Complementary metal-oxide-semiconductor(CMOS) sensors can convert X-rays into detectable signals; therefore, they are powerful tools in X-ray detection applications. Herein, we explore the physics behind X-ray detecti...Complementary metal-oxide-semiconductor(CMOS) sensors can convert X-rays into detectable signals; therefore, they are powerful tools in X-ray detection applications. Herein, we explore the physics behind X-ray detection performed using CMOS sensors. X-ray measurements were obtained using a simulated positioner based on a CMOS sensor, while the X-ray energy was modified by changing the voltage, current, and radiation time. A monitoring control unit collected video data of the detected X-rays. The video images were framed and filtered to detect the effective pixel points(radiation spots).The histograms of the images prove there is a linear relationship between the pixel points and X-ray energy. The relationships between the image pixel points, voltage, and current were quantified, and the resultant correlations were observed to obey some physical laws.展开更多
This paper investigates the influences of a semiconductor laser with narrow linewidth on a fibre-optic distributed disturbance sensor based on Mach-Zehnder interferometer. It establishes an effective numerical model t...This paper investigates the influences of a semiconductor laser with narrow linewidth on a fibre-optic distributed disturbance sensor based on Mach-Zehnder interferometer. It establishes an effective numerical model to describe the noises and linewidth of a semiconductor laser, taking into account their correlations. Simulation shows that frequency noise has great influences on location errors and their relationship is numerically investigated. Accordingly, there is need to determine the linewidth of the laser less than a threshold and obtain the least location errors. Furthermore, experiments are performed by a sensor prototype using three semiconductor lasers with different linewidths, respectively, with polarization maintaining optical fibres and couplers to eliminate the polarization induced noises and fading. The agreement of simulation with experimental results means that the proposed numerical model can make a comprehensive description of the noise behaviour of a semiconductor laser. The conclusion is useful for choosing a laser source for fibre-optic distributed disturbance sensor to achieve optimized location accuracy. What is more, the proposed numerical model can be widely used for analysing influences of semiconductor lasers on other sensing, communication and optical signal processing systems.展开更多
The Complementary Metal-Oxide Semiconductor(CMOS)image sensor is a critical component with the function of providing accurate positioning in many space application systems.Under long-time operation in space environmen...The Complementary Metal-Oxide Semiconductor(CMOS)image sensor is a critical component with the function of providing accurate positioning in many space application systems.Under long-time operation in space environments,there are radiation related degradation and var-ious uncertainties affecting the positioning accuracy of CMOS image sensors,which further leads to a reliability reduction of CMOS image sensors.Obviously,the reliability of CMOS image sensors is related to their specified function,degradation,and uncertainties;however,current research has not fully described this relationship.In this paper,a comprehensive approach to reliability modelling of CMOs image sensors is proposed based on the reliability science principles.Firstly,the perfor-mance margin modelling of centroid positioning accuracy is conducted.Then,the degradation model of CMOS image sensors is derived considering the dark current increase induced by the total ionizing dose effects.Finally,various uncertainties are analyzed and quantified,and the measure-ment equation of reliability is proposed.A case study of a CMOS image sensor is conducted to apply the proposed method,and the sensitivity analysis can provide suggestions for design and use of CMOS image sensors to ensure reliability.A simulation study is conducted to present the advantages oftheproposed comprehensive approach.展开更多
基金supported by the Plan for Science Innovation Talent of Henan Province(No.154100510007)the Natural and Science Foundation in Henan Province(No.162300410179)the Cultivation Foundation of Henan Normal University National Project(No.2017PL04)
文摘Complementary metal-oxide-semiconductor(CMOS) sensors can convert X-rays into detectable signals; therefore, they are powerful tools in X-ray detection applications. Herein, we explore the physics behind X-ray detection performed using CMOS sensors. X-ray measurements were obtained using a simulated positioner based on a CMOS sensor, while the X-ray energy was modified by changing the voltage, current, and radiation time. A monitoring control unit collected video data of the detected X-rays. The video images were framed and filtered to detect the effective pixel points(radiation spots).The histograms of the images prove there is a linear relationship between the pixel points and X-ray energy. The relationships between the image pixel points, voltage, and current were quantified, and the resultant correlations were observed to obey some physical laws.
文摘This paper investigates the influences of a semiconductor laser with narrow linewidth on a fibre-optic distributed disturbance sensor based on Mach-Zehnder interferometer. It establishes an effective numerical model to describe the noises and linewidth of a semiconductor laser, taking into account their correlations. Simulation shows that frequency noise has great influences on location errors and their relationship is numerically investigated. Accordingly, there is need to determine the linewidth of the laser less than a threshold and obtain the least location errors. Furthermore, experiments are performed by a sensor prototype using three semiconductor lasers with different linewidths, respectively, with polarization maintaining optical fibres and couplers to eliminate the polarization induced noises and fading. The agreement of simulation with experimental results means that the proposed numerical model can make a comprehensive description of the noise behaviour of a semiconductor laser. The conclusion is useful for choosing a laser source for fibre-optic distributed disturbance sensor to achieve optimized location accuracy. What is more, the proposed numerical model can be widely used for analysing influences of semiconductor lasers on other sensing, communication and optical signal processing systems.
基金the National Natural Science Foundation of China (No.51775020)the Science Challenge Project,China (No.TZ2018007)+1 种基金the National Natural Science Foundation of China (No.62073009)the Fundamental Research Funds for Central Universities,China (No.YWF-19-BJ-J-515).
文摘The Complementary Metal-Oxide Semiconductor(CMOS)image sensor is a critical component with the function of providing accurate positioning in many space application systems.Under long-time operation in space environments,there are radiation related degradation and var-ious uncertainties affecting the positioning accuracy of CMOS image sensors,which further leads to a reliability reduction of CMOS image sensors.Obviously,the reliability of CMOS image sensors is related to their specified function,degradation,and uncertainties;however,current research has not fully described this relationship.In this paper,a comprehensive approach to reliability modelling of CMOs image sensors is proposed based on the reliability science principles.Firstly,the perfor-mance margin modelling of centroid positioning accuracy is conducted.Then,the degradation model of CMOS image sensors is derived considering the dark current increase induced by the total ionizing dose effects.Finally,various uncertainties are analyzed and quantified,and the measure-ment equation of reliability is proposed.A case study of a CMOS image sensor is conducted to apply the proposed method,and the sensitivity analysis can provide suggestions for design and use of CMOS image sensors to ensure reliability.A simulation study is conducted to present the advantages oftheproposed comprehensive approach.