With a three-dimensional semiclassical ensemble method, we theoretically investigated the nonsequential double ionization of Ar driven by the spatially inhomogeneous few-cycle negatively chirped laser pulses. Our resu...With a three-dimensional semiclassical ensemble method, we theoretically investigated the nonsequential double ionization of Ar driven by the spatially inhomogeneous few-cycle negatively chirped laser pulses. Our results show that the recollision time window can be precisely controlled within an isolated time interval of several hundred attoseconds, which is useful for understanding the subcycle correlated electron dynamics. More interestingly, the correlated electron momentum distribution (CEMD) exhibits a strong dependence on laser intensity. That is, at lower laser intensity, CEMD is located in the first quadrant. As the laser intensity increases,CEMD shifts almost completely to the second and fourth quadrants, and then gradually to the third quadrant.The underlying physics governing the CEMD's dependence on laser intensity is explained.展开更多
We study the Schwinger mechanism in the presence of an additional uniformly oriented,weak super Gaussian of integer order 4 N+2.Using the worldline approach,we determine the relevant critical points to compute the lea...We study the Schwinger mechanism in the presence of an additional uniformly oriented,weak super Gaussian of integer order 4 N+2.Using the worldline approach,we determine the relevant critical points to compute the leading order exponential factor analytically.We show that increasing the parameter N gives rise to a strong dynamical enhancement.For N=2,this effect turns out to be larger compared to a weak contribution of the Sauter type.For higher orders,specifically,for the rectangular barrier limit,i.e.N→∞,we approach the Lorentzian case as an upper bound.Although the mentioned backgrounds significantly differ in Minkowski spacetime,we show that the found coincidence applies due to identical reflection points in the Euclidean instanton plane.In addition,we also treat the background in perturbation theory following recent ideas.By doing so,we show that the parameter N determines whether the weak contribution behaves perturbatively or nonperturbatively with respect to the field strength ratio,and,hence,reveals an interesting dependence on the background shape.In particular,we show that for backgrounds,for which higher orders in the field strength ratio turn out to be relevant,a proposed integral condition is not fulfilled.In view of these findings,the latter may serve as an indicator for the necessity for higher-order contributions.展开更多
Symmetrical quasi-classical (SQC) method based on mapping Hamiltonian is an efficient approach that is potentially useful to treat the nonadiabatic dynamics of very large systems. We try to evaluate the performance ...Symmetrical quasi-classical (SQC) method based on mapping Hamiltonian is an efficient approach that is potentially useful to treat the nonadiabatic dynamics of very large systems. We try to evaluate the performance of this method in the ultrafast electron transfer processes involving a few of electronic states and a large number of vibrational modes. The multilayer multiconfigurational time-dependent Hartree (ML-MCTDH) method was used to get the accurate dynamical results for benchmark. Although the population dynamics in the long- time limit show differences in the ML-MCTDH and SQC calculations, the SQC method gives acceptable results.展开更多
Semiclassical limit to the solution of transient bipolar quantum drift-diffusion model in semiconductor simulation is discussed. It is proved that the semiclassical limit of this solution satisfies the classical bipol...Semiclassical limit to the solution of transient bipolar quantum drift-diffusion model in semiconductor simulation is discussed. It is proved that the semiclassical limit of this solution satisfies the classical bipolar drift-diffusion model. In addition, the authors also prove the existence of weak solution.展开更多
Based on NII spectra, some transition probabilities for 2p4f-2p3d and 2s2p23d-2s2p23p are obtained by a semi- classical method. The results are in good agreement with other measurements and the data reported by the Na...Based on NII spectra, some transition probabilities for 2p4f-2p3d and 2s2p23d-2s2p23p are obtained by a semi- classical method. The results are in good agreement with other measurements and the data reported by the National Institute of Standards and Technology. The transition probability for a line of 424.18nm is reported for the first time. Meanwhile, a feasible method of calculating transition parameters related to special excited configurations or highly excited states is provided.展开更多
The weak solutions to the stationary quantum drift-diffusion equations (QDD) for semiconductor devices are investigated in one space dimension. The proofs are based on a reformulation of the system as a fourth-order...The weak solutions to the stationary quantum drift-diffusion equations (QDD) for semiconductor devices are investigated in one space dimension. The proofs are based on a reformulation of the system as a fourth-order elliptic boundary value problem by using an exponential variable transformation. The techniques of a priori estimates and Leray-Schauder's fixed-point theorem are employed to prove the existence. Furthermore, the uniqueness of solutions and the semiclassical limit δ→0 from QDD to the classical drift-diffusion (DD) model are studied.展开更多
This paper presents theoretical computations of the ionization rate of Rydberg lithium atom above the classical ionization threshold using semiclassical approximation. The yielded random pulse trains of the escape ele...This paper presents theoretical computations of the ionization rate of Rydberg lithium atom above the classical ionization threshold using semiclassical approximation. The yielded random pulse trains of the escape electrons are recorded as a function of emission time such that they can be related to the terms of the recurrence periods of the photoabsorption. This fact illustrates that it is ionic core scattering processes which give rise to chaos in autoionization dynamics and this is verified by comparison of our results with the hydrogen atom situation. In order to reveal the chaotic properties in detail, the sensitive dependence of the ionization rate upon the scaled energy is discussed for different scaled energies. This approach provides a simple explanation for the chaotic character in autoionization decay of Rydberg alkali-metal atoms.展开更多
To overcome the difficulty of realizing large-scale quantum Fourier transform(QFT)within existing technology,this paper implements a resource-saving method(named t-bit semiclassical QFT over Z_(2n)),which could realiz...To overcome the difficulty of realizing large-scale quantum Fourier transform(QFT)within existing technology,this paper implements a resource-saving method(named t-bit semiclassical QFT over Z_(2n)),which could realize large-scale QFT using an arbitrary-scale quantum register.By developing a feasible method to realize the control quantum gate Rk,we experimentally realize the 2-bit semiclassical QFT over Z_(2-3)on IBM's quantum cloud computer,which shows the feasibility of the method.Then,we compare the actual performance of 2-bit semiclassical QFT with standard QFT in the experiments.The squared statistical overlap experimental data shows that the fidelity of 2-bit semiclassical QFT is higher than that of standard QFT,which is mainly due to fewer two-qubit gates in the semiclassical QFT.Furthermore,based on the proposed method,N=15 is successfully factorized by implementing Shor's algorithm.展开更多
A realistic dynamics simulation study is reported for the trans-cis photoisomerization of azobenzene triggered by the n →π^* excitation and the results show that the formation ofcis isomer follows the rotational mo...A realistic dynamics simulation study is reported for the trans-cis photoisomerization of azobenzene triggered by the n →π^* excitation and the results show that the formation ofcis isomer follows the rotational motion around the N=N bond. The simulation find that the CNN bond angle bending vibrations also play a significant role in the vibronic coupling between the HOMO and LUMO, which essentially leads a nonadiabatic transition of the molecule to the electronic ground state.展开更多
The ring-polymer molecular dynamics(RPMD)was used to calculate the thermal rate coefficients of the multi-channel roaming reaction H+MgH→Mg+H_(2).Two reaction channels,tight and roaming,are explicitly considered.This...The ring-polymer molecular dynamics(RPMD)was used to calculate the thermal rate coefficients of the multi-channel roaming reaction H+MgH→Mg+H_(2).Two reaction channels,tight and roaming,are explicitly considered.This is a pioneering attempt of exerting RPMD method to multichannel reactions.With the help of a newly developed optimization-interpolation protocol for preparing the initial structures and adaptive protocol for choosing the force constants,we have successfully obtained the thermal rate coefficients.The results are consistent with those from other theoretical methods,such as variational transition state theory and quantum dynamics.Especially,RPMD results exhibit negative temperature dependence,which is similar to the results from variational transition state theory but different from the ones from ground state quantum dynamics calculations.展开更多
While the scattering phase for several one-dimensional potentials can be exactly derived, less is known in multi-dimensional quantum systems. This work provides a method to extend the one-dimensional phase knowledge t...While the scattering phase for several one-dimensional potentials can be exactly derived, less is known in multi-dimensional quantum systems. This work provides a method to extend the one-dimensional phase knowledge to multi-dimensional quantization rules. The extension is illustrated in the example of Bogomolny's transfer operator method applied in two quantum wells bounded by step potentials of different heights. This generalized semiclassical method accurately determines the energy spectrum of the systems, which indicates the substantial role of the proposed phase correction. Theoretically, the result can be extended to other semiclassical methods, such as Gutzwiller trace formula, dynamical zeta functions, and semielassical Landauer Buttiker formula. In practice, this recipe enhances the applicability of semiclassical methods to multi-dimensional quantum systems bounded by general soft potentials.展开更多
We have studied the ionization of Rydberg hydrogen atom near a metal surface with a semiclassical analysis of photoionization microscopy. Interference patterns of the electron radial distribution are calculated at dif...We have studied the ionization of Rydberg hydrogen atom near a metal surface with a semiclassical analysis of photoionization microscopy. Interference patterns of the electron radial distribution are calculated at different scaled energies above the classical saddle point and at various atom surface distances. We find that different types of trajecto- ries contribute predominantly to different manifolds in a certain interference pattern. As the scaled energy increases, the structure of the interference pattern evolves smoothly and more types of trajectories emerge. As the atom approaches the metal surface closer, there are more types of trajectories contributing to the interference pattern as well. When the Rydberg atom comes very close to the metal surface or the scaled energy approaches the zero field ionization energy, the potential induced by the metal surface will make atomic system chaotic. The results also show that atoms near a metal surface exhibit similar properties like the atoms in the parallel electric and magnetic fields.展开更多
Since the difficulty in preparing the equal superposition state of amplitude is 1/√N, we construct a quantile transform of quantum Fourier transform (QFT) over ZN based on the elementary transforms, such as Hadamar...Since the difficulty in preparing the equal superposition state of amplitude is 1/√N, we construct a quantile transform of quantum Fourier transform (QFT) over ZN based on the elementary transforms, such as Hadamard transform and Pauli transform. The QFT over Z_N can then be realized by the quantile transform, and used to further design its quantum circuit and analyze the requirements for the quantum register and quantum gates. However, the transform needs considerable quantum computational resources and it is difficult to construct a high-dimensional quantum register. Hence, we investigate the design of t-bit quantile transform, and introduce the definition of t-bit semiclassical QFT over Z_N. According to probability amplitude, we prove that the transform can be used to realize QFT over ZN and further design its quantum circuit. For this transform, the requirements for the quantum register, the one-qubit gate, and two-qubit gate reduce obviously when compared with those for the QFT over Z_N.展开更多
The photochromic ring-opening reaction of spiropyran(SP) has been investigated by a realistic semiclassical dynamics simulation,accompanied by SA3-CASSCF(12 10)/MS-CASPT2 potential energy curves(PECs) of S0–S2....The photochromic ring-opening reaction of spiropyran(SP) has been investigated by a realistic semiclassical dynamics simulation,accompanied by SA3-CASSCF(12 10)/MS-CASPT2 potential energy curves(PECs) of S0–S2.The main simulation results show the dominate pathway corresponds to the ringopening process of trans-SP to form the most stable merocyanine(MC) product.These findings provide more important complementarity for interpreting experimental observations.展开更多
Bichromatic circularly polarized fields provide a useful tool to probe the ionization dynamics.In this work, we compare the photoelectron momentum distribution in few-cycle bichromatic field of different helicities.Th...Bichromatic circularly polarized fields provide a useful tool to probe the ionization dynamics.In this work, we compare the photoelectron momentum distribution in few-cycle bichromatic field of different helicities.The spectral features are analyzed with semiclassical trajectories derived from the strong field approximation.In particular, the interference fringes in momentum distribution are investigated by tracking the ionization time and tunneling exits of released photoelectrons.Different types of trajectories that contribute to the interference fringes are elucidated.展开更多
The energy spectrum of the hydrogen atom has been applied in calculating the time rate of energy transitions between the quantum states of the atom. The formal basis of the approach has been provided by the quantum pr...The energy spectrum of the hydrogen atom has been applied in calculating the time rate of energy transitions between the quantum states of the atom. The formal basis of the approach has been provided by the quantum properties of energy and time deduced from the Joule-Lenz law. The rates of the energy transitions obtained in this way were compared with the quantum-mechanical probabilities of transitions calculated earlier by Bethe and Condon and Shortley for the same pairs of the quantum states.展开更多
We present a semiclassical (SC) approach for quantum dissipative dynamics, constructed on basis of the hierarchical-equation-of-motion (HEOM) formalism. The dynamical components considered in the developed SC-HEOM...We present a semiclassical (SC) approach for quantum dissipative dynamics, constructed on basis of the hierarchical-equation-of-motion (HEOM) formalism. The dynamical components considered in the developed SC-HEOM are wavepackets' phase-space moments of not only the primary reduced system density operator but also the auxiliary density operators (ADOs) of HEOM. It is a highly numerically efficient method, meanwhile taking into account the high-order effcts of system-bath couplings. The SC-HEOM methodology is exemplified in this work on the hierarchical quantum master equation [J. Chem. Phys. 131, 214111 (2009)] and numerically demonstrated on linear spectra of anharmonic oscillators.展开更多
In this paper a semiclassical propagator in a mixed position-momentum space is derived in the formalism of Maslov's multi-dimensional semiclassical theory. The corresponding mixed van Vleck determinant is also given ...In this paper a semiclassical propagator in a mixed position-momentum space is derived in the formalism of Maslov's multi-dimensional semiclassical theory. The corresponding mixed van Vleck determinant is also given explicitly. The propagator can be used to locally fix semiclassical divergences in singular regions of configuration space. It is shown that when a semicla^sical propagator is transformed from one representation to another, its form is invariant.展开更多
Due to the effect of Coulomb potential, the angular distribution of electron ionized in an elliptically polarized field presents an asymmetric structure, which is called "Coulomb asymmetry". In this paper, w...Due to the effect of Coulomb potential, the angular distribution of electron ionized in an elliptically polarized field presents an asymmetric structure, which is called "Coulomb asymmetry". In this paper, we study how to modulate the asymmetric degree of the electron angular distribution by using a semi-classical simplified tunneling model. It is found that the asymmetric structure is easily affected by three parameters: the ionization potential, the laser ellipticity,and the laser wavelength. However, the laser intensity has little effect on the asymmetric structure. To explain these phenomena we have derived an analytical formula, which clearly demonstrates the relationship between the asymmetric degree and these parameters. Moreover, we find that in elliptically polarized laser field only those electrons that are released in a certain narrow window of initial field phase are greatly effected by the Coulomb potential and play the key role in the formation of asymmetric structure. This study provides some reference values in the development of attoclock technique, which can be used to probe the tunneling process.展开更多
Asymptotic energy expansion method is extended for polynomial potentials having rational powers. New types of recurrence relations are derived for the potentials of the form rig, mN are positive integers while coeffic...Asymptotic energy expansion method is extended for polynomial potentials having rational powers. New types of recurrence relations are derived for the potentials of the form rig, mN are positive integers while coefficients bk ∈ C. As in the case of even degree polynomial potentials with integer powers, all the integrals in the expansion can be evaluated analytically in terms of F functions. With the help of two examples, we demonstrate the usefulness of these expansions in getting analytic insight into the quantum systems having rational power polynomial potentials.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 12074329)Nanhu Scholars Program for Young Scholars of Xinyang Normal University。
文摘With a three-dimensional semiclassical ensemble method, we theoretically investigated the nonsequential double ionization of Ar driven by the spatially inhomogeneous few-cycle negatively chirped laser pulses. Our results show that the recollision time window can be precisely controlled within an isolated time interval of several hundred attoseconds, which is useful for understanding the subcycle correlated electron dynamics. More interestingly, the correlated electron momentum distribution (CEMD) exhibits a strong dependence on laser intensity. That is, at lower laser intensity, CEMD is located in the first quadrant. As the laser intensity increases,CEMD shifts almost completely to the second and fourth quadrants, and then gradually to the third quadrant.The underlying physics governing the CEMD's dependence on laser intensity is explained.
基金the support of the Collaborative Research Center SFB 676 of the DFG.
文摘We study the Schwinger mechanism in the presence of an additional uniformly oriented,weak super Gaussian of integer order 4 N+2.Using the worldline approach,we determine the relevant critical points to compute the leading order exponential factor analytically.We show that increasing the parameter N gives rise to a strong dynamical enhancement.For N=2,this effect turns out to be larger compared to a weak contribution of the Sauter type.For higher orders,specifically,for the rectangular barrier limit,i.e.N→∞,we approach the Lorentzian case as an upper bound.Although the mentioned backgrounds significantly differ in Minkowski spacetime,we show that the found coincidence applies due to identical reflection points in the Euclidean instanton plane.In addition,we also treat the background in perturbation theory following recent ideas.By doing so,we show that the parameter N determines whether the weak contribution behaves perturbatively or nonperturbatively with respect to the field strength ratio,and,hence,reveals an interesting dependence on the background shape.In particular,we show that for backgrounds,for which higher orders in the field strength ratio turn out to be relevant,a proposed integral condition is not fulfilled.In view of these findings,the latter may serve as an indicator for the necessity for higher-order contributions.
文摘Symmetrical quasi-classical (SQC) method based on mapping Hamiltonian is an efficient approach that is potentially useful to treat the nonadiabatic dynamics of very large systems. We try to evaluate the performance of this method in the ultrafast electron transfer processes involving a few of electronic states and a large number of vibrational modes. The multilayer multiconfigurational time-dependent Hartree (ML-MCTDH) method was used to get the accurate dynamical results for benchmark. Although the population dynamics in the long- time limit show differences in the ML-MCTDH and SQC calculations, the SQC method gives acceptable results.
基金Supported by NSFC (10541001, 10571101, 10401019, and 10701011)by Basic Research Foundation of Tsinghua University
文摘Semiclassical limit to the solution of transient bipolar quantum drift-diffusion model in semiconductor simulation is discussed. It is proved that the semiclassical limit of this solution satisfies the classical bipolar drift-diffusion model. In addition, the authors also prove the existence of weak solution.
基金Project supported by the National Natural Science Foundation of China (Grant No 40475007).
文摘Based on NII spectra, some transition probabilities for 2p4f-2p3d and 2s2p23d-2s2p23p are obtained by a semi- classical method. The results are in good agreement with other measurements and the data reported by the National Institute of Standards and Technology. The transition probability for a line of 424.18nm is reported for the first time. Meanwhile, a feasible method of calculating transition parameters related to special excited configurations or highly excited states is provided.
文摘The weak solutions to the stationary quantum drift-diffusion equations (QDD) for semiconductor devices are investigated in one space dimension. The proofs are based on a reformulation of the system as a fourth-order elliptic boundary value problem by using an exponential variable transformation. The techniques of a priori estimates and Leray-Schauder's fixed-point theorem are employed to prove the existence. Furthermore, the uniqueness of solutions and the semiclassical limit δ→0 from QDD to the classical drift-diffusion (DD) model are studied.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10774093 and 10374061)
文摘This paper presents theoretical computations of the ionization rate of Rydberg lithium atom above the classical ionization threshold using semiclassical approximation. The yielded random pulse trains of the escape electrons are recorded as a function of emission time such that they can be related to the terms of the recurrence periods of the photoabsorption. This fact illustrates that it is ionic core scattering processes which give rise to chaos in autoionization dynamics and this is verified by comparison of our results with the hydrogen atom situation. In order to reveal the chaotic properties in detail, the sensitive dependence of the ionization rate upon the scaled energy is discussed for different scaled energies. This approach provides a simple explanation for the chaotic character in autoionization decay of Rydberg alkali-metal atoms.
基金Project supported by the National Basic Research Program of China(Grant No.2013CB338002)the National Natural Science Foundation of China(Grant No.61502526)
文摘To overcome the difficulty of realizing large-scale quantum Fourier transform(QFT)within existing technology,this paper implements a resource-saving method(named t-bit semiclassical QFT over Z_(2n)),which could realize large-scale QFT using an arbitrary-scale quantum register.By developing a feasible method to realize the control quantum gate Rk,we experimentally realize the 2-bit semiclassical QFT over Z_(2-3)on IBM's quantum cloud computer,which shows the feasibility of the method.Then,we compare the actual performance of 2-bit semiclassical QFT with standard QFT in the experiments.The squared statistical overlap experimental data shows that the fidelity of 2-bit semiclassical QFT is higher than that of standard QFT,which is mainly due to fewer two-qubit gates in the semiclassical QFT.Furthermore,based on the proposed method,N=15 is successfully factorized by implementing Shor's algorithm.
基金supported by the National Natural Science Foundation of China (No.20773168)Natural Science Foundation Project of CQ CSTC (No.2006BB2367 and 2006BB5368)Project of Science Technology Foundation of Chongqing Education Committee (No.KJ070506).
文摘A realistic dynamics simulation study is reported for the trans-cis photoisomerization of azobenzene triggered by the n →π^* excitation and the results show that the formation ofcis isomer follows the rotational motion around the N=N bond. The simulation find that the CNN bond angle bending vibrations also play a significant role in the vibronic coupling between the HOMO and LUMO, which essentially leads a nonadiabatic transition of the molecule to the electronic ground state.
基金supported by the National Natural Science Foundation of China(No.21503130 and No.11674212,and No.21603144)supported by the Young Eastern Scholar Program of the Shanghai Municipal Education Commission(QD2016021)+1 种基金the Shanghai Key Laboratory of High Temperature Superconductors(No.14DZ2260700)supported by Shanghai Sailing Program(No.2016YF1408400).
文摘The ring-polymer molecular dynamics(RPMD)was used to calculate the thermal rate coefficients of the multi-channel roaming reaction H+MgH→Mg+H_(2).Two reaction channels,tight and roaming,are explicitly considered.This is a pioneering attempt of exerting RPMD method to multichannel reactions.With the help of a newly developed optimization-interpolation protocol for preparing the initial structures and adaptive protocol for choosing the force constants,we have successfully obtained the thermal rate coefficients.The results are consistent with those from other theoretical methods,such as variational transition state theory and quantum dynamics.Especially,RPMD results exhibit negative temperature dependence,which is similar to the results from variational transition state theory but different from the ones from ground state quantum dynamics calculations.
基金Supported by the National Science Council at Taiwan through Grants No. NSC 97-2112-M-009-008-MY3
文摘While the scattering phase for several one-dimensional potentials can be exactly derived, less is known in multi-dimensional quantum systems. This work provides a method to extend the one-dimensional phase knowledge to multi-dimensional quantization rules. The extension is illustrated in the example of Bogomolny's transfer operator method applied in two quantum wells bounded by step potentials of different heights. This generalized semiclassical method accurately determines the energy spectrum of the systems, which indicates the substantial role of the proposed phase correction. Theoretically, the result can be extended to other semiclassical methods, such as Gutzwiller trace formula, dynamical zeta functions, and semielassical Landauer Buttiker formula. In practice, this recipe enhances the applicability of semiclassical methods to multi-dimensional quantum systems bounded by general soft potentials.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10774162)
文摘We have studied the ionization of Rydberg hydrogen atom near a metal surface with a semiclassical analysis of photoionization microscopy. Interference patterns of the electron radial distribution are calculated at different scaled energies above the classical saddle point and at various atom surface distances. We find that different types of trajecto- ries contribute predominantly to different manifolds in a certain interference pattern. As the scaled energy increases, the structure of the interference pattern evolves smoothly and more types of trajectories emerge. As the atom approaches the metal surface closer, there are more types of trajectories contributing to the interference pattern as well. When the Rydberg atom comes very close to the metal surface or the scaled energy approaches the zero field ionization energy, the potential induced by the metal surface will make atomic system chaotic. The results also show that atoms near a metal surface exhibit similar properties like the atoms in the parallel electric and magnetic fields.
基金Project supported by the National Basic Research Program of China (Grant No.2013CB338002)
文摘Since the difficulty in preparing the equal superposition state of amplitude is 1/√N, we construct a quantile transform of quantum Fourier transform (QFT) over ZN based on the elementary transforms, such as Hadamard transform and Pauli transform. The QFT over Z_N can then be realized by the quantile transform, and used to further design its quantum circuit and analyze the requirements for the quantum register and quantum gates. However, the transform needs considerable quantum computational resources and it is difficult to construct a high-dimensional quantum register. Hence, we investigate the design of t-bit quantile transform, and introduce the definition of t-bit semiclassical QFT over Z_N. According to probability amplitude, we prove that the transform can be used to realize QFT over ZN and further design its quantum circuit. For this transform, the requirements for the quantum register, the one-qubit gate, and two-qubit gate reduce obviously when compared with those for the QFT over Z_N.
基金supported by the National Natural Science Foundation of China (Nos. 21003100 and 21073242)Natural Science Basic Research Plan in Shaanxi Province of China (No. 2011JQ2013)Special Fund of Education Department of Shaanxi Province (No. 12JK0619)
文摘The photochromic ring-opening reaction of spiropyran(SP) has been investigated by a realistic semiclassical dynamics simulation,accompanied by SA3-CASSCF(12 10)/MS-CASPT2 potential energy curves(PECs) of S0–S2.The main simulation results show the dominate pathway corresponds to the ringopening process of trans-SP to form the most stable merocyanine(MC) product.These findings provide more important complementarity for interpreting experimental observations.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11420101003,11604347,11827806,11874368,61675213,and 91636105)
文摘Bichromatic circularly polarized fields provide a useful tool to probe the ionization dynamics.In this work, we compare the photoelectron momentum distribution in few-cycle bichromatic field of different helicities.The spectral features are analyzed with semiclassical trajectories derived from the strong field approximation.In particular, the interference fringes in momentum distribution are investigated by tracking the ionization time and tunneling exits of released photoelectrons.Different types of trajectories that contribute to the interference fringes are elucidated.
文摘The energy spectrum of the hydrogen atom has been applied in calculating the time rate of energy transitions between the quantum states of the atom. The formal basis of the approach has been provided by the quantum properties of energy and time deduced from the Joule-Lenz law. The rates of the energy transitions obtained in this way were compared with the quantum-mechanical probabilities of transitions calculated earlier by Bethe and Condon and Shortley for the same pairs of the quantum states.
基金supported by the National Natural Science Foundation of China(No.21373191,No.21573202,No.21633006,and No.21703225)the Fundamental Research Funds for the Central Universities(No.2030020028,No.2060030025,and No.2340000074)
文摘We present a semiclassical (SC) approach for quantum dissipative dynamics, constructed on basis of the hierarchical-equation-of-motion (HEOM) formalism. The dynamical components considered in the developed SC-HEOM are wavepackets' phase-space moments of not only the primary reduced system density operator but also the auxiliary density operators (ADOs) of HEOM. It is a highly numerically efficient method, meanwhile taking into account the high-order effcts of system-bath couplings. The SC-HEOM methodology is exemplified in this work on the hierarchical quantum master equation [J. Chem. Phys. 131, 214111 (2009)] and numerically demonstrated on linear spectra of anharmonic oscillators.
文摘In this paper a semiclassical propagator in a mixed position-momentum space is derived in the formalism of Maslov's multi-dimensional semiclassical theory. The corresponding mixed van Vleck determinant is also given explicitly. The propagator can be used to locally fix semiclassical divergences in singular regions of configuration space. It is shown that when a semicla^sical propagator is transformed from one representation to another, its form is invariant.
基金Supported by the National Natural Science Foundation of China under Grant No.11374133the Ph.D.Foundation of Tangshan Normal University under Grant No.2015A06+1 种基金the Science and Technology Project of Hebei Province under Grant No.16274522the Education Project of Hebei Province under Grant No.QN2015328
文摘Due to the effect of Coulomb potential, the angular distribution of electron ionized in an elliptically polarized field presents an asymmetric structure, which is called "Coulomb asymmetry". In this paper, we study how to modulate the asymmetric degree of the electron angular distribution by using a semi-classical simplified tunneling model. It is found that the asymmetric structure is easily affected by three parameters: the ionization potential, the laser ellipticity,and the laser wavelength. However, the laser intensity has little effect on the asymmetric structure. To explain these phenomena we have derived an analytical formula, which clearly demonstrates the relationship between the asymmetric degree and these parameters. Moreover, we find that in elliptically polarized laser field only those electrons that are released in a certain narrow window of initial field phase are greatly effected by the Coulomb potential and play the key role in the formation of asymmetric structure. This study provides some reference values in the development of attoclock technique, which can be used to probe the tunneling process.
文摘Asymptotic energy expansion method is extended for polynomial potentials having rational powers. New types of recurrence relations are derived for the potentials of the form rig, mN are positive integers while coefficients bk ∈ C. As in the case of even degree polynomial potentials with integer powers, all the integrals in the expansion can be evaluated analytically in terms of F functions. With the help of two examples, we demonstrate the usefulness of these expansions in getting analytic insight into the quantum systems having rational power polynomial potentials.