期刊文献+
共找到16篇文章
< 1 >
每页显示 20 50 100
一类多参数Semipositone问题的多个正解 被引量:2
1
作者 张鹏 《数学杂志》 CSCD 北大核心 2010年第5期865-870,共6页
本文在一般有界区域上研究了一类多参数Semipositone问题.结合上下解方法与下降流不变集临界点理论,证明了此类问题有四个解,其中至少有两个是正的.
关键词 semipositone 正解 上下解 下降流不变集
在线阅读 下载PDF
An Existence Theorem of Positive Solution for Fourth-order Superlinear Semipositone Eigenvalue Problems
2
作者 江秀芬 姚庆六 《Chinese Quarterly Journal of Mathematics》 CSCD 2001年第2期64-68,共5页
In this paper we investigate the existence of positive solution for a class of fourth_order superlinear semipositone eigenvalue problems. This class of problems usually describes the deformation of the elastic beam wh... In this paper we investigate the existence of positive solution for a class of fourth_order superlinear semipositone eigenvalue problems. This class of problems usually describes the deformation of the elastic beam whose both end_points are fixed. 展开更多
关键词 elastic beam equation existence of positive solution semipositone fixed point theorem on cone
在线阅读 下载PDF
Existence of Positive Solution for Superlinear Semipositone Singular Second-order m-point Boundary Value Problem 被引量:4
3
作者 ZHANG Xing-qiu 《Chinese Quarterly Journal of Mathematics》 CSCD 2010年第1期151-158,共8页
By applying fixed point theorem, the existence of positive solution is considered for superlinear semipositone singular m-point boundary value problem -(Lφ)(x)=(p(x)φ′(x))′+q(x)φ(x) and ξi ∈ (0,... By applying fixed point theorem, the existence of positive solution is considered for superlinear semipositone singular m-point boundary value problem -(Lφ)(x)=(p(x)φ′(x))′+q(x)φ(x) and ξi ∈ (0,1)with 0〈ξ1〈ξ2……〈ξm-2〈1,αi ∈ R^+,f ∈C[(0,1)×R^+,R^+],f(x,φ) may be singular at x=0 and x=1,g(x):(0,1)→R is Lebesgue measurable, g may tend to negative infinity and have finitely many singularities. 展开更多
关键词 semipositone SUPERLINEAR singular m-point boundary value fixed point theo-rem positive solution
在线阅读 下载PDF
一类拟线性Semipositone椭圆边值问题的正解
4
作者 李贵艳 张鹏 《科技信息》 2009年第20期I0004-I0004,共1页
本文利用上、下解方法,获得一类拟线性semipositone椭圆Dirichlet边值问题的一个正解,改进和推广了一些结果。
关键词 正解 semipositone 拟线性 上解 下解 特征函数
在线阅读 下载PDF
A(k,n-k) Conjugate Boundary Value Problem with Semipositone Nonlinearity
5
作者 YAO QING-LIU Shi Shao-yun 《Communications in Mathematical Research》 CSCD 2015年第1期51-61,共11页
The existence of positive solution is proved for a (k, n - k) conjugate boundary value problem in which the nonlinearity may make negative values and may be singular with respect to the time variable. The main resul... The existence of positive solution is proved for a (k, n - k) conjugate boundary value problem in which the nonlinearity may make negative values and may be singular with respect to the time variable. The main results of Agarwal et al. (Agarwal R P, Grace S R, O'Regan D. Semipositive higher-order differential equations. Appl. Math. Letters, 2004, 14: 201-207) are extended. The basic tools are the Hammerstein integral equation and the Krasnosel'skii's cone expansion-compression technique. 展开更多
关键词 higher order ordinary differential equation boundary value problem semipositone nonlinearity positive solution
在线阅读 下载PDF
Existence of Positive Solutions to Semipositone Fractional Differential Equations
6
作者 Xinsheng Du 《Applied Mathematics》 2016年第14期1484-1489,共6页
In this paper, by means of constructing a special cone, we obtain a sufficient condition for the existence of positive solution to semipositone fractional differential equation.
关键词 Fractional Differential Equations Boundary Value Problems Positive Solution semipositone
在线阅读 下载PDF
Existence of Positive Solutions for a Third-Order Three-Point Boundary Value Problem with Semipositone Nonlinearity * 被引量:5
7
作者 姚庆六 《Journal of Mathematical Research and Exposition》 CSCD 北大核心 2003年第4期591-596,共6页
The existence of positive solutions is investigated for following semipositone nonlinear third-order three-point BVP ω''(t) - λf(t,w(t)) = 0, 0 ≤ t ≤ 1, ω(0) = ω'(n) = ω'(1) = 0.
关键词 third-order semipositone ODE three-point BVP existence ot positive solution fixed point theorem on cone.
在线阅读 下载PDF
Existence of Positive Solutions to Semipositone Singular Dirichlet Boundary Value Problems 被引量:2
8
作者 Svatoslav STAN■K 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2006年第6期1891-1914,共24页
The paper presents the conditions which guarantee that for some positive value of μ there are positive solutions of the differential equation (Ф(x'))'+μQ(t, x, x') = 0 satisfying the Dirichlet boundary co... The paper presents the conditions which guarantee that for some positive value of μ there are positive solutions of the differential equation (Ф(x'))'+μQ(t, x, x') = 0 satisfying the Dirichlet boundary conditions x(0) = x(T) = 0. Here Q is a continuous function on the set [0, T] × (0, ∞) ~ (R / {0}) of the semipositone type and Q is singular at the value zero of its phase variables. 展开更多
关键词 EXISTENCE positive solution semipositone singular problem Dirichlet boundary conditions Ф-Laplacian
原文传递
EXISTENCE OF POSITIVE SOLUTION TO SUPERLINEAR SEMIPOSITONE SINGULAR m-POINT BOUNDARY VALUE PROBLEMS 被引量:1
9
作者 Zhang Xingqiu (School of Mathematics, Liaocheng University, Liaocheng 252059, Shandong) 《Annals of Differential Equations》 2008年第4期490-497,共8页
Sufficient conditions for the existence of positive solution to superlinear semi-positone singular m-point boundary value problem are given by cone expansion and compression theorem in norm type.
关键词 semipositone SUPERLINEAR singular m-point boundary value fixed point theorem positive solution
原文传递
POSITIVE SOLUTIONS TO A SEMIPOSITONE SINGULAR NEUMANN BOUNDARY VALUE PROBLEM
10
作者 Jinjun Fan,Yinghua Yang (School of Mathematical Science,Shandong Normal University,Jinan 250014) 《Annals of Differential Equations》 2009年第3期301-308,共8页
A semipositone singular boundary value problem (BVP for short) is discussed in this paper. By Krasnaselskii’s fixed point theorem in cones,we derive suffcient conditions,which guarantee that the semipositone BVP has ... A semipositone singular boundary value problem (BVP for short) is discussed in this paper. By Krasnaselskii’s fixed point theorem in cones,we derive suffcient conditions,which guarantee that the semipositone BVP has at least one positive solution. 展开更多
关键词 Neumann boundary value problem Krasnaselskii's fixed point theo-rem semipositone SINGULAR positive solutions
原文传递
SEMIPOSITONE PROBLEM FOR THE nTH-ORDER DELAYED DIFFERENTIAL SYSTEM
11
作者 Lu Qiuying, Zhu Deming (Dept. of Math., East China Normal University, Shanghai 200062) 《Annals of Differential Equations》 2008年第3期299-305,共7页
In this paper, we are concerned with the existence of positive solutions to the superlinear semipositone problem of the nth-order delayed differential system. The main result in this paper generalizes the correspondin... In this paper, we are concerned with the existence of positive solutions to the superlinear semipositone problem of the nth-order delayed differential system. The main result in this paper generalizes the corresponding result on the second order de-layed differential equation. Our proofs are based on the well-known Guo-Krasnoselskii fixed-point theorem. 展开更多
关键词 positive solutions nonlinear nth-order delayed differential system cone fixed-point theorem boundary value problems semipositone problem
原文传递
POSITIVE SOLUTION TO SINGULAR SEMIPOSITONE(n,p) BOUNDARY VALUE PROBLEM
12
作者 Zhang Mingchuan1,2,Yin Yanmin1(1. Dept. of Math.,Shandong Jianzhu University,Jinan 250101 2. School of Math. and System Sciences,Shandong University,Jinan 250100) 《Annals of Differential Equations》 2008年第2期233-238,共6页
In this paper,we obtain the existence result of positive solution to one type of semipositone(n,p) boundary value problem.
关键词 (n p) BVP positive solution SINGULAR semipositone
原文传递
EXISTENCE AND MULTIPLICITY OF POSITIVE SOLUTIONS TO NONLINEAR SEMIPOSITONE NEUMANN BOUNDARY VALUE PROBLEM
13
作者 Ruipeng Chen , Yanqiong Lu (Dept. of Math., Northwest Normal University, Lanzhou 730070) 《Annals of Differential Equations》 2012年第2期137-145,共9页
In this paper, we study a nonlinear semipositone Neumann boundary value problem. Under some suitable conditions, we prove the existence and multiplicity of positive solutions to the problem, based on Krasnosel’skii’... In this paper, we study a nonlinear semipositone Neumann boundary value problem. Under some suitable conditions, we prove the existence and multiplicity of positive solutions to the problem, based on Krasnosel’skii’s fixed point theorem in cones. 展开更多
关键词 Krasnosel’skii’s fixed point theorem in cones semipositone Neumann boundary value problems positive solutions MULTIPLICITY
原文传递
n阶时滞微分方程的正解(英文)
14
作者 路秋英 朱德明 《华东师范大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第5期20-33,共14页
研究n阶时滞微分方程的非线性特征值问题以及超线性的Semipositone问题,推广了以往的结果.主要结果的证明应用了Guo-Krasnoselskii不动点定理.
关键词 正解 非线性n阶时滞微分方程 锥不动点定理 边界值问题 semipositone问题
在线阅读 下载PDF
Existence of Positive Solutions for Higher Order Boundary Value Problem on Time Scales 被引量:2
15
作者 Xie Da-peng Liu Yang +1 位作者 Sun Ming-zhe Li Yong 《Communications in Mathematical Research》 CSCD 2013年第1期1-13,共13页
In this paper, we investigate the existence of positive solutions of a class higher order boundary value problems on time scales. The class of boundary value problems educes a four-point (or three-point or two-point... In this paper, we investigate the existence of positive solutions of a class higher order boundary value problems on time scales. The class of boundary value problems educes a four-point (or three-point or two-point) boundary value problems, for which some similar results are established. Our approach relies on the Krasnosel'skii fixed point theorem. The result of this paper is new and extends previously known results. 展开更多
关键词 higher order boundary value problem positive solution semipositone on time scale fixed point
在线阅读 下载PDF
An ecological model with the p-Laplacian and diffusion
16
作者 S. H. Rasouli 《International Journal of Biomathematics》 2016年第1期157-163,共7页
We study the existence of positive solutions of a population model with diffusion of the form {-△pu=aup-1-f(u)-c/ua,x∈Ω,u=0,x∈Ω where △p denotes the p-Laplacian operator defined by △pz =div(|z|P-2z), p 〉... We study the existence of positive solutions of a population model with diffusion of the form {-△pu=aup-1-f(u)-c/ua,x∈Ω,u=0,x∈Ω where △p denotes the p-Laplacian operator defined by △pz =div(|z|P-2z), p 〉 1, Ω is a bounded domain of RN with smooth boundary, α∈ C (0, 1), a and e are positive constants. Here f : [0, ∞) → R is a continuous function. This model arises in the studies of population biology of one species with u representing the concentration of the species. We discuss the existence of positive solution when f satisfies certain additional conditions. We use the method of sub- and super-solutions to establish our results. 展开更多
关键词 Ecological model infinite semipositone sub- and super-solutions.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部