In this paper, the design, customization and implem en tation of an integrated Advanced Planning and Scheduling (APS) system for a Semi conductor Backend Assembly environment is described. The company is one of the w ...In this paper, the design, customization and implem en tation of an integrated Advanced Planning and Scheduling (APS) system for a Semi conductor Backend Assembly environment is described. The company is one of the w orldwide market leaders in semiconductor packaging technology. The project was d riven by the company’s quest to achieve a competitive edge as a manufacturing po werhouse by providing the shortest possible cycle time with a high degree of fle xibility through the application of Computer Integrated Manufacturing (CIM) tech nology. Gintic was responsible for the Planning & Scheduling functions through o ur APS tool kit, which is called Gintic Scheduling System (GSS). Our APS system is to be integrated with the other two key software systems, namely, the Enterpr ise Resource Planning (ERP) and Manufacturing Execution System (MES), with the C IM framework. The project was divided into four major execution phases. Phase One activities w ere focused on the gathering and analysis of the end users requirements in order to establish the ’As-Is’ situation and the wish list & the expectation of the ’To-Be’ system. Planning and Scheduling prototypes were built using GSS to iden tify the functionality gap between the existing GSS system and the ’To-Be’ mode l, in order to determine the customization effort needed. The project team perfo rmed detailed system analysis, design and development of the ’To-Be’ system dur ing Phase Two of the project. There are a total of four planning and scheduling modules, including Capacity Planning (CP), Daily Lot Release (DLR), Daily Produc tion Scheduling (DPS) and Dynamic Operation Scheduling (DOS). The detailed desig n specifications of each of the features and functionality were confirmed and ac cepted by the end users before the commencement of the development effort. The c ompleted and tested modules were delivered in stages for testing and acceptance by the end user during the Phase Three of the project. Pilot product line was se lected for live testing of the developed planning and scheduling modules, before they are proliferated to the rest of the product lines. System fine-tuning req uests were raised during the last phase of the project; the Planning & Schedulin g modules were fine-tuned to satisfy the end user requirements. This paper will conclude by highlighting the actual benefits achieved by the suc cessful deployment of the GSS system. The company has expressed their deep s atisfaction and has requested Gintic to look into the automation of the Plan ning and Scheduling functions in the Pre-Assembly and Test operations.展开更多
A significant step toward constructing high‐efficiency neuromorphic systems is the electronic emulation of advanced synaptic functions of the human brain.While previous studies have focused on mimicking the basic fun...A significant step toward constructing high‐efficiency neuromorphic systems is the electronic emulation of advanced synaptic functions of the human brain.While previous studies have focused on mimicking the basic functions of synapses using single‐gate transistors,multigate transistors offer an opportunity to simulate more complex and advanced memory‐forming behaviors in biological synapses.In this study,a simple and general method is used to assemble rubber semiconductors into suspended two‐phase composite films that are transferred to the surface of the ion‐conducting membrane to fabricate flexible multiterminal photoelectronic neurotransistors.The suspended ion conductive film is used as the gate dielectrics and supporting substrate.The prepared devices exhibit excellent electrical stability and mechanical flexibility after being bent.Basic photoelectronic synaptic behavior and pulse‐dependent plasticity are emulated.Furthermore,the device realizes the spatiotemporally integrated electrical and optical stimuli to mimic spatiotemporal information processing.This study provides a promising direction for constructing more complex spiking neural networks and more powerful neuromorphic systems with brain‐like dynamic spatiotemporal processing functions.展开更多
Controlling microstructure and thin film morphology of organic semiconductors by supramolecular arrangement is critical to improving their device performance. To realize well-controlling supramolecular assembly, a cor...Controlling microstructure and thin film morphology of organic semiconductors by supramolecular arrangement is critical to improving their device performance. To realize well-controlling supramolecular assembly, a core-expanded naphthalene diimides derivative (1) was designed and synthesized as an n-type organic semiconductor and also as a halogen bonding (XB) donor that could form complementary XBs with 2,2-dipyridine or 2,2-bipyrimidine acceptor. The XB interactions in the solid state of 1/2,2- dipyridine and 1/2,2-bipyrimidine were confirmed by a series of characterization methods, such as thermal gravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), nuclear magnetic resonance (NMR) involving 13F NMR and solid-state 13C NMR. Organic field-effect transistors (OFETs) based on XB complexes 1/2,2-dipyridine or 1/2,2-bipyrimidine showed better device performance than that of devices based on pure 1, with the average electron mobility increased more than doubled (from 0.027cm2V-1 s-1 to 0.070cm2V-1 s-1).展开更多
文摘In this paper, the design, customization and implem en tation of an integrated Advanced Planning and Scheduling (APS) system for a Semi conductor Backend Assembly environment is described. The company is one of the w orldwide market leaders in semiconductor packaging technology. The project was d riven by the company’s quest to achieve a competitive edge as a manufacturing po werhouse by providing the shortest possible cycle time with a high degree of fle xibility through the application of Computer Integrated Manufacturing (CIM) tech nology. Gintic was responsible for the Planning & Scheduling functions through o ur APS tool kit, which is called Gintic Scheduling System (GSS). Our APS system is to be integrated with the other two key software systems, namely, the Enterpr ise Resource Planning (ERP) and Manufacturing Execution System (MES), with the C IM framework. The project was divided into four major execution phases. Phase One activities w ere focused on the gathering and analysis of the end users requirements in order to establish the ’As-Is’ situation and the wish list & the expectation of the ’To-Be’ system. Planning and Scheduling prototypes were built using GSS to iden tify the functionality gap between the existing GSS system and the ’To-Be’ mode l, in order to determine the customization effort needed. The project team perfo rmed detailed system analysis, design and development of the ’To-Be’ system dur ing Phase Two of the project. There are a total of four planning and scheduling modules, including Capacity Planning (CP), Daily Lot Release (DLR), Daily Produc tion Scheduling (DPS) and Dynamic Operation Scheduling (DOS). The detailed desig n specifications of each of the features and functionality were confirmed and ac cepted by the end users before the commencement of the development effort. The c ompleted and tested modules were delivered in stages for testing and acceptance by the end user during the Phase Three of the project. Pilot product line was se lected for live testing of the developed planning and scheduling modules, before they are proliferated to the rest of the product lines. System fine-tuning req uests were raised during the last phase of the project; the Planning & Schedulin g modules were fine-tuned to satisfy the end user requirements. This paper will conclude by highlighting the actual benefits achieved by the suc cessful deployment of the GSS system. The company has expressed their deep s atisfaction and has requested Gintic to look into the automation of the Plan ning and Scheduling functions in the Pre-Assembly and Test operations.
基金supported by the National Natural Science Foundation of China(Nos.61975241 and 52173192)the Huxiang Youth Talent Program of Hunan Province(No.2020RC3010)+3 种基金the Science and Technology Innovation Program of Hunan Province(No.2020RC4004)the Special Funding for the Construction of Innovative Provinces in Hunan Province(No.2020GK2024)the National Key Research and Development Program of China(No.2017YFA0206600)Fundamental Research Funds for the Central Universities of Central South University(No.1053320213517).
文摘A significant step toward constructing high‐efficiency neuromorphic systems is the electronic emulation of advanced synaptic functions of the human brain.While previous studies have focused on mimicking the basic functions of synapses using single‐gate transistors,multigate transistors offer an opportunity to simulate more complex and advanced memory‐forming behaviors in biological synapses.In this study,a simple and general method is used to assemble rubber semiconductors into suspended two‐phase composite films that are transferred to the surface of the ion‐conducting membrane to fabricate flexible multiterminal photoelectronic neurotransistors.The suspended ion conductive film is used as the gate dielectrics and supporting substrate.The prepared devices exhibit excellent electrical stability and mechanical flexibility after being bent.Basic photoelectronic synaptic behavior and pulse‐dependent plasticity are emulated.Furthermore,the device realizes the spatiotemporally integrated electrical and optical stimuli to mimic spatiotemporal information processing.This study provides a promising direction for constructing more complex spiking neural networks and more powerful neuromorphic systems with brain‐like dynamic spatiotemporal processing functions.
基金supported financially by the National Natural Science Foundation of China(Nos.21502218 and 21522209)the "Strategic Priority Research Program"(No. XDB12010100)
文摘Controlling microstructure and thin film morphology of organic semiconductors by supramolecular arrangement is critical to improving their device performance. To realize well-controlling supramolecular assembly, a core-expanded naphthalene diimides derivative (1) was designed and synthesized as an n-type organic semiconductor and also as a halogen bonding (XB) donor that could form complementary XBs with 2,2-dipyridine or 2,2-bipyrimidine acceptor. The XB interactions in the solid state of 1/2,2- dipyridine and 1/2,2-bipyrimidine were confirmed by a series of characterization methods, such as thermal gravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), nuclear magnetic resonance (NMR) involving 13F NMR and solid-state 13C NMR. Organic field-effect transistors (OFETs) based on XB complexes 1/2,2-dipyridine or 1/2,2-bipyrimidine showed better device performance than that of devices based on pure 1, with the average electron mobility increased more than doubled (from 0.027cm2V-1 s-1 to 0.070cm2V-1 s-1).