Adaptive optics(AO)has significantly advanced high-resolution solar observations by mitigating atmospheric turbulence.However,traditional post-focal AO systems suffer from external configurations that introduce excess...Adaptive optics(AO)has significantly advanced high-resolution solar observations by mitigating atmospheric turbulence.However,traditional post-focal AO systems suffer from external configurations that introduce excessive optical surfaces,reduced light throughput,and instrumental polarization.To address these limitations,we propose an embedded solar adaptive optics telescope(ESAOT)that intrinsically incorporates the solar AO(SAO)subsystem within the telescope's optical train,featuring a co-designed correction chain with a single Hartmann-Shack full-wavefront sensor(HS f-WFS)and a deformable secondary mirror(DSM).The HS f-WFS uses temporal-spatial hybrid sampling technique to simultane-ously resolve tip-tilt and high-order aberrations,while the DSM performs real-time compensation through adaptive modal optimization.This unified architecture achieves symmetrical polarization suppression and high system throughput by min-imizing optical surfaces.A 600 mm ESAOT prototype incorporating a 12×12 micro-lens array HS f-WFS and 61-actuator piezoelectric DSM has been developed and successfully conducted on-sky photospheric observations.Validations in-cluding turbulence simulations,optical bench testing,and practical observations at the Lijiang observatory collectively confirm the system's capability to maintain aboutλ/10 wavefront error during active region tracking.This architectural breakthrough of the ESAOT addresses long-standing SAO integration challenges in solar astronomy and provides scala-bility analyses confirming direct applicability to the existing and future large solar observation facilities.展开更多
基金support from the National Science Foundation of China(NSFC)(Grants No.12293031 and No.61905252)the National Science Foundation for Distinguished Young Scholars(Grant No.12022308)the National Key R&D Program of China(Grants No.2021YFC2202200 and No.2021YFC2202204).
文摘Adaptive optics(AO)has significantly advanced high-resolution solar observations by mitigating atmospheric turbulence.However,traditional post-focal AO systems suffer from external configurations that introduce excessive optical surfaces,reduced light throughput,and instrumental polarization.To address these limitations,we propose an embedded solar adaptive optics telescope(ESAOT)that intrinsically incorporates the solar AO(SAO)subsystem within the telescope's optical train,featuring a co-designed correction chain with a single Hartmann-Shack full-wavefront sensor(HS f-WFS)and a deformable secondary mirror(DSM).The HS f-WFS uses temporal-spatial hybrid sampling technique to simultane-ously resolve tip-tilt and high-order aberrations,while the DSM performs real-time compensation through adaptive modal optimization.This unified architecture achieves symmetrical polarization suppression and high system throughput by min-imizing optical surfaces.A 600 mm ESAOT prototype incorporating a 12×12 micro-lens array HS f-WFS and 61-actuator piezoelectric DSM has been developed and successfully conducted on-sky photospheric observations.Validations in-cluding turbulence simulations,optical bench testing,and practical observations at the Lijiang observatory collectively confirm the system's capability to maintain aboutλ/10 wavefront error during active region tracking.This architectural breakthrough of the ESAOT addresses long-standing SAO integration challenges in solar astronomy and provides scala-bility analyses confirming direct applicability to the existing and future large solar observation facilities.
基金Project supported by the Science and Technology Projects of General Administration of Quality Supervision,Inspection,and Quarantine of China(Nos.2009QK153 and 2009QK149)the Jiangsu Provincial Science and Technology Support Project(No.BE2012125)the Priority Academic Program Development of the Jiangsu Higher Education,China