The performance of complementary feeders, running in parallel, can be significantly improved by installing static transfer switches (STSs) at critical locations. We develop the STS control logic, which transfers the...The performance of complementary feeders, running in parallel, can be significantly improved by installing static transfer switches (STSs) at critical locations. We develop the STS control logic, which transfers the critical load from the preferred feeder to the alternate feeder when a voltage sag or a fault occurs on the preferred feeder. A forced commutation technique is proposed and implemented to turn off the preferred feeders' thyristor, thus avoiding cross current to flow and minimizing the transfer time. Simulation results show that the forced commutation technique is more effective as compared to the recently proposed time delay technique for STS operation. Two different feeders, namely New Exchange, the preferred feeder, and Sector 1-10/2, the alternate feeder of Islamabad Electric Supply COmpany (IESCO), Pakistan, have been selected for case studies. The software PSCAD/EMTDC professional package has been used for simulation.展开更多
This paper suggests a combined novel control strategy for DFIG based wind power systems(WPS)under both nonlinear and unbalanced load conditions.The combined control approach is designed by coordinating the machine sid...This paper suggests a combined novel control strategy for DFIG based wind power systems(WPS)under both nonlinear and unbalanced load conditions.The combined control approach is designed by coordinating the machine side converter(MSC)and the load side converter(LSC)control approaches.The proposed MSC control approach is designed by using a model predictive control(MPC)approach to generate appropriate real and reactive power.The MSC controller selects an appropriate rotor voltage vector by using a minimized optimization cost function for the converter operation.It shows its superiority by eliminating the requirement of transformation,switching table,and the PWM techniques.The proposed MSC reduces the cost,complexity,and computational burden of the WPS.On the other hand,the LSC control approach is designed by using a mathematical morphological technique(MMT)for appropriate DC component extraction.Due to the appropriate DC-component extraction,the WPS can compensate the harmonics during both steady and dynamic states.Further,the LSC controller also provides active power filter operation even under the shutdown of WPS condition.To verify the applicability of coordinated control operation,the WPS-based microgrid system is tested under various test conditions.The proposed WPS is designed by using a MATLAB/Simulink software.展开更多
This paper investigates the temperature and loading rate dependencies of the critical stress intensity fac-tor(KIC)for dislocation nucleation at crack tips.We develop a new KIC formula with a generalized form by incor...This paper investigates the temperature and loading rate dependencies of the critical stress intensity fac-tor(KIC)for dislocation nucleation at crack tips.We develop a new KIC formula with a generalized form by incorporating the atomistic reaction pathway analysis into Transition State Theory(TST),which cap-tures the KIC of the first dislocation nucleation event at crack tips and its sensitivity to temperature and loading rates.We use this formula and atomistic modeling information to specifically calculate the KIC for quasi-two-dimensional crack tips located at various slant twin boundaries in nano-twinned TiAl al-loys across a wide range of temperatures and strain rates.Our findings reveal that twinning dislocation nucleation at the crack tip dominates crack propagation when twin boundaries(TBs)are tilted at 15.79°and 29.5°.Conversely,when TBs tilt at 45.29°,54.74°,and 70.53°,dislocation slip becomes the preferred mode.Additionally,at TB tilts of 29.5°and 70.53°,at higher temperatures above 800 K and typical exper-imental loading rates,both dislocation nucleation modes can be activated with nearly equal probability.This observation is particularly significant as it highlights scenarios that molecular dynamics simulations,due to their time scale limitations,cannot adequately explore.This insight underscores the importance of analyzing temperature and loading rate dependencies of the KIC to fully understand the competing mechanisms of dislocation nucleation and their impact on material behavior.展开更多
This research work consisted in making a comparative study of the thermal comfort of four materials types used in the construction of a building.A simulation of the building with the various materials on the KoZiBu so...This research work consisted in making a comparative study of the thermal comfort of four materials types used in the construction of a building.A simulation of the building with the various materials on the KoZiBu software in reference and optimized situation was carried out.A study on the sensitive and air-conditioning loads as well as the curves of temperatures on a building of type F2 in situation of reference and in optimized situation was made on the one hand and the other hand a study on the same building without air-conditioning in reference and optimized situation.Finally,the analysis of the results favorizes the choice of the material having the best thermal comfort.The conclusions of these works show that the material that can give the best comfort and the most economics in terms of energy is the adobe which offers temperatures(301.40K or 28.40°C)and a good indoor thermal environment compared to BLT(blocks of cut laterite),BTC(blocks of compressed earth)and cinder block.Dwellings built with earthen materials offer a better indoor thermal environment than those built with modern construction materials,which are used more and more in the construction of houses in Burkina Faso.展开更多
The response to the catchment changes of the sedimentary environment of the western intertidal flat of Yalu River Estuary was investigated by analyzing the vertical variations of the grain size of sediment cores,along...The response to the catchment changes of the sedimentary environment of the western intertidal flat of Yalu River Estuary was investigated by analyzing the vertical variations of the grain size of sediment cores,along with the hydrologic data and human activities in the catchment.The results demonstrated a stepwise decreasing trend for the variations of both the sediment load and water discharge into the sea,which could be divided into three stages as 1958–1970,1971–1990 and 1991–2009.Reservoir construction and the changes of catchment vegetation coverage turned out to be the two predominant contributors to the changes.There are four periods for the variation of the sensitive components of the sediment cores from 1940 to 2010,i.e.,1940–1950,1951–1980,1981–1990 and 1991–2010.The vertical distribution of grain size in the cores mainly varied with the changes of vegetation coverage in the catchment and reservoir construction from 1960 to 1980,whereas it varied depending on the intensity of water and soil erosion in the catchment from 1980 to 1990.Despite the further reduction of the water and sediment input into the sea from 1990 to 2009,this period was characterized by coarsening trends for the grain size of sediment in the estuarine intertidal flat and correspondingly,the significantly increased silt contents of the sensitive component.展开更多
The variation of electrical demand above its base value is its common characteristic. The weather dependent variation of demand, especially where the weather is severe in nature, requires a significant reserve margin ...The variation of electrical demand above its base value is its common characteristic. The weather dependent variation of demand, especially where the weather is severe in nature, requires a significant reserve margin of the generation system. The evaluation of the weather dependent component of the electric demand is the basic tool for the planning of the reserve margin. This paper evaluates the weather dependent portion of the load of BPS (Bangladesh power system). The evaluation of the weather dependent portion of the demand is based on the EMD (empirical mode decomposition) technique.展开更多
Voltage sensitive loads are extremely susceptible to voltage fluctuations,resulting in power system safety issues and economic losses.Due to the load component of voltage sensitive loads being changed at different tim...Voltage sensitive loads are extremely susceptible to voltage fluctuations,resulting in power system safety issues and economic losses.Due to the load component of voltage sensitive loads being changed at different times,a voltage sensitive load model including the time characteristics is proposed.To improve the voltage distribution in the active distribution network(ADN),the linearized active and reactive power coordinated optimization model for minimizing the operational cost(including the fluctuating cost of sensitive loads)is established.Finally,the simulation on the IEEE 33-bus system demonstrates that the proposed control strategy can effectively stabilize the bus voltage of the sensitive load and reduce the operational costs of the ADN.展开更多
文摘The performance of complementary feeders, running in parallel, can be significantly improved by installing static transfer switches (STSs) at critical locations. We develop the STS control logic, which transfers the critical load from the preferred feeder to the alternate feeder when a voltage sag or a fault occurs on the preferred feeder. A forced commutation technique is proposed and implemented to turn off the preferred feeders' thyristor, thus avoiding cross current to flow and minimizing the transfer time. Simulation results show that the forced commutation technique is more effective as compared to the recently proposed time delay technique for STS operation. Two different feeders, namely New Exchange, the preferred feeder, and Sector 1-10/2, the alternate feeder of Islamabad Electric Supply COmpany (IESCO), Pakistan, have been selected for case studies. The software PSCAD/EMTDC professional package has been used for simulation.
基金Assistance provided by Council of scientific and industrial research(CSIR),Government of India,under the acknowledgment number 143460/2K19/1(File:09/969(0013)/2K20-EMR-I)and Siksha O Anusandhan(Deemed to be University).
文摘This paper suggests a combined novel control strategy for DFIG based wind power systems(WPS)under both nonlinear and unbalanced load conditions.The combined control approach is designed by coordinating the machine side converter(MSC)and the load side converter(LSC)control approaches.The proposed MSC control approach is designed by using a model predictive control(MPC)approach to generate appropriate real and reactive power.The MSC controller selects an appropriate rotor voltage vector by using a minimized optimization cost function for the converter operation.It shows its superiority by eliminating the requirement of transformation,switching table,and the PWM techniques.The proposed MSC reduces the cost,complexity,and computational burden of the WPS.On the other hand,the LSC control approach is designed by using a mathematical morphological technique(MMT)for appropriate DC component extraction.Due to the appropriate DC-component extraction,the WPS can compensate the harmonics during both steady and dynamic states.Further,the LSC controller also provides active power filter operation even under the shutdown of WPS condition.To verify the applicability of coordinated control operation,the WPS-based microgrid system is tested under various test conditions.The proposed WPS is designed by using a MATLAB/Simulink software.
基金supported by the China Scholarship Council(Grant No.202007865002)the National Natural Science Foundation of China(Grant Nos.51865027,52065036,and 52065037)+2 种基金the Educational Unveiling Leadership Project of Gansu Province of China(Grant No.2021jyjbgs01)the support by JSPS KAKENHI(Grant No.JP23K20037)MEXT Programs(Grant Nos.JPMXP1122684766,JPMXP1020230325,and JPMXP1020230327).
文摘This paper investigates the temperature and loading rate dependencies of the critical stress intensity fac-tor(KIC)for dislocation nucleation at crack tips.We develop a new KIC formula with a generalized form by incorporating the atomistic reaction pathway analysis into Transition State Theory(TST),which cap-tures the KIC of the first dislocation nucleation event at crack tips and its sensitivity to temperature and loading rates.We use this formula and atomistic modeling information to specifically calculate the KIC for quasi-two-dimensional crack tips located at various slant twin boundaries in nano-twinned TiAl al-loys across a wide range of temperatures and strain rates.Our findings reveal that twinning dislocation nucleation at the crack tip dominates crack propagation when twin boundaries(TBs)are tilted at 15.79°and 29.5°.Conversely,when TBs tilt at 45.29°,54.74°,and 70.53°,dislocation slip becomes the preferred mode.Additionally,at TB tilts of 29.5°and 70.53°,at higher temperatures above 800 K and typical exper-imental loading rates,both dislocation nucleation modes can be activated with nearly equal probability.This observation is particularly significant as it highlights scenarios that molecular dynamics simulations,due to their time scale limitations,cannot adequately explore.This insight underscores the importance of analyzing temperature and loading rate dependencies of the KIC to fully understand the competing mechanisms of dislocation nucleation and their impact on material behavior.
文摘This research work consisted in making a comparative study of the thermal comfort of four materials types used in the construction of a building.A simulation of the building with the various materials on the KoZiBu software in reference and optimized situation was carried out.A study on the sensitive and air-conditioning loads as well as the curves of temperatures on a building of type F2 in situation of reference and in optimized situation was made on the one hand and the other hand a study on the same building without air-conditioning in reference and optimized situation.Finally,the analysis of the results favorizes the choice of the material having the best thermal comfort.The conclusions of these works show that the material that can give the best comfort and the most economics in terms of energy is the adobe which offers temperatures(301.40K or 28.40°C)and a good indoor thermal environment compared to BLT(blocks of cut laterite),BTC(blocks of compressed earth)and cinder block.Dwellings built with earthen materials offer a better indoor thermal environment than those built with modern construction materials,which are used more and more in the construction of houses in Burkina Faso.
基金The National Natural Science Foundation of China under contract Nos 41576043 and 40976051
文摘The response to the catchment changes of the sedimentary environment of the western intertidal flat of Yalu River Estuary was investigated by analyzing the vertical variations of the grain size of sediment cores,along with the hydrologic data and human activities in the catchment.The results demonstrated a stepwise decreasing trend for the variations of both the sediment load and water discharge into the sea,which could be divided into three stages as 1958–1970,1971–1990 and 1991–2009.Reservoir construction and the changes of catchment vegetation coverage turned out to be the two predominant contributors to the changes.There are four periods for the variation of the sensitive components of the sediment cores from 1940 to 2010,i.e.,1940–1950,1951–1980,1981–1990 and 1991–2010.The vertical distribution of grain size in the cores mainly varied with the changes of vegetation coverage in the catchment and reservoir construction from 1960 to 1980,whereas it varied depending on the intensity of water and soil erosion in the catchment from 1980 to 1990.Despite the further reduction of the water and sediment input into the sea from 1990 to 2009,this period was characterized by coarsening trends for the grain size of sediment in the estuarine intertidal flat and correspondingly,the significantly increased silt contents of the sensitive component.
文摘The variation of electrical demand above its base value is its common characteristic. The weather dependent variation of demand, especially where the weather is severe in nature, requires a significant reserve margin of the generation system. The evaluation of the weather dependent component of the electric demand is the basic tool for the planning of the reserve margin. This paper evaluates the weather dependent portion of the load of BPS (Bangladesh power system). The evaluation of the weather dependent portion of the demand is based on the EMD (empirical mode decomposition) technique.
基金Supported by the International Science and Technology Cooperation Program of China(2018YFE0125300)the Innovative Team Projects of Zhuhai City(ZH01110405180049PWC)+2 种基金the Innovative Construction Program of Hunan Province of China(2019RS1016)the 111 Project of China(B17016)the Excellent Innovation Youth Program of Changsha of China(KQ1905008).
文摘Voltage sensitive loads are extremely susceptible to voltage fluctuations,resulting in power system safety issues and economic losses.Due to the load component of voltage sensitive loads being changed at different times,a voltage sensitive load model including the time characteristics is proposed.To improve the voltage distribution in the active distribution network(ADN),the linearized active and reactive power coordinated optimization model for minimizing the operational cost(including the fluctuating cost of sensitive loads)is established.Finally,the simulation on the IEEE 33-bus system demonstrates that the proposed control strategy can effectively stabilize the bus voltage of the sensitive load and reduce the operational costs of the ADN.