Accurate prediction of the remaining useful life(RUL)is crucial for the design and management of lithium-ion batteries.Although various machine learning models offer promising predictions,one critical but often overlo...Accurate prediction of the remaining useful life(RUL)is crucial for the design and management of lithium-ion batteries.Although various machine learning models offer promising predictions,one critical but often overlooked challenge is their demand for considerable run-to-failure data for training.Collection of such training data leads to prohibitive testing efforts as the run-to-failure tests can last for years.Here,we propose a semi-supervised representation learning method to enhance prediction accuracy by learning from data without RUL labels.Our approach builds on a sophisticated deep neural network that comprises an encoder and three decoder heads to extract time-dependent representation features from short-term battery operating data regardless of the existence of RUL labels.The approach is validated using three datasets collected from 34 batteries operating under various conditions,encompassing over 19,900 charge and discharge cycles.Our method achieves a root mean squared error(RMSE)within 25 cycles,even when only 1/50 of the training dataset is labelled,representing a reduction of 48%compared to the conventional approach.We also demonstrate the method's robustness with varying numbers of labelled data and different weights assigned to the three decoder heads.The projection of extracted features in low space reveals that our method effectively learns degradation features from unlabelled data.Our approach highlights the promise of utilising semi-supervised learning to reduce the data demand for reliability monitoring of energy devices.展开更多
Knowing the influence of the size of datasets for regression models can help in improving the accuracy of a solar power forecast and make the most out of renewable energy systems.This research explores the influence o...Knowing the influence of the size of datasets for regression models can help in improving the accuracy of a solar power forecast and make the most out of renewable energy systems.This research explores the influence of dataset size on the accuracy and reliability of regression models for solar power prediction,contributing to better forecasting methods.The study analyzes data from two solar panels,aSiMicro03036 and aSiTandem72-46,over 7,14,17,21,28,and 38 days,with each dataset comprising five independent and one dependent parameter,and split 80–20 for training and testing.Results indicate that Random Forest consistently outperforms other models,achieving the highest correlation coefficient of 0.9822 and the lowest Mean Absolute Error(MAE)of 2.0544 on the aSiTandem72-46 panel with 21 days of data.For the aSiMicro03036 panel,the best MAE of 4.2978 was reached using the k-Nearest Neighbor(k-NN)algorithm,which was set up as instance-based k-Nearest neighbors(IBk)in Weka after being trained on 17 days of data.Regression performance for most models(excluding IBk)stabilizes at 14 days or more.Compared to the 7-day dataset,increasing to 21 days reduced the MAE by around 20%and improved correlation coefficients by around 2.1%,highlighting the value of moderate dataset expansion.These findings suggest that datasets spanning 17 to 21 days,with 80%used for training,can significantly enhance the predictive accuracy of solar power generation models.展开更多
In this present time,Human Activity Recognition(HAR)has been of considerable aid in the case of health monitoring and recovery.The exploitation of machine learning with an intelligent agent in the area of health infor...In this present time,Human Activity Recognition(HAR)has been of considerable aid in the case of health monitoring and recovery.The exploitation of machine learning with an intelligent agent in the area of health informatics gathered using HAR augments the decision-making quality and significance.Although many research works conducted on Smart Healthcare Monitoring,there remain a certain number of pitfalls such as time,overhead,and falsification involved during analysis.Therefore,this paper proposes a Statistical Partial Regression and Support Vector Intelligent Agent Learning(SPR-SVIAL)for Smart Healthcare Monitoring.At first,the Statistical Partial Regression Feature Extraction model is used for data preprocessing along with the dimensionality-reduced features extraction process.Here,the input dataset the continuous beat-to-beat heart data,triaxial accelerometer data,and psychological characteristics were acquired from IoT wearable devices.To attain highly accurate Smart Healthcare Monitoring with less time,Partial Least Square helps extract the dimensionality-reduced features.After that,with these resulting features,SVIAL is proposed for Smart Healthcare Monitoring with the help of Machine Learning and Intelligent Agents to minimize both analysis falsification and overhead.Experimental evaluation is carried out for factors such as time,overhead,and false positive rate accuracy concerning several instances.The quantitatively analyzed results indicate the better performance of our proposed SPR-SVIAL method when compared with two state-of-the-art methods.展开更多
Hybrid precoding is considered as a promising low-cost technique for millimeter wave(mm-wave)massive Multi-Input Multi-Output(MIMO)systems.In this work,referring to the time-varying propagation circumstances,with semi...Hybrid precoding is considered as a promising low-cost technique for millimeter wave(mm-wave)massive Multi-Input Multi-Output(MIMO)systems.In this work,referring to the time-varying propagation circumstances,with semi-supervised Incremental Learning(IL),we propose an online hybrid beamforming scheme.Firstly,given the constraint of constant modulus on analog beamformer and combiner,we propose a new broadnetwork-based structure for the design model of hybrid beamforming.Compared with the existing network structure,the proposed network structure can achieve better transmission performance and lower complexity.Moreover,to enhance the efficiency of IL further,by combining the semi-supervised graph with IL,we propose a hybrid beamforming scheme based on chunk-by-chunk semi-supervised learning,where only few transmissions are required to calculate the label and all other unlabelled transmissions would also be put into a training data chunk.Unlike the existing single-by-single approach where transmissions during the model update are not taken into the consideration of model update,all transmissions,even the ones during the model update,would make contributions to model update in the proposed method.During the model update,the amount of unlabelled transmissions is very large and they also carry some information,the prediction performance can be enhanced to some extent by these unlabelled channel data.Simulation results demonstrate the spectral efficiency of the proposed method outperforms that of the existing single-by-single approach.Besides,we prove the general complexity of the proposed method is lower than that of the existing approach and give the condition under which its absolute complexity outperforms that of the existing approach.展开更多
Active learning in semi-supervised classification involves introducing additional labels for unlabelled data to improve the accuracy of the underlying classifier.A challenge is to identify which points to label to bes...Active learning in semi-supervised classification involves introducing additional labels for unlabelled data to improve the accuracy of the underlying classifier.A challenge is to identify which points to label to best improve performance while limiting the number of new labels."Model Change"active learning quantifies the resulting change incurred in the classifier by introducing the additional label(s).We pair this idea with graph-based semi-supervised learning(SSL)methods,that use the spectrum of the graph Laplacian matrix,which can be truncated to avoid prohibitively large computational and storage costs.We consider a family of convex loss functions for which the acquisition function can be efficiently approximated using the Laplace approximation of the posterior distribution.We show a variety of multiclass examples that illustrate improved performance over prior state-of-art.展开更多
With the rapid development of Internet of Things(IoT)technology,IoT systems have been widely applied in health-care,transportation,home,and other fields.However,with the continuous expansion of the scale and increasin...With the rapid development of Internet of Things(IoT)technology,IoT systems have been widely applied in health-care,transportation,home,and other fields.However,with the continuous expansion of the scale and increasing complexity of IoT systems,the stability and security issues of IoT systems have become increasingly prominent.Thus,it is crucial to detect anomalies in the collected IoT time series from various sensors.Recently,deep learning models have been leveraged for IoT anomaly detection.However,owing to the challenges associated with data labeling,most IoT anomaly detection methods resort to unsupervised learning techniques.Nevertheless,the absence of accurate abnormal information in unsupervised learning methods limits their performance.To address these problems,we propose AS-GCN-MTM,an adaptive structural Graph Convolutional Networks(GCN)-based framework using a mean-teacher mechanism(AS-GCN-MTM)for anomaly identification.It performs better than unsupervised methods using only a small amount of labeled data.Mean Teachers is an effective semi-supervised learning method that utilizes unlabeled data for training to improve the generalization ability and performance of the model.However,the dependencies between data are often unknown in time series data.To solve this problem,we designed a graph structure adaptive learning layer based on neural networks,which can automatically learn the graph structure from time series data.It not only better captures the relationships between nodes but also enhances the model’s performance by augmenting key data.Experiments have demonstrated that our method improves the baseline model with the highest F1 value by 10.4%,36.1%,and 5.6%,respectively,on three real datasets with a 10%data labeling rate.展开更多
The aim of this paper is to broaden the application of Stochastic Configuration Network (SCN) in the semi-supervised domain by utilizing common unlabeled data in daily life. It can enhance the classification accuracy ...The aim of this paper is to broaden the application of Stochastic Configuration Network (SCN) in the semi-supervised domain by utilizing common unlabeled data in daily life. It can enhance the classification accuracy of decentralized SCN algorithms while effectively protecting user privacy. To this end, we propose a decentralized semi-supervised learning algorithm for SCN, called DMT-SCN, which introduces teacher and student models by combining the idea of consistency regularization to improve the response speed of model iterations. In order to reduce the possible negative impact of unsupervised data on the model, we purposely change the way of adding noise to the unlabeled data. Simulation results show that the algorithm can effectively utilize unlabeled data to improve the classification accuracy of SCN training and is robust under different ground simulation environments.展开更多
This study proposed a cutting-edge,multistep workflow and upgraded it by addressing its flaw of not considering how to determine the index system objectively.It then used the updated workflow to identify the probabili...This study proposed a cutting-edge,multistep workflow and upgraded it by addressing its flaw of not considering how to determine the index system objectively.It then used the updated workflow to identify the probability of China’s systemic financial crisis and analyzed the impact of macroeconomic indicators on the crisis.The final workflow comprises four steps:selecting rational indicators,modeling using supervised learning,decomposing the model’s internal function,and conducting the non-linear,non-parametric statistical inference,with advantages of objective index selection,accurate prediction,and high model transparency.In addition,since China’s international influence is progressively increasing,and the report of the 19th National Congress of the Communist Party of China has demonstrated that China is facing severe risk control challenges and stressed that the government should ensure that no systemic risks would emerge,this study selected China’s systemic financial crisis as an example.Specifically,one global trade factor and 11 country-level macroeconomic indicators were selected to conduct the machine learning models.The prediction models captured six risk-rising periods in China’s financial system from 1990 to 2020,which is consistent with reality.The interpretation techniques show the non-linearities of risk drivers,expressed as threshold and interval effects.Furthermore,Shapley regression validates the alignment of the indicators.The final workflow is suitable for categorical and regression analyses in several areas.These methods can also be used independently or in combination,depending on the research requirements.Researchers can switch to other suitable shallow machine learning models or deep neural networks for modeling.The results regarding crises could provide specific references for bank regulators and policymakers to develop critical measures to maintain macroeconomic and financial stability.展开更多
Modeling implied volatility(IV)is important for option pricing,hedging,and risk management.Previous studies of deterministic implied volatility functions(DIVFs)propose two parameters,moneyness and time to maturity,to ...Modeling implied volatility(IV)is important for option pricing,hedging,and risk management.Previous studies of deterministic implied volatility functions(DIVFs)propose two parameters,moneyness and time to maturity,to estimate implied volatility.Recent DIVF models have included factors such as a moving average ratio and relative bid-ask spread but fail to enhance modeling accuracy.The current study offers a generalized DIVF model by including a momentum indicator for the underlying asset using a relative strength index(RSI)covering multiple time resolutions as a factor,as momentum is often used by investors and speculators in their trading decisions,and in contrast to volatility,RSI can distinguish between bull and bear markets.To the best of our knowledge,prior studies have not included RSI as a predictive factor in modeling IV.Instead of using a simple linear regression as in previous studies,we use a machine learning regression algorithm,namely random forest,to model a nonlinear IV.Previous studies apply DVIF modeling to options on traditional financial assets,such as stock and foreign exchange markets.Here,we study options on the largest cryptocurrency,Bitcoin,which poses greater modeling challenges due to its extreme volatility and the fact that it is not as well studied as traditional financial assets.Recent Bitcoin option chain data were collected from a leading cryptocurrency option exchange over a four-month period for model development and validation.Our dataset includes short-maturity options with expiry in less than six days,as well as a full range of moneyness,both of which are often excluded in existing studies as prices for options with these characteristics are often highly volatile and pose challenges to model building.Our in-sample and out-sample results indicate that including our proposed momentum indicator significantly enhances the model’s accuracy in pricing options.The nonlinear machine learning random forest algorithm also performed better than a simple linear regression.Compared to prevailing option pricing models that employ stochastic variables,our DIVF model does not include stochastic factors but exhibits reasonably good performance.It is also easy to compute due to the availability of real-time RSIs.Our findings indicate our enhanced DIVF model offers significant improvements and may be an excellent alternative to existing option pricing models that are primarily stochastic in nature.展开更多
Two-dimensional endoscopic images are susceptible to interferences such as specular reflections and monotonous texture illumination,hindering accurate three-dimensional lesion reconstruction by surgical robots.This st...Two-dimensional endoscopic images are susceptible to interferences such as specular reflections and monotonous texture illumination,hindering accurate three-dimensional lesion reconstruction by surgical robots.This study proposes a novel end-to-end disparity estimation model to address these challenges.Our approach combines a Pseudo-Siamese neural network architecture with pyramid dilated convolutions,integrating multi-scale image information to enhance robustness against lighting interferences.This study introduces a Pseudo-Siamese structure-based disparity regression model that simplifies left-right image comparison,improving accuracy and efficiency.The model was evaluated using a dataset of stereo endoscopic videos captured by the Da Vinci surgical robot,comprising simulated silicone heart sequences and real heart video data.Experimental results demonstrate significant improvement in the network’s resistance to lighting interference without substantially increasing parameters.Moreover,the model exhibited faster convergence during training,contributing to overall performance enhancement.This study advances endoscopic image processing accuracy and has potential implications for surgical robot applications in complex environments.展开更多
Existing semi-supervisedmedical image segmentation algorithms use copy-paste data augmentation to correct the labeled-unlabeled data distribution mismatch.However,current copy-paste methods have three limitations:(1)t...Existing semi-supervisedmedical image segmentation algorithms use copy-paste data augmentation to correct the labeled-unlabeled data distribution mismatch.However,current copy-paste methods have three limitations:(1)training the model solely with copy-paste mixed pictures from labeled and unlabeled input loses a lot of labeled information;(2)low-quality pseudo-labels can cause confirmation bias in pseudo-supervised learning on unlabeled data;(3)the segmentation performance in low-contrast and local regions is less than optimal.We design a Stochastic Augmentation-Based Dual-Teaching Auxiliary Training Strategy(SADT),which enhances feature diversity and learns high-quality features to overcome these problems.To be more precise,SADT trains the Student Network by using pseudo-label-based training from Teacher Network 1 and supervised learning with labeled data,which prevents the loss of rare labeled data.We introduce a bi-directional copy-pastemask with progressive high-entropy filtering to reduce data distribution disparities and mitigate confirmation bias in pseudo-supervision.For the mixed images,Deep-Shallow Spatial Contrastive Learning(DSSCL)is proposed in the feature spaces of Teacher Network 2 and the Student Network to improve the segmentation capabilities in low-contrast and local areas.In this procedure,the features retrieved by the Student Network are subjected to a random feature perturbation technique.On two openly available datasets,extensive trials show that our proposed SADT performs much better than the state-ofthe-art semi-supervised medical segmentation techniques.Using only 10%of the labeled data for training,SADT was able to acquire a Dice score of 90.10%on the ACDC(Automatic Cardiac Diagnosis Challenge)dataset.展开更多
In engineering practice,it is often necessary to determine functional relationships between dependent and independent variables.These relationships can be highly nonlinear,and classical regression approaches cannot al...In engineering practice,it is often necessary to determine functional relationships between dependent and independent variables.These relationships can be highly nonlinear,and classical regression approaches cannot always provide sufficiently reliable solutions.Nevertheless,Machine Learning(ML)techniques,which offer advanced regression tools to address complicated engineering issues,have been developed and widely explored.This study investigates the selected ML techniques to evaluate their suitability for application in the hot deformation behavior of metallic materials.The ML-based regression methods of Artificial Neural Networks(ANNs),Support Vector Machine(SVM),Decision Tree Regression(DTR),and Gaussian Process Regression(GPR)are applied to mathematically describe hot flow stress curve datasets acquired experimentally for a medium-carbon steel.Although the GPR method has not been used for such a regression task before,the results showed that its performance is the most favorable and practically unrivaled;neither the ANN method nor the other studied ML techniques provide such precise results of the solved regression analysis.展开更多
Ensemble learning,a pivotal branch of machine learning,amalgamates multiple base models to enhance the overarching performance of predictive models,capitalising on the diversity and collective wisdom of the ensemble t...Ensemble learning,a pivotal branch of machine learning,amalgamates multiple base models to enhance the overarching performance of predictive models,capitalising on the diversity and collective wisdom of the ensemble to surpass individual models and mitigate overfitting.In this review,a four-layer research framework is established for the research of ensemble learning,which can offer a comprehensive and structured review of ensemble learning from bottom to top.Firstly,this survey commences by introducing fundamental ensemble learning techniques,including bagging,boosting,and stacking,while also exploring the ensemble's diversity.Then,deep ensemble learning and semi-supervised ensemble learning are studied in detail.Furthermore,the utilisation of ensemble learning techniques to navigate challenging datasets,such as imbalanced and highdimensional data,is discussed.The application of ensemble learning techniques across various research domains,including healthcare,transportation,finance,manufacturing,and the Internet,is also examined.The survey concludes by discussing challenges intrinsic to ensemble learning.展开更多
A literature review on AI applications in the field of railway safety shows that the implemented approaches mainly concern the operational,maintenance,and feedback phases following railway incidents or accidents.These...A literature review on AI applications in the field of railway safety shows that the implemented approaches mainly concern the operational,maintenance,and feedback phases following railway incidents or accidents.These approaches exploit railway safety data once the transport system has received authorization for commissioning.However,railway standards and regulations require the development of a safety management system(SMS)from the specification and design phases of the railway system.This article proposes a new AI approach for analyzing and assessing safety from the specification and design phases of the railway system with a view to improving the development of the SMS.Unlike some learning methods,the proposed approach,which is dedicated in particular to safety assessment bodies,is based on semi-supervised learning carried out in close collaboration with safety experts who contributed to the development of a database of potential accident scenarios(learning example database)relating to the risk of rail collision.The proposed decision support is based on the use of an expert system whose knowledge base is automatically generated by inductive learning in the form of an association rule(rule base)and whose main objective is to suggest to the safety expert possible hazards not considered during the development of the SMS to complete the initial hazard register.展开更多
Large amounts of labeled data are usually needed for training deep neural networks in medical image studies,particularly in medical image classification.However,in the field of semi-supervised medical image analysis,l...Large amounts of labeled data are usually needed for training deep neural networks in medical image studies,particularly in medical image classification.However,in the field of semi-supervised medical image analysis,labeled data is very scarce due to patient privacy concerns.For researchers,obtaining high-quality labeled images is exceedingly challenging because it involves manual annotation and clinical understanding.In addition,skin datasets are highly suitable for medical image classification studies due to the inter-class relationships and the inter-class similarities of skin lesions.In this paper,we propose a model called Coalition Sample Relation Consistency(CSRC),a consistency-based method that leverages Canonical Correlation Analysis(CCA)to capture the intrinsic relationships between samples.Considering that traditional consistency-based models only focus on the consistency of prediction,we additionally explore the similarity between features by using CCA.We enforce feature relation consistency based on traditional models,encouraging the model to learn more meaningful information from unlabeled data.Finally,considering that cross-entropy loss is not as suitable as the supervised loss when studying with imbalanced datasets(i.e.,ISIC 2017 and ISIC 2018),we improve the supervised loss to achieve better classification accuracy.Our study shows that this model performs better than many semi-supervised methods.展开更多
Missing values in radionuclide diffusion datasets can undermine the predictive accuracy and robustness of the machine learning(ML)models.In this study,regression-based missing data imputation method using a light grad...Missing values in radionuclide diffusion datasets can undermine the predictive accuracy and robustness of the machine learning(ML)models.In this study,regression-based missing data imputation method using a light gradient boosting machine(LGBM)algorithm was employed to impute more than 60%of the missing data,establishing a radionuclide diffusion dataset containing 16 input features and 813 instances.The effective diffusion coefficient(D_(e))was predicted using ten ML models.The predictive accuracy of the ensemble meta-models,namely LGBM-extreme gradient boosting(XGB)and LGBM-categorical boosting(CatB),surpassed that of the other ML models,with R^(2)values of 0.94.The models were applied to predict the D_(e)values of EuEDTA^(−)and HCrO_(4)^(−)in saturated compacted bentonites at compactions ranging from 1200 to 1800 kg/m^(3),which were measured using a through-diffusion method.The generalization ability of the LGBM-XGB model surpassed that of LGB-CatB in predicting the D_(e)of HCrO_(4)^(−).Shapley additive explanations identified total porosity as the most significant influencing factor.Additionally,the partial dependence plot analysis technique yielded clearer results in the univariate correlation analysis.This study provides a regression imputation technique to refine radionuclide diffusion datasets,offering deeper insights into analyzing the diffusion mechanism of radionuclides and supporting the safety assessment of the geological disposal of high-level radioactive waste.展开更多
Medical image segmentation is a crucial task in clinical applications.However,obtaining labeled data for medical images is often challenging.This has led to the appeal of semi-supervised learning(SSL),a technique adep...Medical image segmentation is a crucial task in clinical applications.However,obtaining labeled data for medical images is often challenging.This has led to the appeal of semi-supervised learning(SSL),a technique adept at leveraging a modest amount of labeled data.Nonetheless,most prevailing SSL segmentation methods for medical images either rely on the single consistency training method or directly fine-tune SSL methods designed for natural images.In this paper,we propose an innovative semi-supervised method called multi-consistency training(MCT)for medical image segmentation.Our approach transcends the constraints of prior methodologies by considering consistency from a dual perspective:output consistency across different up-sampling methods and output consistency of the same data within the same network under various perturbations to the intermediate features.We design distinct semi-supervised loss regression methods for these two types of consistencies.To enhance the application of our MCT model,we also develop a dedicated decoder as the core of our neural network.Thorough experiments were conducted on the polyp dataset and the dental dataset,rigorously compared against other SSL methods.Experimental results demonstrate the superiority of our approach,achieving higher segmentation accuracy.Moreover,comprehensive ablation studies and insightful discussion substantiate the efficacy of our approach in navigating the intricacies of medical image segmentation.展开更多
BACKGROUND Difficulty of colonoscopy insertion(DCI)significantly affects colonoscopy effectiveness and serves as a key quality indicator.Predicting and evaluating DCI risk preoperatively is crucial for optimizing intr...BACKGROUND Difficulty of colonoscopy insertion(DCI)significantly affects colonoscopy effectiveness and serves as a key quality indicator.Predicting and evaluating DCI risk preoperatively is crucial for optimizing intraoperative strategies.AIM To evaluate the predictive performance of machine learning(ML)algorithms for DCI by comparing three modeling approaches,identify factors influencing DCI,and develop a preoperative prediction model using ML algorithms to enhance colonoscopy quality and efficiency.METHODS This cross-sectional study enrolled 712 patients who underwent colonoscopy at a tertiary hospital between June 2020 and May 2021.Demographic data,past medical history,medication use,and psychological status were collected.The endoscopist assessed DCI using the visual analogue scale.After univariate screening,predictive models were developed using multivariable logistic regression,least absolute shrinkage and selection operator(LASSO)regression,and random forest(RF)algorithms.Model performance was evaluated based on discrimination,calibration,and decision curve analysis(DCA),and results were visualized using nomograms.RESULTS A total of 712 patients(53.8%male;mean age 54.5 years±12.9 years)were included.Logistic regression analysis identified constipation[odds ratio(OR)=2.254,95%confidence interval(CI):1.289-3.931],abdominal circumference(AC)(77.5–91.9 cm,OR=1.895,95%CI:1.065-3.350;AC≥92 cm,OR=1.271,95%CI:0.730-2.188),and anxiety(OR=1.071,95%CI:1.044-1.100)as predictive factors for DCI,validated by LASSO and RF methods.Model performance revealed training/validation sensitivities of 0.826/0.925,0.924/0.868,and 1.000/0.981;specificities of 0.602/0.511,0.510/0.562,and 0.977/0.526;and corresponding area under the receiver operating characteristic curves(AUCs)of 0.780(0.737-0.823)/0.726(0.654-0.799),0.754(0.710-0.798)/0.723(0.656-0.791),and 1.000(1.000-1.000)/0.754(0.688-0.820),respectively.DCA indicated optimal net benefit within probability thresholds of 0-0.9 and 0.05-0.37.The RF model demonstrated superior diagnostic accuracy,reflected by perfect training sensitivity(1.000)and highest validation AUC(0.754),outperforming other methods in clinical applicability.CONCLUSION The RF-based model exhibited superior predictive accuracy for DCI compared to multivariable logistic and LASSO regression models.This approach supports individualized preoperative optimization,enhancing colonoscopy quality through targeted risk stratification.展开更多
Predicting blasting quality during tunnel construction holds practical significance.In this study,a new semi-supervised learning method using convolutional variational autoencoder(CVAE)and deep neural network(DNN)is p...Predicting blasting quality during tunnel construction holds practical significance.In this study,a new semi-supervised learning method using convolutional variational autoencoder(CVAE)and deep neural network(DNN)is proposed for the prediction of blasting quality grades.Tunnel blasting quality can be measured by over/under excavation.The occurrence of over/under excavation is influenced by three factors:geological conditions,blasting parameters,and tunnel geometric dimensions.The proposed method reflects the geological conditions through measurements while drilling and utilizes blasting parameters,tunnel geometric dimensions,and tunnel depth as input variables to achieve tunnel blasting quality grades prediction.Furthermore,the model is optimized by considering the influence of surrounding rock mass features on the predicted positions.The results demonstrate that the proposed method outperforms other commonly used machine learning and deep learning algorithms in extracting over/under excavation feature information and achieving blasting quality prediction.展开更多
Foam concrete is widely used in engineering due to its lightweight and high porosity.Its compressive strength,a key performance indicator,is influenced by multiple factors,showing nonlinear variation.As compressive st...Foam concrete is widely used in engineering due to its lightweight and high porosity.Its compressive strength,a key performance indicator,is influenced by multiple factors,showing nonlinear variation.As compressive strength tests for foam concrete take a long time,a fast and accurate prediction method is needed.In recent years,machine learning has become a powerful tool for predicting the compressive strength of cement-based materials.However,existing studies often use a limited number of input parameters,and the prediction accuracy of machine learning models under the influence of multiple parameters and nonlinearity remains unclear.This study selects foam concrete density,water-to-cement ratio(W/C),supplementary cementitious material replacement rate(SCM),fine aggregate to binder ratio(FA/Binder),superplasticizer content(SP),and age of the concrete(Age)as input parameters,with compressive strength as the output.Five different machine learning models were compared,and sensitivity analysis,based on Shapley Additive Explanations(SHAP),was used to assess the contribution of each input parameter.The results show that Gaussian Process Regression(GPR)outperforms the other models,with R2,RMSE,MAE,and MAPE values of 0.95,1.6,0.81,and 0.2,respectively.It is because GPR,optimized through Bayesian methods,better fits complex nonlinear relationships,especially considering a large number of input parameters.Sensitivity analysis indicates that the influence of input parameters on compressive strength decreases in the following order:foam concrete density,W/C,Age,FA/Binder,SP,and SCM.展开更多
基金supported by the National Natural Science Foundation of China(No.52207229)the Key Research and Development Program of Ningxia Hui Autonomous Region of China(No.2024BEE02003)+1 种基金the financial support from the AEGiS Research Grant 2024,University of Wollongong(No.R6254)the financial support from the China Scholarship Council(No.202207550010).
文摘Accurate prediction of the remaining useful life(RUL)is crucial for the design and management of lithium-ion batteries.Although various machine learning models offer promising predictions,one critical but often overlooked challenge is their demand for considerable run-to-failure data for training.Collection of such training data leads to prohibitive testing efforts as the run-to-failure tests can last for years.Here,we propose a semi-supervised representation learning method to enhance prediction accuracy by learning from data without RUL labels.Our approach builds on a sophisticated deep neural network that comprises an encoder and three decoder heads to extract time-dependent representation features from short-term battery operating data regardless of the existence of RUL labels.The approach is validated using three datasets collected from 34 batteries operating under various conditions,encompassing over 19,900 charge and discharge cycles.Our method achieves a root mean squared error(RMSE)within 25 cycles,even when only 1/50 of the training dataset is labelled,representing a reduction of 48%compared to the conventional approach.We also demonstrate the method's robustness with varying numbers of labelled data and different weights assigned to the three decoder heads.The projection of extracted features in low space reveals that our method effectively learns degradation features from unlabelled data.Our approach highlights the promise of utilising semi-supervised learning to reduce the data demand for reliability monitoring of energy devices.
文摘Knowing the influence of the size of datasets for regression models can help in improving the accuracy of a solar power forecast and make the most out of renewable energy systems.This research explores the influence of dataset size on the accuracy and reliability of regression models for solar power prediction,contributing to better forecasting methods.The study analyzes data from two solar panels,aSiMicro03036 and aSiTandem72-46,over 7,14,17,21,28,and 38 days,with each dataset comprising five independent and one dependent parameter,and split 80–20 for training and testing.Results indicate that Random Forest consistently outperforms other models,achieving the highest correlation coefficient of 0.9822 and the lowest Mean Absolute Error(MAE)of 2.0544 on the aSiTandem72-46 panel with 21 days of data.For the aSiMicro03036 panel,the best MAE of 4.2978 was reached using the k-Nearest Neighbor(k-NN)algorithm,which was set up as instance-based k-Nearest neighbors(IBk)in Weka after being trained on 17 days of data.Regression performance for most models(excluding IBk)stabilizes at 14 days or more.Compared to the 7-day dataset,increasing to 21 days reduced the MAE by around 20%and improved correlation coefficients by around 2.1%,highlighting the value of moderate dataset expansion.These findings suggest that datasets spanning 17 to 21 days,with 80%used for training,can significantly enhance the predictive accuracy of solar power generation models.
基金supported by Princess Nourah bint Abdulrahman University Researchers Supporting Project Number(PNURSP2022R194)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘In this present time,Human Activity Recognition(HAR)has been of considerable aid in the case of health monitoring and recovery.The exploitation of machine learning with an intelligent agent in the area of health informatics gathered using HAR augments the decision-making quality and significance.Although many research works conducted on Smart Healthcare Monitoring,there remain a certain number of pitfalls such as time,overhead,and falsification involved during analysis.Therefore,this paper proposes a Statistical Partial Regression and Support Vector Intelligent Agent Learning(SPR-SVIAL)for Smart Healthcare Monitoring.At first,the Statistical Partial Regression Feature Extraction model is used for data preprocessing along with the dimensionality-reduced features extraction process.Here,the input dataset the continuous beat-to-beat heart data,triaxial accelerometer data,and psychological characteristics were acquired from IoT wearable devices.To attain highly accurate Smart Healthcare Monitoring with less time,Partial Least Square helps extract the dimensionality-reduced features.After that,with these resulting features,SVIAL is proposed for Smart Healthcare Monitoring with the help of Machine Learning and Intelligent Agents to minimize both analysis falsification and overhead.Experimental evaluation is carried out for factors such as time,overhead,and false positive rate accuracy concerning several instances.The quantitatively analyzed results indicate the better performance of our proposed SPR-SVIAL method when compared with two state-of-the-art methods.
基金supported by the National Science Foundation of China under Grant No.62101467.
文摘Hybrid precoding is considered as a promising low-cost technique for millimeter wave(mm-wave)massive Multi-Input Multi-Output(MIMO)systems.In this work,referring to the time-varying propagation circumstances,with semi-supervised Incremental Learning(IL),we propose an online hybrid beamforming scheme.Firstly,given the constraint of constant modulus on analog beamformer and combiner,we propose a new broadnetwork-based structure for the design model of hybrid beamforming.Compared with the existing network structure,the proposed network structure can achieve better transmission performance and lower complexity.Moreover,to enhance the efficiency of IL further,by combining the semi-supervised graph with IL,we propose a hybrid beamforming scheme based on chunk-by-chunk semi-supervised learning,where only few transmissions are required to calculate the label and all other unlabelled transmissions would also be put into a training data chunk.Unlike the existing single-by-single approach where transmissions during the model update are not taken into the consideration of model update,all transmissions,even the ones during the model update,would make contributions to model update in the proposed method.During the model update,the amount of unlabelled transmissions is very large and they also carry some information,the prediction performance can be enhanced to some extent by these unlabelled channel data.Simulation results demonstrate the spectral efficiency of the proposed method outperforms that of the existing single-by-single approach.Besides,we prove the general complexity of the proposed method is lower than that of the existing approach and give the condition under which its absolute complexity outperforms that of the existing approach.
基金supported by the DOD National Defense Science and Engineering Graduate(NDSEG)Research Fellowshipsupported by the NGA under Contract No.HM04762110003.
文摘Active learning in semi-supervised classification involves introducing additional labels for unlabelled data to improve the accuracy of the underlying classifier.A challenge is to identify which points to label to best improve performance while limiting the number of new labels."Model Change"active learning quantifies the resulting change incurred in the classifier by introducing the additional label(s).We pair this idea with graph-based semi-supervised learning(SSL)methods,that use the spectrum of the graph Laplacian matrix,which can be truncated to avoid prohibitively large computational and storage costs.We consider a family of convex loss functions for which the acquisition function can be efficiently approximated using the Laplace approximation of the posterior distribution.We show a variety of multiclass examples that illustrate improved performance over prior state-of-art.
基金This research is partially supported by the National Natural Science Foundation of China under Grant No.62376043Science and Technology Program of Sichuan Province under Grant Nos.2020JDRC0067,2023JDRC0087,and 24NSFTD0025.
文摘With the rapid development of Internet of Things(IoT)technology,IoT systems have been widely applied in health-care,transportation,home,and other fields.However,with the continuous expansion of the scale and increasing complexity of IoT systems,the stability and security issues of IoT systems have become increasingly prominent.Thus,it is crucial to detect anomalies in the collected IoT time series from various sensors.Recently,deep learning models have been leveraged for IoT anomaly detection.However,owing to the challenges associated with data labeling,most IoT anomaly detection methods resort to unsupervised learning techniques.Nevertheless,the absence of accurate abnormal information in unsupervised learning methods limits their performance.To address these problems,we propose AS-GCN-MTM,an adaptive structural Graph Convolutional Networks(GCN)-based framework using a mean-teacher mechanism(AS-GCN-MTM)for anomaly identification.It performs better than unsupervised methods using only a small amount of labeled data.Mean Teachers is an effective semi-supervised learning method that utilizes unlabeled data for training to improve the generalization ability and performance of the model.However,the dependencies between data are often unknown in time series data.To solve this problem,we designed a graph structure adaptive learning layer based on neural networks,which can automatically learn the graph structure from time series data.It not only better captures the relationships between nodes but also enhances the model’s performance by augmenting key data.Experiments have demonstrated that our method improves the baseline model with the highest F1 value by 10.4%,36.1%,and 5.6%,respectively,on three real datasets with a 10%data labeling rate.
文摘The aim of this paper is to broaden the application of Stochastic Configuration Network (SCN) in the semi-supervised domain by utilizing common unlabeled data in daily life. It can enhance the classification accuracy of decentralized SCN algorithms while effectively protecting user privacy. To this end, we propose a decentralized semi-supervised learning algorithm for SCN, called DMT-SCN, which introduces teacher and student models by combining the idea of consistency regularization to improve the response speed of model iterations. In order to reduce the possible negative impact of unsupervised data on the model, we purposely change the way of adding noise to the unlabeled data. Simulation results show that the algorithm can effectively utilize unlabeled data to improve the classification accuracy of SCN training and is robust under different ground simulation environments.
基金funded by National Social Science Fund of China(No.22AGJ006).
文摘This study proposed a cutting-edge,multistep workflow and upgraded it by addressing its flaw of not considering how to determine the index system objectively.It then used the updated workflow to identify the probability of China’s systemic financial crisis and analyzed the impact of macroeconomic indicators on the crisis.The final workflow comprises four steps:selecting rational indicators,modeling using supervised learning,decomposing the model’s internal function,and conducting the non-linear,non-parametric statistical inference,with advantages of objective index selection,accurate prediction,and high model transparency.In addition,since China’s international influence is progressively increasing,and the report of the 19th National Congress of the Communist Party of China has demonstrated that China is facing severe risk control challenges and stressed that the government should ensure that no systemic risks would emerge,this study selected China’s systemic financial crisis as an example.Specifically,one global trade factor and 11 country-level macroeconomic indicators were selected to conduct the machine learning models.The prediction models captured six risk-rising periods in China’s financial system from 1990 to 2020,which is consistent with reality.The interpretation techniques show the non-linearities of risk drivers,expressed as threshold and interval effects.Furthermore,Shapley regression validates the alignment of the indicators.The final workflow is suitable for categorical and regression analyses in several areas.These methods can also be used independently or in combination,depending on the research requirements.Researchers can switch to other suitable shallow machine learning models or deep neural networks for modeling.The results regarding crises could provide specific references for bank regulators and policymakers to develop critical measures to maintain macroeconomic and financial stability.
文摘Modeling implied volatility(IV)is important for option pricing,hedging,and risk management.Previous studies of deterministic implied volatility functions(DIVFs)propose two parameters,moneyness and time to maturity,to estimate implied volatility.Recent DIVF models have included factors such as a moving average ratio and relative bid-ask spread but fail to enhance modeling accuracy.The current study offers a generalized DIVF model by including a momentum indicator for the underlying asset using a relative strength index(RSI)covering multiple time resolutions as a factor,as momentum is often used by investors and speculators in their trading decisions,and in contrast to volatility,RSI can distinguish between bull and bear markets.To the best of our knowledge,prior studies have not included RSI as a predictive factor in modeling IV.Instead of using a simple linear regression as in previous studies,we use a machine learning regression algorithm,namely random forest,to model a nonlinear IV.Previous studies apply DVIF modeling to options on traditional financial assets,such as stock and foreign exchange markets.Here,we study options on the largest cryptocurrency,Bitcoin,which poses greater modeling challenges due to its extreme volatility and the fact that it is not as well studied as traditional financial assets.Recent Bitcoin option chain data were collected from a leading cryptocurrency option exchange over a four-month period for model development and validation.Our dataset includes short-maturity options with expiry in less than six days,as well as a full range of moneyness,both of which are often excluded in existing studies as prices for options with these characteristics are often highly volatile and pose challenges to model building.Our in-sample and out-sample results indicate that including our proposed momentum indicator significantly enhances the model’s accuracy in pricing options.The nonlinear machine learning random forest algorithm also performed better than a simple linear regression.Compared to prevailing option pricing models that employ stochastic variables,our DIVF model does not include stochastic factors but exhibits reasonably good performance.It is also easy to compute due to the availability of real-time RSIs.Our findings indicate our enhanced DIVF model offers significant improvements and may be an excellent alternative to existing option pricing models that are primarily stochastic in nature.
基金Supported by Sichuan Science and Technology Program(2023YFSY0026,2023YFH0004)Supported by the Institute of Information&Communications Technology Planning&Evaluation(IITP)grant funded by the Korean government(MSIT)(No.RS-2022-00155885,Artificial Intelligence Convergence Innovation Human Resources Development(Hanyang University ERICA)).
文摘Two-dimensional endoscopic images are susceptible to interferences such as specular reflections and monotonous texture illumination,hindering accurate three-dimensional lesion reconstruction by surgical robots.This study proposes a novel end-to-end disparity estimation model to address these challenges.Our approach combines a Pseudo-Siamese neural network architecture with pyramid dilated convolutions,integrating multi-scale image information to enhance robustness against lighting interferences.This study introduces a Pseudo-Siamese structure-based disparity regression model that simplifies left-right image comparison,improving accuracy and efficiency.The model was evaluated using a dataset of stereo endoscopic videos captured by the Da Vinci surgical robot,comprising simulated silicone heart sequences and real heart video data.Experimental results demonstrate significant improvement in the network’s resistance to lighting interference without substantially increasing parameters.Moreover,the model exhibited faster convergence during training,contributing to overall performance enhancement.This study advances endoscopic image processing accuracy and has potential implications for surgical robot applications in complex environments.
基金supported by the Natural Science Foundation of China(No.41804112,author:Chengyun Song).
文摘Existing semi-supervisedmedical image segmentation algorithms use copy-paste data augmentation to correct the labeled-unlabeled data distribution mismatch.However,current copy-paste methods have three limitations:(1)training the model solely with copy-paste mixed pictures from labeled and unlabeled input loses a lot of labeled information;(2)low-quality pseudo-labels can cause confirmation bias in pseudo-supervised learning on unlabeled data;(3)the segmentation performance in low-contrast and local regions is less than optimal.We design a Stochastic Augmentation-Based Dual-Teaching Auxiliary Training Strategy(SADT),which enhances feature diversity and learns high-quality features to overcome these problems.To be more precise,SADT trains the Student Network by using pseudo-label-based training from Teacher Network 1 and supervised learning with labeled data,which prevents the loss of rare labeled data.We introduce a bi-directional copy-pastemask with progressive high-entropy filtering to reduce data distribution disparities and mitigate confirmation bias in pseudo-supervision.For the mixed images,Deep-Shallow Spatial Contrastive Learning(DSSCL)is proposed in the feature spaces of Teacher Network 2 and the Student Network to improve the segmentation capabilities in low-contrast and local areas.In this procedure,the features retrieved by the Student Network are subjected to a random feature perturbation technique.On two openly available datasets,extensive trials show that our proposed SADT performs much better than the state-ofthe-art semi-supervised medical segmentation techniques.Using only 10%of the labeled data for training,SADT was able to acquire a Dice score of 90.10%on the ACDC(Automatic Cardiac Diagnosis Challenge)dataset.
基金supported by the SP2024/089 Project by the Faculty of Materials Science and Technology,VˇSB-Technical University of Ostrava.
文摘In engineering practice,it is often necessary to determine functional relationships between dependent and independent variables.These relationships can be highly nonlinear,and classical regression approaches cannot always provide sufficiently reliable solutions.Nevertheless,Machine Learning(ML)techniques,which offer advanced regression tools to address complicated engineering issues,have been developed and widely explored.This study investigates the selected ML techniques to evaluate their suitability for application in the hot deformation behavior of metallic materials.The ML-based regression methods of Artificial Neural Networks(ANNs),Support Vector Machine(SVM),Decision Tree Regression(DTR),and Gaussian Process Regression(GPR)are applied to mathematically describe hot flow stress curve datasets acquired experimentally for a medium-carbon steel.Although the GPR method has not been used for such a regression task before,the results showed that its performance is the most favorable and practically unrivaled;neither the ANN method nor the other studied ML techniques provide such precise results of the solved regression analysis.
基金supported in part by National Natural Science Foundation of China No.92467109,U21A20478National Key R&D Program of China 2023YFA1011601the Major Key Project of PCL(Grant PCL2024A05).
文摘Ensemble learning,a pivotal branch of machine learning,amalgamates multiple base models to enhance the overarching performance of predictive models,capitalising on the diversity and collective wisdom of the ensemble to surpass individual models and mitigate overfitting.In this review,a four-layer research framework is established for the research of ensemble learning,which can offer a comprehensive and structured review of ensemble learning from bottom to top.Firstly,this survey commences by introducing fundamental ensemble learning techniques,including bagging,boosting,and stacking,while also exploring the ensemble's diversity.Then,deep ensemble learning and semi-supervised ensemble learning are studied in detail.Furthermore,the utilisation of ensemble learning techniques to navigate challenging datasets,such as imbalanced and highdimensional data,is discussed.The application of ensemble learning techniques across various research domains,including healthcare,transportation,finance,manufacturing,and the Internet,is also examined.The survey concludes by discussing challenges intrinsic to ensemble learning.
文摘A literature review on AI applications in the field of railway safety shows that the implemented approaches mainly concern the operational,maintenance,and feedback phases following railway incidents or accidents.These approaches exploit railway safety data once the transport system has received authorization for commissioning.However,railway standards and regulations require the development of a safety management system(SMS)from the specification and design phases of the railway system.This article proposes a new AI approach for analyzing and assessing safety from the specification and design phases of the railway system with a view to improving the development of the SMS.Unlike some learning methods,the proposed approach,which is dedicated in particular to safety assessment bodies,is based on semi-supervised learning carried out in close collaboration with safety experts who contributed to the development of a database of potential accident scenarios(learning example database)relating to the risk of rail collision.The proposed decision support is based on the use of an expert system whose knowledge base is automatically generated by inductive learning in the form of an association rule(rule base)and whose main objective is to suggest to the safety expert possible hazards not considered during the development of the SMS to complete the initial hazard register.
基金sponsored by the National Natural Science Foundation of China Grant No.62271302the Shanghai Municipal Natural Science Foundation Grant 20ZR1423500.
文摘Large amounts of labeled data are usually needed for training deep neural networks in medical image studies,particularly in medical image classification.However,in the field of semi-supervised medical image analysis,labeled data is very scarce due to patient privacy concerns.For researchers,obtaining high-quality labeled images is exceedingly challenging because it involves manual annotation and clinical understanding.In addition,skin datasets are highly suitable for medical image classification studies due to the inter-class relationships and the inter-class similarities of skin lesions.In this paper,we propose a model called Coalition Sample Relation Consistency(CSRC),a consistency-based method that leverages Canonical Correlation Analysis(CCA)to capture the intrinsic relationships between samples.Considering that traditional consistency-based models only focus on the consistency of prediction,we additionally explore the similarity between features by using CCA.We enforce feature relation consistency based on traditional models,encouraging the model to learn more meaningful information from unlabeled data.Finally,considering that cross-entropy loss is not as suitable as the supervised loss when studying with imbalanced datasets(i.e.,ISIC 2017 and ISIC 2018),we improve the supervised loss to achieve better classification accuracy.Our study shows that this model performs better than many semi-supervised methods.
基金supported by the National Natural Science Foundation of China(No.12475340 and 12375350)Special Branch project of South Taihu Lakethe Scientific Research Fund of Zhejiang Provincial Education Department(No.Y202456326).
文摘Missing values in radionuclide diffusion datasets can undermine the predictive accuracy and robustness of the machine learning(ML)models.In this study,regression-based missing data imputation method using a light gradient boosting machine(LGBM)algorithm was employed to impute more than 60%of the missing data,establishing a radionuclide diffusion dataset containing 16 input features and 813 instances.The effective diffusion coefficient(D_(e))was predicted using ten ML models.The predictive accuracy of the ensemble meta-models,namely LGBM-extreme gradient boosting(XGB)and LGBM-categorical boosting(CatB),surpassed that of the other ML models,with R^(2)values of 0.94.The models were applied to predict the D_(e)values of EuEDTA^(−)and HCrO_(4)^(−)in saturated compacted bentonites at compactions ranging from 1200 to 1800 kg/m^(3),which were measured using a through-diffusion method.The generalization ability of the LGBM-XGB model surpassed that of LGB-CatB in predicting the D_(e)of HCrO_(4)^(−).Shapley additive explanations identified total porosity as the most significant influencing factor.Additionally,the partial dependence plot analysis technique yielded clearer results in the univariate correlation analysis.This study provides a regression imputation technique to refine radionuclide diffusion datasets,offering deeper insights into analyzing the diffusion mechanism of radionuclides and supporting the safety assessment of the geological disposal of high-level radioactive waste.
基金the Innovation Program of Shanghai Industrial Synergy(No.XTCX-KJ-2023-2-12)。
文摘Medical image segmentation is a crucial task in clinical applications.However,obtaining labeled data for medical images is often challenging.This has led to the appeal of semi-supervised learning(SSL),a technique adept at leveraging a modest amount of labeled data.Nonetheless,most prevailing SSL segmentation methods for medical images either rely on the single consistency training method or directly fine-tune SSL methods designed for natural images.In this paper,we propose an innovative semi-supervised method called multi-consistency training(MCT)for medical image segmentation.Our approach transcends the constraints of prior methodologies by considering consistency from a dual perspective:output consistency across different up-sampling methods and output consistency of the same data within the same network under various perturbations to the intermediate features.We design distinct semi-supervised loss regression methods for these two types of consistencies.To enhance the application of our MCT model,we also develop a dedicated decoder as the core of our neural network.Thorough experiments were conducted on the polyp dataset and the dental dataset,rigorously compared against other SSL methods.Experimental results demonstrate the superiority of our approach,achieving higher segmentation accuracy.Moreover,comprehensive ablation studies and insightful discussion substantiate the efficacy of our approach in navigating the intricacies of medical image segmentation.
基金the Chinese Clinical Trial Registry(No.ChiCTR2000040109)approved by the Hospital Ethics Committee(No.20210130017).
文摘BACKGROUND Difficulty of colonoscopy insertion(DCI)significantly affects colonoscopy effectiveness and serves as a key quality indicator.Predicting and evaluating DCI risk preoperatively is crucial for optimizing intraoperative strategies.AIM To evaluate the predictive performance of machine learning(ML)algorithms for DCI by comparing three modeling approaches,identify factors influencing DCI,and develop a preoperative prediction model using ML algorithms to enhance colonoscopy quality and efficiency.METHODS This cross-sectional study enrolled 712 patients who underwent colonoscopy at a tertiary hospital between June 2020 and May 2021.Demographic data,past medical history,medication use,and psychological status were collected.The endoscopist assessed DCI using the visual analogue scale.After univariate screening,predictive models were developed using multivariable logistic regression,least absolute shrinkage and selection operator(LASSO)regression,and random forest(RF)algorithms.Model performance was evaluated based on discrimination,calibration,and decision curve analysis(DCA),and results were visualized using nomograms.RESULTS A total of 712 patients(53.8%male;mean age 54.5 years±12.9 years)were included.Logistic regression analysis identified constipation[odds ratio(OR)=2.254,95%confidence interval(CI):1.289-3.931],abdominal circumference(AC)(77.5–91.9 cm,OR=1.895,95%CI:1.065-3.350;AC≥92 cm,OR=1.271,95%CI:0.730-2.188),and anxiety(OR=1.071,95%CI:1.044-1.100)as predictive factors for DCI,validated by LASSO and RF methods.Model performance revealed training/validation sensitivities of 0.826/0.925,0.924/0.868,and 1.000/0.981;specificities of 0.602/0.511,0.510/0.562,and 0.977/0.526;and corresponding area under the receiver operating characteristic curves(AUCs)of 0.780(0.737-0.823)/0.726(0.654-0.799),0.754(0.710-0.798)/0.723(0.656-0.791),and 1.000(1.000-1.000)/0.754(0.688-0.820),respectively.DCA indicated optimal net benefit within probability thresholds of 0-0.9 and 0.05-0.37.The RF model demonstrated superior diagnostic accuracy,reflected by perfect training sensitivity(1.000)and highest validation AUC(0.754),outperforming other methods in clinical applicability.CONCLUSION The RF-based model exhibited superior predictive accuracy for DCI compared to multivariable logistic and LASSO regression models.This approach supports individualized preoperative optimization,enhancing colonoscopy quality through targeted risk stratification.
基金financially supported by the Science and Technology Research and Development Project of China Railway Corporation(Grant No.N2023G079)the National Key R&D Program of China(Grant No.2024YFE0198500).
文摘Predicting blasting quality during tunnel construction holds practical significance.In this study,a new semi-supervised learning method using convolutional variational autoencoder(CVAE)and deep neural network(DNN)is proposed for the prediction of blasting quality grades.Tunnel blasting quality can be measured by over/under excavation.The occurrence of over/under excavation is influenced by three factors:geological conditions,blasting parameters,and tunnel geometric dimensions.The proposed method reflects the geological conditions through measurements while drilling and utilizes blasting parameters,tunnel geometric dimensions,and tunnel depth as input variables to achieve tunnel blasting quality grades prediction.Furthermore,the model is optimized by considering the influence of surrounding rock mass features on the predicted positions.The results demonstrate that the proposed method outperforms other commonly used machine learning and deep learning algorithms in extracting over/under excavation feature information and achieving blasting quality prediction.
基金supported by the Postgraduate Innovation Program of Chongqing University of Science and Technology(Grant No.YKJCX2420605)Research Foundation of Chongqing University of Science and Technology(Grant No.ckrc20241225)+1 种基金Opening Projects of State Key Laboratory of Solid Waste Reuse for Building Materials(Grant No.SWR-2021-005)Science and Technology Research Program of Chongqing Municipal Education Commission(Grant No.KJQN202401510)。
文摘Foam concrete is widely used in engineering due to its lightweight and high porosity.Its compressive strength,a key performance indicator,is influenced by multiple factors,showing nonlinear variation.As compressive strength tests for foam concrete take a long time,a fast and accurate prediction method is needed.In recent years,machine learning has become a powerful tool for predicting the compressive strength of cement-based materials.However,existing studies often use a limited number of input parameters,and the prediction accuracy of machine learning models under the influence of multiple parameters and nonlinearity remains unclear.This study selects foam concrete density,water-to-cement ratio(W/C),supplementary cementitious material replacement rate(SCM),fine aggregate to binder ratio(FA/Binder),superplasticizer content(SP),and age of the concrete(Age)as input parameters,with compressive strength as the output.Five different machine learning models were compared,and sensitivity analysis,based on Shapley Additive Explanations(SHAP),was used to assess the contribution of each input parameter.The results show that Gaussian Process Regression(GPR)outperforms the other models,with R2,RMSE,MAE,and MAPE values of 0.95,1.6,0.81,and 0.2,respectively.It is because GPR,optimized through Bayesian methods,better fits complex nonlinear relationships,especially considering a large number of input parameters.Sensitivity analysis indicates that the influence of input parameters on compressive strength decreases in the following order:foam concrete density,W/C,Age,FA/Binder,SP,and SCM.