期刊文献+
共找到117,907篇文章
< 1 2 250 >
每页显示 20 50 100
Noninvasive On-Skin Biosensors for Monitoring Diabetes Mellitus
1
作者 Ali Sedighi Tianyu Kou +1 位作者 Hui Huang Yi Li 《Nano-Micro Letters》 2026年第1期375-437,共63页
Diabetes mellitus represents a major global health issue,driving the need for noninvasive alternatives to traditional blood glucose monitoring methods.Recent advancements in wearable technology have introduced skin-in... Diabetes mellitus represents a major global health issue,driving the need for noninvasive alternatives to traditional blood glucose monitoring methods.Recent advancements in wearable technology have introduced skin-interfaced biosensors capable of analyzing sweat and skin biomarkers,providing innovative solutions for diabetes diagnosis and monitoring.This review comprehensively discusses the current developments in noninvasive wearable biosensors,emphasizing simultaneous detection of biochemical biomarkers(such as glucose,cortisol,lactate,branched-chain amino acids,and cytokines)and physiological signals(including heart rate,blood pressure,and sweat rate)for accurate,personalized diabetes management.We explore innovations in multimodal sensor design,materials science,biorecognition elements,and integration techniques,highlighting the importance of advanced data analytics,artificial intelligence-driven predictive algorithms,and closed-loop therapeutic systems.Additionally,the review addresses ongoing challenges in biomarker validation,sensor stability,user compliance,data privacy,and regulatory considerations.A holistic,multimodal approach enabled by these next-generation wearable biosensors holds significant potential for improving patient outcomes and facilitating proactive healthcare interventions in diabetes management. 展开更多
关键词 Wearable biosensors Multimodal sensors Diabetes monitoring Sweat biomarkers Glucose biosensors
在线阅读 下载PDF
Research of NOx Sensors Performance Test 被引量:1
2
作者 Zhengang Zhang Zhonggang Tang +3 位作者 Wei Gao Li Liu Cong Wang Hourui Sun 《Journal of Materials Science and Chemical Engineering》 2025年第2期23-30,共8页
NOx sensors, as a core component of diesel engine exhaust treatment system, play an important role in exhaust emission control, which can accurately and quickly detect the NOx and O2 concentration. It has become a nec... NOx sensors, as a core component of diesel engine exhaust treatment system, play an important role in exhaust emission control, which can accurately and quickly detect the NOx and O2 concentration. It has become a necessary option for the detection of existing exhaust emission standards. At present, there is limited and scattered information on knowledge and test methods of NOx sensors, the research of NOx sensors has become a challenging research topic at home and abroad. Based on these requirements, the article systematically integrates the knowledge of principle and testing methods. First of all, through introducing functional description of NOx sensors and the basic principle of NOx sensors, the relevant scholars can have an overall understanding of the product and master the operation mode of products. Secondly, the current status of performance test bench and methods of NOx sensors were described, which can contribute to having a clear understanding of the development process. After that, a new structure of NOx sensors test bench was purposed, which contains six major units including standard gas source, gas mixing unit, analyzer measurement unit, sensor measurement unit, data processing and display unit, exhaust gas treatment unit. And the test bench was validated. The experimental results show that the test bench has the advantages of high-repeatability, high reliability and low cost. And it can realize automatic detection of multiple target values, which is worthy further promotion. Thereby, the article can contribute to the development of its technology indirectly. 展开更多
关键词 NOx sensors FUNCTION Performance test Basic Principle
在线阅读 下载PDF
Liquid metal composites for wearable healthcare sensors
3
作者 Yiheng Qi Bing Tan +3 位作者 Ruixuan Zhu Dongchan Li Shichang Liu Xuxu Chen 《Rare Metals》 2025年第9期5980-6001,共22页
Wearable healthcare sensors can convert various physical signals, physiological signals, and electrophysiological activities of the human body into quantifiable resistive or capacitive changes for real-time health mon... Wearable healthcare sensors can convert various physical signals, physiological signals, and electrophysiological activities of the human body into quantifiable resistive or capacitive changes for real-time health monitoring. Gallium(Ga)-based liquid metal(LM) has become an ideal candidate for wearable healthcare sensors due to its excellent physical and chemical properties, such as high stretchability, high electrical conductivity, self-healing and thermal conductivity, and good biocompatibility. However,the high surface tension of LM makes it difficult to be processed. After LM is modified, the LM surface tension is reduced to be able to form LM composites by tightly bonding with the elastomer matrix, and the LM composites exhibit enhanced electromechanical, thermal, and magnetic properties, among others. Here, we review the fabrication methods of LM composites;we describe in detail the composite forms of LM composites and recent advances in tensile, thermal and electrical conductivity, high dielectric constant and biocompatibility. Sensor devices(e.g.,piezoelectric sensors, friction electric sensors, strain sensors, and magnetic sensors) of LM composites for wearable healthcare monitoring are summarized. Finally, challenges and opportunities of LM composites in the neighborhood of wearable healthcare sensors are also discussed. 展开更多
关键词 Wearable healthcare sensor Elastomer matrix LM composites
原文传递
Ultrasensitive Chemiresistive Gas Sensors Based on Dual-Mesoporous Zinc Stannate Composites for Room Temperature Rice Quality Monitoring
4
作者 Jinyong Xu Xuxiong Fan +3 位作者 Kaichun Xu Kaidi Wu Hanlin Liao Chao Zhang 《Nano-Micro Letters》 2025年第5期359-373,共15页
The integration of dual-mesoporous structures,the construction of heterojunctions,and the incorporation of highly concentrated oxygen vacancies are pivotal for advancing metal oxide-based gas sensors.Nonetheless,achie... The integration of dual-mesoporous structures,the construction of heterojunctions,and the incorporation of highly concentrated oxygen vacancies are pivotal for advancing metal oxide-based gas sensors.Nonetheless,achieving an optimal design that simultaneously combines mesoporous structures,precise heterojunction modulation,and controlled oxygen vacancies through a one-step process remains challenging.This study proposes an innovative method for fabricating zinc stannate semiconductors featuring dual-mesoporous structures and tunable oxygen vacancies via a direct solution precursor plasma spray technique.As a proof of concept,the resulting zinc stannate-based coatings are applied to detect 2-undecanone,a key biomarker for rice aging.Remarkably,the zinc oxide/zinc stannate heterojunctions with a well-defined secondary pore structure exhibit exceptional gas-sensing performance for 2-undecanone at room temperature.Furthermore,practical experiments indicate that the developed sensor effectively identifies adulteration in various rice varieties.These results underscore the potential of this method for designing metal oxides with tailored properties for high-performance gas sensors.The enhanced adsorption capacity and dual-mesoporous features of this semiconductor make it a promising candidate for sensing applications in agricultural food safety inspections. 展开更多
关键词 Zinc stannate SEMICONDUCTORS Dual-mesoporous structure Gas sensor Biomarker sensing
在线阅读 下载PDF
Recent progress on high-precision construction of nanoarchitectured SERS substrates for ultrasensitive bio-medical sensors
5
作者 Heguang Liu Ben Mou +8 位作者 Jinxin Li Na Tian Yiming Feng Xiaodong Cui Yury Kapitonov Huageng Liang Caiyin You Yuan Li Tianyou Zhai 《Advanced Powder Materials》 2025年第4期30-57,共28页
Surface-enhanced Raman spectroscopy(SERS)has evolved from a laboratory technique to a practical tool for ultra-sensitive detection,particularly in the biomedical field,where precise molecular identification is crucial... Surface-enhanced Raman spectroscopy(SERS)has evolved from a laboratory technique to a practical tool for ultra-sensitive detection,particularly in the biomedical field,where precise molecular identification is crucial.Despite significant advancements,a gap remains in the literature,as no comprehensive review systematically addresses the high-precision construction of SERS substrates for ultrasensitive biomedical detection.This review fills that gap by exploring recent progress in fabricating high-precision SERS substrates,emphasizing their role in enabling ultrasensitive bio-medical sensors.We carefully examine the key to these advancements is the precision engineering of substrates,including noble metals,semiconductors,carbon-based materials,and two-dimensional materials,which is essential for achieving the high sensitivity required for ultrasensitive detection.Applications in biomedical diagnostics and molecular analysis are highlighted.Finally,we address the challenges in SERS substrate preparation and outline future directions,focusing on improvement strategies,design concepts,and expanding applications for these advanced materials. 展开更多
关键词 SERS SERS substrates High-precision construction Ultrasensitive bio-medical sensors Enhancement mechanism
在线阅读 下载PDF
Visual Detection of Shrimp Freshness via Colorimetric Sensors
6
作者 SONG Guangjie WANG Lei TIAN Yanqing 《高等学校化学学报》 北大核心 2026年第1期198-204,共7页
Monitoring biogenic amines,which are metabolic byproducts of shrimp spoilage,is crucial for assessing food quality.Currently,most detection methods for biogenic amines suffer from limitations such as time-consuming pr... Monitoring biogenic amines,which are metabolic byproducts of shrimp spoilage,is crucial for assessing food quality.Currently,most detection methods for biogenic amines suffer from limitations such as time-consuming procedures,complex operations,and delayed results.Colorimetric analysis techniques have gained attention in recent years due to their advantages of short analysis time,simple operation,and suitability for on-site testing.This study successfully developed a series of colorimetric sensor platforms for biogenic amines by loading the natural active ingredient curcumin(CUR)and its derivative of Boron complex BFCUR onto filter paper and electrospun nanofibre films(ENFs),respectively.By analyzing the color response differences of these sensors upon contact with biogenic amines,the colorimetric sensors with superior detection performance were selected and further applied to the visual monitoring and indication of shrimp spoilage processes. 展开更多
关键词 Shrimp freshness Colorimetric analysis Biogenic amine sensor
在线阅读 下载PDF
Liver as a metabolic sensor in gestational diabetes:Implications for offspring’s liver and diabetes risk
7
作者 Mona Mohamed Ibrahim Abdalla Mohammed Ismail-Khan 《World Journal of Hepatology》 2025年第11期26-46,共21页
Gestational diabetes mellitus(GDM)is increasingly recognized not only for its immediate obstetric complications but also for its long-term metabolic consequences in both mothers and their offspring.Traditionally,resea... Gestational diabetes mellitus(GDM)is increasingly recognized not only for its immediate obstetric complications but also for its long-term metabolic consequences in both mothers and their offspring.Traditionally,research has emphasized the roles of pancreaticβ-cell dysfunction and placental dysregulation in GDM.However,emerging evidence highlights the maternal liver as a central metabolic hub during pregnancy coordinating glucose,lipid,and hormonal adaptations essential for fetal development.This review synthesizes current findings on how GDM disrupts the maternal liver’s adaptive roles,transforming it from a metabolic coordinator into a source of maladaptive endocrine,inflammatory,and nutrient signals.It outlines key mechanistic pathways through which maternal hepatic dysfunction may increase offspring susceptibility to non-alcoholic fatty liver disease and type 2 diabetes mellitus.These include hepatokine dysregulation,altered lipid metabolism,impaired insulin signaling,inflammatory and oxidative stress pathways,and epigenetic and transcriptomic reprogramming.In addition,it explores novel axes such as the gut-liver-placenta interplay,bile acid signaling disruptions,endoplasmic reticulum stress responses,and extracellular vesiclemediated communication.By reframing the maternal liver’s role in GDM pathophysiology,this review identifies critical windows for early clinical intervention and highlights the potential for liver-focused strategies to prevent the intergenerational transmission of metabolic disease. 展开更多
关键词 Hepatokines LIVER Metabolic sensor Fetal metabolic imprinting Epigenetic reprogramming Intrauterine exposure Insulin resistance in pregnancy
暂未订购
Thermally Drawn Flexible Fiber Sensors:Principles,Materials,Structures,and Applications
8
作者 ZhaoLun Zhang Yuchang Xue +7 位作者 Pengyu Zhang Xiao Yang Xishun Wang Chunyang Wang Haisheng Chen Xinghua Zheng Xin Yin Ting Zhang 《Nano-Micro Letters》 2026年第1期95-129,共35页
Flexible fiber sensors,However,traditional methods face challenges in fabricating low-cost,large-scale fiber sensors.In recent years,the thermal drawing process has rapidly advanced,offering a novel approach to flexib... Flexible fiber sensors,However,traditional methods face challenges in fabricating low-cost,large-scale fiber sensors.In recent years,the thermal drawing process has rapidly advanced,offering a novel approach to flexible fiber sensors.Through the preform-tofiber manufacturing technique,a variety of fiber sensors with complex functionalities spanning from the nanoscale to kilometer scale can be automated in a short time.Examples include temperature,acoustic,mechanical,chemical,biological,optoelectronic,and multifunctional sensors,which operate on diverse sensing principles such as resistance,capacitance,piezoelectricity,triboelectricity,photoelectricity,and thermoelectricity.This review outlines the principles of the thermal drawing process and provides a detailed overview of the latest advancements in various thermally drawn fiber sensors.Finally,the future developments of thermally drawn fiber sensors are discussed. 展开更多
关键词 Thermally drawn fiber sensors Sensing principles Temperature sensors Mechanical sensors Multifunctional sensors
在线阅读 下载PDF
A Reconfigurable Omnidirectional Triboelectric Whisker Sensor Array for Versatile Human–Machine–Environment Interaction
9
作者 Weichen Wang Jiaqi Zhu +9 位作者 Hongfa Zhao Fei Yao Yuzhu Zhang Xiankuan Qian Mingrui Shu Zhigang Wu Minyi Xu Hongya Geng Wenbo Ding Juntian Qu 《Nano-Micro Letters》 2026年第3期121-140,共20页
Developing effective,versatile,and high-precision sensing interfaces remains a crucial challenge in human-machine-environment interaction applications.Despite progress in interaction-oriented sensing skins,limitations... Developing effective,versatile,and high-precision sensing interfaces remains a crucial challenge in human-machine-environment interaction applications.Despite progress in interaction-oriented sensing skins,limitations remain in unit-level reconfiguration,multiaxial force and motion sensing,and robust operation across dynamically changing or irregular surfaces.Herein,we develop a reconfigurable omnidirectional triboelectric whisker sensor array(RO-TWSA)comprising multiple sensing units that integrate a triboelectric whisker structure(TWS)with an untethered hydro-sealing vacuum sucker(UHSVS),enabling reversibly portable deployment and omnidirectional perception across diverse surfaces.Using a simple dual-triangular electrode layout paired with MXene/silicone nanocomposite dielectric layer,the sensor unit achieves precise omnidirectional force and motion sensing with a detection threshold as low as 0.024 N and an angular resolution of 5°,while the UHSVS provides reliable and reversible multi-surface anchoring for the sensor units by involving a newly designed hydrogel combining high mechanical robustness and superior water absorption.Extensive experiments demonstrate the effectiveness of RO-TWSA across various interactive scenarios,including teleoperation,tactile diagnostics,and robotic autonomous exploration.Overall,RO-TWSA presents a versatile and high-resolution tactile interface,offering new avenues for intelligent perception and interaction in complex real-world environments. 展开更多
关键词 Reconfigurable sensor array Interaction interface Tactile perception Omnidirectional sensor Reversible anchoring
在线阅读 下载PDF
Deep Learning-Assisted Organogel Pressure Sensor for Alphabet Recognition and Bio-Mechanical Motion Monitoring
10
作者 Kusum Sharma Kousik Bhunia +5 位作者 Subhajit Chatterjee Muthukumar Perumalsamy Anandhan Ayyappan Saj Theophilus Bhatti Yung‑Cheol Byun Sang-Jae Kim 《Nano-Micro Letters》 2026年第2期644-663,共20页
Wearable sensors integrated with deep learning techniques have the potential to revolutionize seamless human-machine interfaces for real-time health monitoring,clinical diagnosis,and robotic applications.Nevertheless,... Wearable sensors integrated with deep learning techniques have the potential to revolutionize seamless human-machine interfaces for real-time health monitoring,clinical diagnosis,and robotic applications.Nevertheless,it remains a critical challenge to simultaneously achieve desirable mechanical and electrical performance along with biocompatibility,adhesion,self-healing,and environmental robustness with excellent sensing metrics.Herein,we report a multifunctional,anti-freezing,selfadhesive,and self-healable organogel pressure sensor composed of cobalt nanoparticle encapsulated nitrogen-doped carbon nanotubes(CoN CNT)embedded in a polyvinyl alcohol-gelatin(PVA/GLE)matrix.Fabricated using a binary solvent system of water and ethylene glycol(EG),the CoN CNT/PVA/GLE organogel exhibits excellent flexibility,biocompatibility,and temperature tolerance with remarkable environmental stability.Electrochemical impedance spectroscopy confirms near-stable performance across a broad humidity range(40%-95%RH).Freeze-tolerant conductivity under sub-zero conditions(-20℃)is attributed to the synergistic role of CoN CNT and EG,preserving mobility and network integrity.The Co N CNT/PVA/GLE organogel sensor exhibits high sensitivity of 5.75 k Pa^(-1)in the detection range from 0 to 20 k Pa,ideal for subtle biomechanical motion detection.A smart human-machine interface for English letter recognition using deep learning achieved 98%accuracy.The organogel sensor utility was extended to detect human gestures like finger bending,wrist motion,and throat vibration during speech. 展开更多
关键词 Wearable ORGANOGEL Deep learning Pressure sensor Bio-mechanical motion
在线阅读 下载PDF
Two-Dimensional MXene-Based Advanced Sensors for Neuromorphic Computing Intelligent Application
11
作者 Lin Lu Bo Sun +2 位作者 Zheng Wang Jialin Meng Tianyu Wang 《Nano-Micro Letters》 2026年第2期664-691,共28页
As emerging two-dimensional(2D)materials,carbides and nitrides(MXenes)could be solid solutions or organized structures made up of multi-atomic layers.With remarkable and adjustable electrical,optical,mechanical,and el... As emerging two-dimensional(2D)materials,carbides and nitrides(MXenes)could be solid solutions or organized structures made up of multi-atomic layers.With remarkable and adjustable electrical,optical,mechanical,and electrochemical characteristics,MXenes have shown great potential in brain-inspired neuromorphic computing electronics,including neuromorphic gas sensors,pressure sensors and photodetectors.This paper provides a forward-looking review of the research progress regarding MXenes in the neuromorphic sensing domain and discussed the critical challenges that need to be resolved.Key bottlenecks such as insufficient long-term stability under environmental exposure,high costs,scalability limitations in large-scale production,and mechanical mismatch in wearable integration hinder their practical deployment.Furthermore,unresolved issues like interfacial compatibility in heterostructures and energy inefficiency in neu-romorphic signal conversion demand urgent attention.The review offers insights into future research directions enhance the fundamental understanding of MXene properties and promote further integration into neuromorphic computing applications through the convergence with various emerging technologies. 展开更多
关键词 TWO-DIMENSIONAL MXenes sensor Neuromorphic computing Multimodal intelligent system Wearable electronics
在线阅读 下载PDF
Active optical waveguides and metal ion sensors based on nanofibers with aggregation induced emission
12
作者 Liping Xu Xianguang Yang +9 位作者 Ming Chen Kai Li Junda He Dehua Tian Zaizhu Lou Fangchang Tan Puxiang Lai Andrea Camposeo Dario Pisignano Baojun Li 《Nano Research》 2026年第1期1077-1088,共12页
Fiber-structured ion sensors have gained traction in health monitoring and medical diagnostics owing to their structural flexibility,enhanced sensitivity,and suitability for integration into wearable devices.This stud... Fiber-structured ion sensors have gained traction in health monitoring and medical diagnostics owing to their structural flexibility,enhanced sensitivity,and suitability for integration into wearable devices.This study employed a simple and efficient solutionbased process to fabricate nanofibers containing aggregation-induced emission(AIE)dyes.The resulting AIE nanofibers exhibited stable and intense fluorescence,nanosecond fluorescence lifetime,and low-loss light transport when functioning as active waveguides.Additionally,crossed nanofiber intersections exhibited diffraction-limited emission spots.The AIE nanofibers demonstrate efficient and ionspecific fluorescence quenching in response to Ag^(+).These results support the development of sensing units capable of operating in liquid environments or in direct contact with skin or tissues,facilitating real-time monitoring of ion concentrations for personalized healthcare management. 展开更多
关键词 aggregation-induced emission NANOFIBERS fluorescence lifetime active waveguide ion sensors
原文传递
Machine learning facilitated gesture recognition using structural optimized wearable yarn-based strain sensor
13
作者 Xiaoyan Yue Qingtao Li +6 位作者 Ziqi Wang Lingmeihui Duan Wenke Yang Duo Pan Hu Liu Chuntai Liu Changyu Shen 《Nano Research》 2026年第1期1200-1212,共13页
The advancement of wearable sensing technologies demands multifunctional materials that integrate high sensitivity,environmental resilience,and intelligent signal processing.In this work,a flexible hydrophobic conduct... The advancement of wearable sensing technologies demands multifunctional materials that integrate high sensitivity,environmental resilience,and intelligent signal processing.In this work,a flexible hydrophobic conductive yarn(FCB@SY)featuring a controllable microcrack structure is developed via a synergistic approach combining ultrasonic swelling and non-solvent induced phase separation(NIPS).By embedding a robust conductive network and engineering microcrack morphology,the resulting sensor achieves an ultrahigh gauge factor(GF≈12,670),an ultrabroad working range(0%-547%),a low detection limit(0.5%),rapid response/recovery time(140 ms/140 ms),and outstanding durability over 10,000 cycles.Furthermore,the hydrophobic surface endowed by conductive coatings imparts exceptional chemical stability against acidic and alkaline environments,as well as reliable waterproof performance.This enables consistent functionality under harsh conditions,including underwater operation.Integrated with machine learning algorithms,the FCB@SY-based intelligent sensing system demonstrates dualmode capabilities in human motion tracking and gesture recognition,offering significant potential for applications in wearable electronics,human-machine interfaces,and soft robotics. 展开更多
关键词 wearable electronic device machine learning gesture recognition strain sensors HYDROPHOBIC
原文传递
A hydroxyethyl cellulose-enhanced high-adhesion, freeze-resistant hydrogel flexible sensor for robotic posture detection and tactile sensing at low temperatures
14
作者 Jiahui Shao Dongzhi Zhang +4 位作者 Hao Zhang Yihong Guo Mingyu Qi Yuling Mao Wenbo Shi 《Nano Research》 2026年第1期1111-1125,共15页
In the context of the rapid development of artificial intelligence and robotics,their application scenarios are continuously expanding to a variety of complex environments,with increasing attention being paid to the u... In the context of the rapid development of artificial intelligence and robotics,their application scenarios are continuously expanding to a variety of complex environments,with increasing attention being paid to the use of flexible sensors in lowtemperature environments.In this study,an ionic hydrogel was synthesized using acrylamide(AM),hydroxyethyl cellulose(HEC),and lithium chloride(LiCl)as composites.This hydrogel exhibits high adhesion,excellent sensitivity(gauge factor(GF)=2.84),rapid response time(100 ms),exceptional stretch ability(>1776%),high toughness(2.5 MJ/m^(3)),and the ability to maintain detectability at low temperatures(-60℃).HEC imparts reliable mechanical properties to the sensor through hydrogen bonding interactions of its hydroxyl groups.LiCl ensures that the sensor has outstanding antifreezing properties,maintains good conductivity and mechanical performance.Used for robotic attitude detection,the sensor demonstrated accurate recognition of various joint movements at both 20 and -20℃.This technology was extended to industrial operations and maintenance,where a mechanical claw was used to grasp parts at both room temperature and low temperature.A convolutional neural network deep learning algorithm was employed to identify and classify eight types of parts,achieving an impressive recognition accuracy of 98.8%.The polyacrylamide(PAM)/HEC/LiCl hydrogel sensor demonstrates the capability for wide-temperature range detection in flexible robotics,holding significant potential for future applications in human-machine interaction,tactile perception,and related fields. 展开更多
关键词 hydrogel sensor high adhesion ANTI-FREEZING robotic attitude detection tactile perception
原文传递
Ultrathin Gallium Nitride Quantum-Disk-in-Nanowire-Enabled Reconfigurable Bioinspired Sensor for High-Accuracy Human Action Recognition
15
作者 Zhixiang Gao Xin Ju +10 位作者 Huabin Yu Wei Chen Xin Liu Yuanmin Luo Yang Kang Dongyang Luo JiKai Yao Wengang Gu Muhammad Hunain Memon Yong Yan Haiding Sun 《Nano-Micro Letters》 2026年第2期439-453,共15页
Human action recognition(HAR)is crucial for the development of efficient computer vision,where bioinspired neuromorphic perception visual systems have emerged as a vital solution to address transmission bottlenecks ac... Human action recognition(HAR)is crucial for the development of efficient computer vision,where bioinspired neuromorphic perception visual systems have emerged as a vital solution to address transmission bottlenecks across sensor-processor interfaces.However,the absence of interactions among versatile biomimicking functionalities within a single device,which was developed for specific vision tasks,restricts the computational capacity,practicality,and scalability of in-sensor vision computing.Here,we propose a bioinspired vision sensor composed of a Ga N/Al N-based ultrathin quantum-disks-in-nanowires(QD-NWs)array to mimic not only Parvo cells for high-contrast vision and Magno cells for dynamic vision in the human retina but also the synergistic activity between the two cells for in-sensor vision computing.By simply tuning the applied bias voltage on each QD-NW-array-based pixel,we achieve two biosimilar photoresponse characteristics with slow and fast reactions to light stimuli that enhance the in-sensor image quality and HAR efficiency,respectively.Strikingly,the interplay and synergistic interaction of the two photoresponse modes within a single device markedly increased the HAR recognition accuracy from 51.4%to 81.4%owing to the integrated artificial vision system.The demonstration of an intelligent vision sensor offers a promising device platform for the development of highly efficient HAR systems and future smart optoelectronics. 展开更多
关键词 GaN nanowire Quantum-confined Stark effect Voltage-tunable photoresponse Bioinspired sensor Artificial vision system
在线阅读 下载PDF
Skin-Inspired Ultra-Linear Flexible Iontronic Pressure Sensors for Wearable Musculoskeletal Monitoring
16
作者 Pei Li Shipan Lang +6 位作者 Lei Xie Yong Zhang Xin Gou Chao Zhang Chenhui Dong Chunbao Li Jun Yang 《Nano-Micro Letters》 2026年第2期454-470,共17页
The growing prevalence of exercise-induced tibial stress fractures demands wearable sensors capable of monitoring dynamic musculoskeletal loads with medical-grade precision.While flexible pressure-sensing insoles show... The growing prevalence of exercise-induced tibial stress fractures demands wearable sensors capable of monitoring dynamic musculoskeletal loads with medical-grade precision.While flexible pressure-sensing insoles show clinical potential,their development has been hindered by the intrinsic trade-off between high sensitivity and full-range linearity(R^(2)>0.99 up to 1 MPa)in conventional designs.Inspired by the tactile sensing mechanism of human skin,where dermal stratification enables wide-range pressure adaptation and ion-channelregulated signaling maintains linear electrical responses,we developed a dual-mechanism flexible iontronic pressure sensor(FIPS).This innovative design synergistically combines two bioinspired components:interdigitated fabric microstructures enabling pressure-proportional contact area expansion(αP1/3)and iontronic film facilitating self-adaptive ion concentration modulation(αP^(2/3)),which together generate a linear capacitance-pressure response(CαP).The FIPS achieves breakthrough performance:242 kPa^(-1)sensitivity with 0.997linearity across 0-1 MPa,yielding a record linear sensing factor(LSF=242,000).The design is validated across various substrates and ionic materials,demonstrating its versatility.Finally,the FIPS-driven design enables a smart insole demonstrating 1.8%error in tibial load assessment during gait analysis,outperforming nonlinear counterparts(6.5%error)in early fracture-risk prediction.The biomimetic design framework establishes a universal approach for developing high-performance linear sensors,establishing generalized principles for medical-grade wearable devices. 展开更多
关键词 Iontronic sensor Skin-inspired design Linear range Linear sensing factor Biomechanical monitoring
在线阅读 下载PDF
Test and analysis of dynamic compaction vibration based on piezoelectric sensor
17
作者 段伟 韩云山 +2 位作者 董彦莉 秦伟华 吴晗 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2015年第2期116-122,共7页
The paper takes a new campus project site of Shanxi university town for example, tests the influence of dynamic com- paction vibration and vibration isolation effect of isolation trench on this ground, and compares th... The paper takes a new campus project site of Shanxi university town for example, tests the influence of dynamic com- paction vibration and vibration isolation effect of isolation trench on this ground, and compares the influences of the dynamic compaction vibration on surrounding buildings with isolation trench and without it. Furthermore, the attenuation law of dy- namic compaction vibration in fill foundation of the loess area under different tamping energy and how to determine safe distance of dynamic compaction construction are studied. And then the quantitative relationship between acceleration and vibration source in new campus project site is presented. We derive the evaluation method that dynamic compaction construction affects adjacent buildings by contrasting with the existing standards and norms. The monitoring results show that isolation trench makes the amplitude attenuation of the horizontal velocity of dynamic compaction vibration reach above 75%, and the safe dis- tance be 30 m under the tamping energy of 6 000 kN · m. Therefore, isolation trench is better for vibration reduction under dynamic compaction construction. 展开更多
关键词 dynamic compaction VIBRATION safety distance isolation trench piezoelectric sensor
在线阅读 下载PDF
A Self-Referenced Fiber-Optic Refractive Index Sensor for Cure Monitoring of Epoxy Composites
18
作者 杨春 骆飞 《Journal of Southeast University(English Edition)》 EI CAS 2000年第1期28-33,共6页
A self referenced fiber optic refractive index sensor is developed to measure quantitative cure extent of epoxy. In case the sensor is applied to in situ cure monitoring of epoxy composites, each sensor embedded in... A self referenced fiber optic refractive index sensor is developed to measure quantitative cure extent of epoxy. In case the sensor is applied to in situ cure monitoring of epoxy composites, each sensor embedded in different location within the structure is self referenced and can be normalized to a common scale. Therefore, the real time comparative of each sensor’s output becomes possible and variations in the extent of cure at different locations can be monitored. The developed sensor was used to monitor the isothermal cure of an epoxy system. The output of the sensor was compared with the results of the differential scanning calorimetry (DSC). The self referencing function of the sensor is confirmed. 展开更多
关键词 cure monitoring RESINS COMPOSItes optical fiber sensors
在线阅读 下载PDF
Flexible Tactile Electronic Skin Sensor with 3D Force Detection Based on Porous CNTs/PDMS Nanocomposites 被引量:24
19
作者 Xuguang Sun Jianhai Sun +9 位作者 Tong Li Shuaikang Zheng Chunkai Wang Wenshuo Tan Jingong Zhang Chang Liu Tianjun Ma Zhimei Qi Chunxiu Liu Ning Xue 《Nano-Micro Letters》 SCIE EI CAS CSCD 2019年第4期35-48,共14页
Flexible tactile sensors have broad applications in human physiological monitoring,robotic operation and human-machine interaction.However,the research of wearable and flexible tactile sensors with high sensitivity,wi... Flexible tactile sensors have broad applications in human physiological monitoring,robotic operation and human-machine interaction.However,the research of wearable and flexible tactile sensors with high sensitivity,wide sensing range and ability to detect three-dimensional(3D)force is still very challenging.Herein,a flexible tactile electronic skin sensor based on carbon nanotubes(CNTs)/polydimethylsiloxane(PDMS)nanocomposites is presented for 3D contact force detection.The 3D forces were acquired from combination of four specially designed cells in a sensing element.Contributed from the double-sided rough porous structure and specific surface morphology of nanocomposites,the piezoresistive sensor possesses high sensitivity of 12.1 kPa?1 within the range of 600 Pa and 0.68 kPa?1 in the regime exceeding 1 kPa for normal pressure,as well as 59.9 N?1 in the scope of<0.05 N and>2.3 N?1 in the region of<0.6 N for tangential force with ultra-low response time of 3.1 ms.In addition,multi-functional detection in human body monitoring was employed with single sensing cell and the sensor array was integrated into a robotic arm for objects grasping control,indicating the capacities in intelligent robot applications. 展开更多
关键词 Flexible TACTILE sensorS Electronic SKIN Piezoresistive sensorS CNTs/PDMS NANOCOMPOSItes 3D force detection
在线阅读 下载PDF
Hydrogen Gas Sensor Based on Nanocrystalline SnO_2 Thin Film Grown on Bare Si Substrates 被引量:9
20
作者 Imad H.Kadhim H.Abu Hassan Q.N.Abdullah 《Nano-Micro Letters》 SCIE EI CAS 2016年第1期20-28,共9页
In this paper, high-quality nanocrystalline SnO_2 thin film was grown on bare Si(100) substrates by a sol–gel method. A metal–semiconductor–metal gas sensor was fabricated using nanocrystalline SnO_2 thin film and ... In this paper, high-quality nanocrystalline SnO_2 thin film was grown on bare Si(100) substrates by a sol–gel method. A metal–semiconductor–metal gas sensor was fabricated using nanocrystalline SnO_2 thin film and palladium(Pd)metal. The contact between Pd and nanocrystalline SnO_2 film is tunable. Ohmic barrier contact was formed without addition of glycerin, while Schottky contact formed by adding glycerin. Two kinds of sensor devices with Schottky contact were fabricated(Device 1: 8 h, 500 °C; Device 2: 10 h, 400 °C). The room temperature sensitivity for hydrogen(H_2) was120 and 95 % in 1000 ppm H_2, and the low power consumption was 65 and 86 l W for two devices, respectively. At higher temperature of 125 °C, the sensitivity was increased to 195 and 160 %, respectively. The sensing measurements were repeatable at various temperatures(room temperature, 75, 125 °C) for over 50 min. It was found that Device 1 has better sensitivity than Device 2 due to its better crystallinity. These findings indicate that the sensors fabricated on bare Si by adding glycerin to the sol solution have strong ability to detect H_2 gas under different concentrations and temperatures. 展开更多
关键词 SNO2 GLYCERIN Sol–gel SCHOTTKY contact Hydrogen sensor
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部