The leaf structure, content and the storage location of aloin in the leaves of six species of Aloe L. were studied by means of semi-thin section, high performance liquid chromatography (HPLC) and fluorescent microscop...The leaf structure, content and the storage location of aloin in the leaves of six species of Aloe L. were studied by means of semi-thin section, high performance liquid chromatography (HPLC) and fluorescent microscope. Results showed that all leaves consisted of epidermis, chlorenchyma, aquiferous tissue and vascular bundles. The leaves had the xeromorphic characteristics, including thickened epidermal cell wall, thickened cuticle, sunken stomata and well-developed aquiferous tissue. With the exception of thus, there were remarkable differences in leaf structure among the six species. The chlorenchyma cells were similar to palisade tissues in Aloe arborescens Mill. and A. mutabilis Pillans, but isodiametric in A. vera L., A. vera L. var. chinensis Berg., A. saponaria Hawer and A. greenii Bali. A. arborescens, A. mutabilis, A. very and A. vera var. chinensis included large parenchymatous cells at the vascular bundles, whereas no such cells were observed at the vascular bundles of A. saponaria and A. greenii. In A. arborescens, A. mutabilis and A. vera, the aquiferous tissue sheaths were present and composed of a layer of small parenchymatous cells without chloroplasts around the aquiferous tissue. While there were no aquiferous tissue sheaths in A. vera var. chinensis, A. saponaria and A. greenii. The HPLC revealed that the content of aloin was high in A. arborescens, low in A. vera, and very low in A. saponaria among the six species. The fluorescent microscopy showed that the yellow-green globule only appeared in the large parenchymatous cells of vascular bundles, vascular bundle sheath and aquiferous tissue sheath, but not in the chlorenchyma and aquiferous tissue. Consequently, the large parenchymatous cells of vascular bundles, vascular bundle sheath and aquiferous tissue sheath were the storage location of aloin. They were positively correlated with the content of aloin.展开更多
Somatic hybridization is performed to obtain significant cytoplasmic male sterility (CMS) lines, whose CMS genes are derived either from the transfer of sterile genes from the mitochondrial genome of donor parent to...Somatic hybridization is performed to obtain significant cytoplasmic male sterility (CMS) lines, whose CMS genes are derived either from the transfer of sterile genes from the mitochondrial genome of donor parent to the counterpart of receptor or production of new sterile genes caused by mitochondrial genome recombination of the biparent during protoplast fusion. In this study, a novel male sterile line, SaNa-IA, was obtained from the somatic hybridization between Brassica napus and Sinapis alba. The normal anther development of the maintainer line, SaNa-IB, and the abortive process of SaNa-IA were described through phenotypic observations and microtome sections. The floral organ of the sterile line SaNa-IA was sterile with a shortened filament and deflated anther. No detectable pollen grains were found on the surface of the sterile anthers. Semi-thin sections indicated that SaNa-IA aborted in the pollen mother cell (PMC) stage when vacuolization of the tapetum and PMCs began. The tapetum radically elongated and became highly vacuolated, occupying the entire locule together with the vacuolated microspores. Therefore, SaNa-IA is different from other CMS lines, such as ogu CMS, pol CMS and nap CMS as shown by the abortive process of the anther.展开更多
文摘The leaf structure, content and the storage location of aloin in the leaves of six species of Aloe L. were studied by means of semi-thin section, high performance liquid chromatography (HPLC) and fluorescent microscope. Results showed that all leaves consisted of epidermis, chlorenchyma, aquiferous tissue and vascular bundles. The leaves had the xeromorphic characteristics, including thickened epidermal cell wall, thickened cuticle, sunken stomata and well-developed aquiferous tissue. With the exception of thus, there were remarkable differences in leaf structure among the six species. The chlorenchyma cells were similar to palisade tissues in Aloe arborescens Mill. and A. mutabilis Pillans, but isodiametric in A. vera L., A. vera L. var. chinensis Berg., A. saponaria Hawer and A. greenii Bali. A. arborescens, A. mutabilis, A. very and A. vera var. chinensis included large parenchymatous cells at the vascular bundles, whereas no such cells were observed at the vascular bundles of A. saponaria and A. greenii. In A. arborescens, A. mutabilis and A. vera, the aquiferous tissue sheaths were present and composed of a layer of small parenchymatous cells without chloroplasts around the aquiferous tissue. While there were no aquiferous tissue sheaths in A. vera var. chinensis, A. saponaria and A. greenii. The HPLC revealed that the content of aloin was high in A. arborescens, low in A. vera, and very low in A. saponaria among the six species. The fluorescent microscopy showed that the yellow-green globule only appeared in the large parenchymatous cells of vascular bundles, vascular bundle sheath and aquiferous tissue sheath, but not in the chlorenchyma and aquiferous tissue. Consequently, the large parenchymatous cells of vascular bundles, vascular bundle sheath and aquiferous tissue sheath were the storage location of aloin. They were positively correlated with the content of aloin.
基金the National Natural Science Foundation of China(31330057)the Priority Academic Program Development of Jiangsu Higher Education Institutions+1 种基金the Program of International S&T Cooperation of China(1021)the Jiangsu Province Graduate Innovation Fund(XCLX13_899),China
文摘Somatic hybridization is performed to obtain significant cytoplasmic male sterility (CMS) lines, whose CMS genes are derived either from the transfer of sterile genes from the mitochondrial genome of donor parent to the counterpart of receptor or production of new sterile genes caused by mitochondrial genome recombination of the biparent during protoplast fusion. In this study, a novel male sterile line, SaNa-IA, was obtained from the somatic hybridization between Brassica napus and Sinapis alba. The normal anther development of the maintainer line, SaNa-IB, and the abortive process of SaNa-IA were described through phenotypic observations and microtome sections. The floral organ of the sterile line SaNa-IA was sterile with a shortened filament and deflated anther. No detectable pollen grains were found on the surface of the sterile anthers. Semi-thin sections indicated that SaNa-IA aborted in the pollen mother cell (PMC) stage when vacuolization of the tapetum and PMCs began. The tapetum radically elongated and became highly vacuolated, occupying the entire locule together with the vacuolated microspores. Therefore, SaNa-IA is different from other CMS lines, such as ogu CMS, pol CMS and nap CMS as shown by the abortive process of the anther.