network and an SMS gateway service implemented by Telerivet mobile messaging platform. In this prototype, Telerivet messaging platform gives surrounding communities a means of reporting observed or identified water pollution events via SMS notifications.展开更多
基金supported by Science and Technology Rising Star of Shaanxi Youth (No.2021KJXX-61)The Open Project Program of the State Key Lab of CAD&CG,Zhejiang University (No.A2206).
文摘Star sensors are an important means of autonomous navigation and access to space information for satellites.They have been widely deployed in the aerospace field.To satisfy the requirements for high resolution,timeliness,and confidentiality of star images,we propose an edge computing algorithm based on the star sensor cloud.Multiple sensors cooperate with each other to forma sensor cloud,which in turn extends the performance of a single sensor.The research on the data obtained by the star sensor has very important research and application values.First,a star point extraction model is proposed based on the fuzzy set model by analyzing the star image composition,which can reduce the amount of data computation.Then,a mappingmodel between content and space is constructed to achieve low-rank image representation and efficient computation.Finally,the data collected by the wireless sensor is delivered to the edge server,and a differentmethod is used to achieve privacy protection.Only a small amount of core data is stored in edge servers and local servers,and other data is transmitted to the cloud.Experiments show that the proposed algorithm can effectively reduce the cost of communication and storage,and has strong privacy.
文摘The current IT cloud computing is playing a vital role in most of the areas such as Education, Research, Health care, etc. The cloud computing technology involving in sensor networks embedded system and IOT (Internet of Things). At present scenario, the sensors collected the information from the particular environment, where the sensors are fixed and transfer the collected information to cloud storage, here the challenge is the data transmission i.e. data that traverse from sensor to cloud environment are the big issue and maximum number of data loss is very high especially in dynamic routing environment. If data loss is identified in any routing path then automatically the information will transfer to alternate routing path. In this paper, we introduce a new algorithm for automatic routing path selection that can be integrated with cloud technology. This algorithm supports when data loss is found in the particular path of a network, then it selects an alternate route to transfer the data. The proposed model is comparatively more efficient than the prior methodologies. The implementation of the proposed work is done on NS3 simulator, and the performance metric is analyzed.
基金National Natural Science Foundation of China under Grant No.62032020Hunan Science and Technology Plan⁃ning Project under Grant No.2019RS3019the National Key Research and Development Program of China under Grant 2018YFB1003702.
文摘Mobile edge users(MEUs)collect data from sensor devices and report to cloud systems,which can facilitate numerous applications in sensor‑cloud systems(SCS).However,because there is no effective way to access the ground truth to verify the quality of sensing devices’data or MEUs’reports,malicious sensing devices or MEUs may report false data and cause damage to the platform.It is critical for selecting sensing devices and MEUs to report truthful data.To tackle this challenge,a novel scheme that uses unmanned aerial vehicles(UAV)to detect the truth of sensing devices and MEUs(UAV‑DT)is proposed to construct a clean data collection platform for SCS.In the UAV‑DT scheme,the UAV delivers check codes to sensor devices and requires them to provide routes to the specified destination node.Then,the UAV flies along the path that enables maximal truth detection and collects the information of the sensing devices forwarding data packets to the cloud during this period.The information collected by the UAV will be checked in two aspects to verify the credibility of the sensor devices.The first is to check whether there is an abnormality in the received and sent data packets of the sensing devices and an evaluation of the degree of trust is given;the second is to compare the data packets submitted by the sensing devices to MEUs with the data packets submitted by the MEUs to the platform to verify the credibility of MEUs.Then,based on the verified trust value,an incentive mechanism is proposed to select credible MEUs for data collection,so as to create a clean data collection sensor‑cloud network.The simulation results show that the proposed UAV‑DT scheme can identify the trust of sensing devices and MEUs well.As a result,the proportion of clean data collected is greatly improved.
文摘This paper presents a prototype of an Integrated Cloud-Based Wireless Sensor Network (WSN) developed to monitor pH, conductivity and dissolved oxygen parameters from wastewater discharged into water sources. To provide realtime online monitoring and Internet of Things (IoT) capability, the system collects and uploads sensor data to ThingSpeak cloud via GPRS internet connectivity with the help of AT commands in combination with HTTP GET method. Moreover, the system sends message alert to the responsible organ through GSM/GPRS network and an SMS gateway service implemented by Telerivet mobile messaging platform. In this prototype, Telerivet messaging platform gives surrounding communities a means of reporting observed or identified water pollution events via SMS notifications.