Using resting-state functional magnetic resonance imaging (fMRI) technology to assist in identifying brain diseases has great potential. In the identification of brain diseases, graph-based models have been widely use...Using resting-state functional magnetic resonance imaging (fMRI) technology to assist in identifying brain diseases has great potential. In the identification of brain diseases, graph-based models have been widely used, where graph represents the similarity between patients or brain regions of interest. In these models, constructing high-quality graphs is of paramount importance. Researchers have proposed various methods for constructing graphs from different perspectives, among which the simplest and most popular one is Pearson Correlation (PC). Although existing methods have achieved significant results, these graphs are usually fixed once they are constructed, and are generally operated separately from downstream task. Such a separation may result in neither the constructed graph nor the extracted features being ideal. To solve this problem, we use the graph-optimized locality preserving projection algorithm to extract features and the population graph simultaneously, aiming in higher identification accuracy through a task-dependent automatic optimization of the graph. At the same time, we incorporate supervised information to enable more flexible modelling. Specifically, the proposed method first uses PC to construct graph as the initial feature for each subject. Then, the projection matrix and graph are iteratively optimized through graph-optimization locality preserving projections based on semi-supervised learning, which fully employs the knowledge in various transformation spaces. Finally, the obtained projection matrix is applied to construct the subject-level graph and perform classification using support vector machines. To verify the effectiveness of the proposed method, we conduct experiments to identify subjects with mild cognitive impairment (MCI) and Autism spectrum disorder (ASD) from normal controls (NCs), and the results showed that the classification performance of our method is better than that of the baseline method.展开更多
Accurate prediction of the remaining useful life(RUL)is crucial for the design and management of lithium-ion batteries.Although various machine learning models offer promising predictions,one critical but often overlo...Accurate prediction of the remaining useful life(RUL)is crucial for the design and management of lithium-ion batteries.Although various machine learning models offer promising predictions,one critical but often overlooked challenge is their demand for considerable run-to-failure data for training.Collection of such training data leads to prohibitive testing efforts as the run-to-failure tests can last for years.Here,we propose a semi-supervised representation learning method to enhance prediction accuracy by learning from data without RUL labels.Our approach builds on a sophisticated deep neural network that comprises an encoder and three decoder heads to extract time-dependent representation features from short-term battery operating data regardless of the existence of RUL labels.The approach is validated using three datasets collected from 34 batteries operating under various conditions,encompassing over 19,900 charge and discharge cycles.Our method achieves a root mean squared error(RMSE)within 25 cycles,even when only 1/50 of the training dataset is labelled,representing a reduction of 48%compared to the conventional approach.We also demonstrate the method's robustness with varying numbers of labelled data and different weights assigned to the three decoder heads.The projection of extracted features in low space reveals that our method effectively learns degradation features from unlabelled data.Our approach highlights the promise of utilising semi-supervised learning to reduce the data demand for reliability monitoring of energy devices.展开更多
Semi-supervised learning(SSL)aims to improve performance by exploiting unlabeled data when labels are scarce.Conventional SSL studies typically assume close environments where important factors(e.g.,label,feature,dist...Semi-supervised learning(SSL)aims to improve performance by exploiting unlabeled data when labels are scarce.Conventional SSL studies typically assume close environments where important factors(e.g.,label,feature,distribution)between labeled and unlabeled data are consistent.However,more practical tasks involve open environments where important factors between labeled and unlabeled data are inconsistent.It has been reported that exploiting inconsistent unlabeled data causes severe performance degradation,even worse than the simple supervised learning baseline.Manually verifying the quality of unlabeled data is not desirable,therefore,it is important to study robust SSL with inconsistent unlabeled data in open environments.This paper briefly introduces some advances in this line of research,focusing on techniques concerning label,feature,and data distribution inconsistency in SSL,and presents the evaluation benchmarks.Open research problems are also discussed for reference purposes.展开更多
Identifying influential users in social networks is of great significance in areas such as public opinion monitoring and commercial promotion.Existing identification methods based on Graph Neural Networks(GNNs)often l...Identifying influential users in social networks is of great significance in areas such as public opinion monitoring and commercial promotion.Existing identification methods based on Graph Neural Networks(GNNs)often lead to yield inaccurate features of influential users due to neighborhood aggregation,and require a large substantial amount of labeled data for training,making them difficult and challenging to apply in practice.To address this issue,we propose a semi-supervised contrastive learning method for identifying influential users.First,the proposed method constructs positive and negative samples for contrastive learning based on multiple node centrality metrics related to influence;then,contrastive learning is employed to guide the encoder to generate various influence-related features for users;finally,with only a small amount of labeled data,an attention-based user classifier is trained to accurately identify influential users.Experiments conducted on three public social network datasets demonstrate that the proposed method,using only 20%of the labeled data as the training set,achieves F1 values that are 5.9%,5.8%,and 8.7%higher than those unsupervised EVC method,and it matches the performance of GNN-based methods such as DeepInf,InfGCN and OlapGN,which require 80%of labeled data as the training set.展开更多
With the rapid development of Internet of Things(IoT)technology,IoT systems have been widely applied in health-care,transportation,home,and other fields.However,with the continuous expansion of the scale and increasin...With the rapid development of Internet of Things(IoT)technology,IoT systems have been widely applied in health-care,transportation,home,and other fields.However,with the continuous expansion of the scale and increasing complexity of IoT systems,the stability and security issues of IoT systems have become increasingly prominent.Thus,it is crucial to detect anomalies in the collected IoT time series from various sensors.Recently,deep learning models have been leveraged for IoT anomaly detection.However,owing to the challenges associated with data labeling,most IoT anomaly detection methods resort to unsupervised learning techniques.Nevertheless,the absence of accurate abnormal information in unsupervised learning methods limits their performance.To address these problems,we propose AS-GCN-MTM,an adaptive structural Graph Convolutional Networks(GCN)-based framework using a mean-teacher mechanism(AS-GCN-MTM)for anomaly identification.It performs better than unsupervised methods using only a small amount of labeled data.Mean Teachers is an effective semi-supervised learning method that utilizes unlabeled data for training to improve the generalization ability and performance of the model.However,the dependencies between data are often unknown in time series data.To solve this problem,we designed a graph structure adaptive learning layer based on neural networks,which can automatically learn the graph structure from time series data.It not only better captures the relationships between nodes but also enhances the model’s performance by augmenting key data.Experiments have demonstrated that our method improves the baseline model with the highest F1 value by 10.4%,36.1%,and 5.6%,respectively,on three real datasets with a 10%data labeling rate.展开更多
Active learning in semi-supervised classification involves introducing additional labels for unlabelled data to improve the accuracy of the underlying classifier.A challenge is to identify which points to label to bes...Active learning in semi-supervised classification involves introducing additional labels for unlabelled data to improve the accuracy of the underlying classifier.A challenge is to identify which points to label to best improve performance while limiting the number of new labels."Model Change"active learning quantifies the resulting change incurred in the classifier by introducing the additional label(s).We pair this idea with graph-based semi-supervised learning(SSL)methods,that use the spectrum of the graph Laplacian matrix,which can be truncated to avoid prohibitively large computational and storage costs.We consider a family of convex loss functions for which the acquisition function can be efficiently approximated using the Laplace approximation of the posterior distribution.We show a variety of multiclass examples that illustrate improved performance over prior state-of-art.展开更多
This paper investigates the challenges associated with Unmanned Aerial Vehicle (UAV) collaborative search and target tracking in dynamic and unknown environments characterized by limited field of view. The primary obj...This paper investigates the challenges associated with Unmanned Aerial Vehicle (UAV) collaborative search and target tracking in dynamic and unknown environments characterized by limited field of view. The primary objective is to explore the unknown environments to locate and track targets effectively. To address this problem, we propose a novel Multi-Agent Reinforcement Learning (MARL) method based on Graph Neural Network (GNN). Firstly, a method is introduced for encoding continuous-space multi-UAV problem data into spatial graphs which establish essential relationships among agents, obstacles, and targets. Secondly, a Graph AttenTion network (GAT) model is presented, which focuses exclusively on adjacent nodes, learns attention weights adaptively and allows agents to better process information in dynamic environments. Reward functions are specifically designed to tackle exploration challenges in environments with sparse rewards. By introducing a framework that integrates centralized training and distributed execution, the advancement of models is facilitated. Simulation results show that the proposed method outperforms the existing MARL method in search rate and tracking performance with less collisions. The experiments show that the proposed method can be extended to applications with a larger number of agents, which provides a potential solution to the challenging problem of multi-UAV autonomous tracking in dynamic unknown environments.展开更多
Federated Graph Learning (FGL) enables model training without requiring each client to share local graph data, effectively breaking data silos by aggregating the training parameters from each terminal while safeguardi...Federated Graph Learning (FGL) enables model training without requiring each client to share local graph data, effectively breaking data silos by aggregating the training parameters from each terminal while safeguarding data privacy. Traditional FGL relies on a centralized server for model aggregation;however, this central server presents challenges such as a single point of failure and high communication overhead. Additionally, efficiently training a robust personalized local model for each client remains a significant objective in federated graph learning. To address these issues, we propose a decentralized Federated Graph Learning framework with efficient communication, termed Decentralized Federated Graph Learning via Surrogate Model (SD_FGL). In SD_FGL, each client is required to maintain two models: a private model and a surrogate model. The surrogate model is publicly shared and can exchange and update information directly with any client, eliminating the need for a central server and reducing communication overhead. The private model is independently trained by each client, allowing it to calculate similarity with other clients based on local data as well as information shared through the surrogate model. This enables the private model to better adjust its training strategy and selectively update its parameters. Additionally, local differential privacy is incorporated into the surrogate model training process to enhance privacy protection. Testing on three real-world graph datasets demonstrates that the proposed framework improves accuracy while achieving decentralized Federated Graph Learning with lower communication overhead and stronger privacy safeguards.展开更多
The remarkable success in graph neural networks(GNNs)promotes the explainable graph learning methods.Among them,the graph rationalization methods draw significant attentions,which aim to provide explanations to suppor...The remarkable success in graph neural networks(GNNs)promotes the explainable graph learning methods.Among them,the graph rationalization methods draw significant attentions,which aim to provide explanations to support the prediction results by identifying a small subset of the original graph(i.e.,rationale).Although existing methods have achieved promising results,recent studies have proved that these methods still suffer from exploiting shortcuts in the data to yield task results and compose rationales.Different from previous methods plagued by shortcuts,in this paper,we propose a Shortcut-guided Graph Rationalization(SGR)method,which identifies rationales by learning from shortcuts.Specifically,SGR consists of two training stages.In the first stage,we train a shortcut guider with an early stop strategy to obtain shortcut information.During the second stage,SGR separates the graph into the rationale and non-rationale subgraphs.Then SGR lets them learn from the shortcut information generated by the frozen shortcut guider to identify which information belongs to shortcuts and which does not.Finally,we employ the non-rationale subgraphs as environments and identify the invariant rationales which filter out the shortcuts under environment shifts.Extensive experiments conducted on synthetic and real-world datasets provide clear validation of the effectiveness of the proposed SGR method,underscoring its ability to provide faithful explanations.展开更多
Graph similarity learning aims to calculate the similarity between pairs of graphs.Existing unsupervised graph similarity learning methods based on contrastive learning encounter challenges related to random graph aug...Graph similarity learning aims to calculate the similarity between pairs of graphs.Existing unsupervised graph similarity learning methods based on contrastive learning encounter challenges related to random graph augmentation strategies,which can harm the semantic and structural information of graphs and overlook the rich structural information present in subgraphs.To address these issues,we propose a graph similarity learning model based on learnable augmentation and multi-level contrastive learning.First,to tackle the problem of random augmentation disrupting the semantics and structure of the graph,we design a learnable augmentation method to selectively choose nodes and edges within the graph.To enhance contrastive levels,we employ a biased random walk method to generate corresponding subgraphs,enriching the contrastive hierarchy.Second,to solve the issue of previous work not considering multi-level contrastive learning,we utilize graph convolutional networks to learn node representations of augmented views and the original graph and calculate the interaction information between the attribute-augmented and structure-augmented views and the original graph.The goal is to maximize node consistency between different views and learn node matching between different graphs,resulting in node-level representations for each graph.Subgraph representations are then obtained through pooling operations,and we conduct contrastive learning utilizing both node and subgraph representations.Finally,the graph similarity score is computed according to different downstream tasks.We conducted three sets of experiments across eight datasets,and the results demonstrate that the proposed model effectively mitigates the issues of random augmentation damaging the original graph’s semantics and structure,as well as the insufficiency of contrastive levels.Additionally,the model achieves the best overall performance.展开更多
Graph Federated Learning(GFL)has shown great potential in privacy protection and distributed intelligence through distributed collaborative training of graph-structured data without sharing raw information.However,exi...Graph Federated Learning(GFL)has shown great potential in privacy protection and distributed intelligence through distributed collaborative training of graph-structured data without sharing raw information.However,existing GFL approaches often lack the capability for comprehensive feature extraction and adaptive optimization,particularly in non-independent and identically distributed(NON-IID)scenarios where balancing global structural understanding and local node-level detail remains a challenge.To this end,this paper proposes a novel framework called GFL-SAR(Graph Federated Collaborative Learning Framework Based on Structural Amplification and Attention Refinement),which enhances the representation learning capability of graph data through a dual-branch collaborative design.Specifically,we propose the Structural Insight Amplifier(SIA),which utilizes an improved Graph Convolutional Network(GCN)to strengthen structural awareness and improve modeling of topological patterns.In parallel,we propose the Attentive Relational Refiner(ARR),which employs an enhanced Graph Attention Network(GAT)to perform fine-grained modeling of node relationships and neighborhood features,thereby improving the expressiveness of local interactions and preserving critical contextual information.GFL-SAR effectively integrates multi-scale features from every branch via feature fusion and federated optimization,thereby addressing existing GFL limitations in structural modeling and feature representation.Experiments on standard benchmark datasets including Cora,Citeseer,Polblogs,and Cora_ML demonstrate that GFL-SAR achieves superior performance in classification accuracy,convergence speed,and robustness compared to existing methods,confirming its effectiveness and generalizability in GFL tasks.展开更多
Graphs have been widely used in fields ranging from chemical informatics to social network analysis.Graph-related problems become increasingly significant,with subgraph matching standing out as one of the most challen...Graphs have been widely used in fields ranging from chemical informatics to social network analysis.Graph-related problems become increasingly significant,with subgraph matching standing out as one of the most challenging tasks.The goal of subgraph matching is to find all subgraphs in the data graph that are isomorphic to the query graph.Traditional methods mostly rely on search strategies with high computational complexity and are hard to apply to large-scale real datasets.With the advent of graph neural networks(GNNs),researchers have turned to GNNs to address subgraph matching problems.However,the multi-attributed features on nodes and edges are overlooked during the learning of graphs,which causes inaccurate results in real-world scenarios.To tackle this problem,we propose a novel model called subgraph matching on multi-attributed graph network(SGMAN).SGMAN first utilizes improved line graphs to capture node and edge features.Then,SGMAN integrates GNN and contrastive learning(CL)to derive graph representation embeddings and calculate the matching matrix to represent the matching results.We conduct experiments on public datasets,and the results affirm the superior performance of our model.展开更多
Social media has significantly accelerated the rapid dissemination of information,but it also boosts propagation of fake news,posing serious challenges to public awareness and social stability.In real-world contexts,t...Social media has significantly accelerated the rapid dissemination of information,but it also boosts propagation of fake news,posing serious challenges to public awareness and social stability.In real-world contexts,the volume of trustable information far exceeds that of rumors,resulting in a class imbalance that leads models to prioritize the majority class during training.This focus diminishes the model’s ability to recognize minority class samples.Furthermore,models may experience overfitting when encountering these minority samples,further compromising their generalization capabilities.Unlike node-level classification tasks,fake news detection in social networks operates on graph-level samples,where traditional interpolation and oversampling methods struggle to effectively generate high-quality graph-level samples.This challenge complicates the identification of new instances of false information.To address this issue,this paper introduces the FHGraph(Fake News Hunting Graph)framework,which employs a generative data augmentation approach and a latent diffusion model to create graph structures that align with news communication patterns.Using the few-sample learning capabilities of large language models(LLMs),the framework generates diverse texts for minority class nodes.FHGraph comprises a hierarchical multiview graph contrastive learning module,in which two horizontal views and three vertical levels are utilized for self-supervised learning,resulting in more optimized representations.Experimental results show that FHGraph significantly outperforms state-of-the-art(SOTA)graph-level class imbalance methods and SOTA graph-level contrastive learning methods.Specifically,FHGraph has achieved a 2%increase in F1 Micro and a 2.5%increase in F1 Macro in the PHEME dataset,as well as a 3.5%improvement in F1 Micro and a 4.3%improvement in F1 Macro on RumorEval dataset.展开更多
Existing wireless networks are flooded with video data transmissions,and the demand for high-speed and low-latency video services continues to surge.This has brought with it challenges to networks in the form of conge...Existing wireless networks are flooded with video data transmissions,and the demand for high-speed and low-latency video services continues to surge.This has brought with it challenges to networks in the form of congestion as well as the need for more resources and more dedicated caching schemes.Recently,Multi-access Edge Computing(MEC)-enabled heterogeneous networks,which leverage edge caches for proximity delivery,have emerged as a promising solution to all of these problems.Designing an effective edge caching scheme is critical to its success,however,in the face of limited resources.We propose a novel Knowledge Graph(KG)-based Dueling Deep Q-Network(KG-DDQN)for cooperative caching in MEC-enabled heterogeneous networks.The KGDDQN scheme leverages a KG to uncover video relations,providing valuable insights into user preferences for the caching scheme.Specifically,the KG guides the selection of related videos as caching candidates(i.e.,actions in the DDQN),thus providing a rich reference for implementing a personalized caching scheme while also improving the decision efficiency of the DDQN.Extensive simulation results validate the convergence effectiveness of the KG-DDQN,and it also outperforms baselines regarding cache hit rate and service delay.展开更多
Recommendation systems(RSs)are crucial in personalizing user experiences in digital environments by suggesting relevant content or items.Collaborative filtering(CF)is a widely used personalization technique that lever...Recommendation systems(RSs)are crucial in personalizing user experiences in digital environments by suggesting relevant content or items.Collaborative filtering(CF)is a widely used personalization technique that leverages user-item interactions to generate recommendations.However,it struggles with challenges like the cold-start problem,scalability issues,and data sparsity.To address these limitations,we develop a Graph Convolutional Networks(GCNs)model that captures the complex network of interactions between users and items,identifying subtle patterns that traditional methods may overlook.We integrate this GCNs model into a federated learning(FL)framework,enabling themodel to learn fromdecentralized datasets.This not only significantly enhances user privacy—a significant improvement over conventionalmodels but also reassures users about the safety of their data.Additionally,by securely incorporating demographic information,our approach further personalizes recommendations and mitigates the coldstart issue without compromising user data.We validate our RSs model using the openMovieLens dataset and evaluate its performance across six key metrics:Precision,Recall,Area Under the Receiver Operating Characteristic Curve(ROC-AUC),F1 Score,Normalized Discounted Cumulative Gain(NDCG),and Mean Reciprocal Rank(MRR).The experimental results demonstrate significant enhancements in recommendation quality,underscoring that combining GCNs with CF in a federated setting provides a transformative solution for advanced recommendation systems.展开更多
The increase in population and vehicles exacerbates traffic congestion and management difficulties.Therefore,achieving accurate and efficient traffic flow prediction is crucial for urban transportation.For that reason...The increase in population and vehicles exacerbates traffic congestion and management difficulties.Therefore,achieving accurate and efficient traffic flow prediction is crucial for urban transportation.For that reason,we propose a graph federated learning-based digital twin traffic flow prediction method(GFLDT)by integrating the benefits of collaborative intelligence and computation of intelligent IoT.Specifically,we construct a digital twin network for predicting traffic flow,which is divided into client twin and global twin.Based on this,we adopt the concept of graph federated learning to learn the temporal dependence of traffic flow using local data from client twins,and the spatial dependence of traffic flow using global information from global twins.In addition,we validate on a real traffic dataset,and the results show that through collaborative training of the client twins and the global twins,GFLDT achieves accurate traffic flow prediction while protecting data security.展开更多
Container-based virtualization technology has been more widely used in edge computing environments recently due to its advantages of lighter resource occupation, faster startup capability, and better resource utilizat...Container-based virtualization technology has been more widely used in edge computing environments recently due to its advantages of lighter resource occupation, faster startup capability, and better resource utilization efficiency. To meet the diverse needs of tasks, it usually needs to instantiate multiple network functions in the form of containers interconnect various generated containers to build a Container Cluster(CC). Then CCs will be deployed on edge service nodes with relatively limited resources. However, the increasingly complex and timevarying nature of tasks brings great challenges to optimal placement of CC. This paper regards the charges for various resources occupied by providing services as revenue, the service efficiency and energy consumption as cost, thus formulates a Mixed Integer Programming(MIP) model to describe the optimal placement of CC on edge service nodes. Furthermore, an Actor-Critic based Deep Reinforcement Learning(DRL) incorporating Graph Convolutional Networks(GCN) framework named as RL-GCN is proposed to solve the optimization problem. The framework obtains an optimal placement strategy through self-learning according to the requirements and objectives of the placement of CC. Particularly, through the introduction of GCN, the features of the association relationship between multiple containers in CCs can be effectively extracted to improve the quality of placement.The experiment results show that under different scales of service nodes and task requests, the proposed method can obtain the improved system performance in terms of placement error ratio, time efficiency of solution output and cumulative system revenue compared with other representative baseline methods.展开更多
Drug repurposing offers a promising alternative to traditional drug development and significantly re-duces costs and timelines by identifying new therapeutic uses for existing drugs.However,the current approaches ofte...Drug repurposing offers a promising alternative to traditional drug development and significantly re-duces costs and timelines by identifying new therapeutic uses for existing drugs.However,the current approaches often rely on limited data sources and simplistic hypotheses,which restrict their ability to capture the multi-faceted nature of biological systems.This study introduces adaptive multi-view learning(AMVL),a novel methodology that integrates chemical-induced transcriptional profiles(CTPs),knowledge graph(KG)embeddings,and large language model(LLM)representations,to enhance drug repurposing predictions.AMVL incorporates an innovative similarity matrix expansion strategy and leverages multi-view learning(MVL),matrix factorization,and ensemble optimization techniques to integrate heterogeneous multi-source data.Comprehensive evaluations on benchmark datasets(Fdata-set,Cdataset,and Ydataset)and the large-scale iDrug dataset demonstrate that AMVL outperforms state-of-the-art(SOTA)methods,achieving superior accuracy in predicting drug-disease associations across multiple metrics.Literature-based validation further confirmed the model's predictive capabilities,with seven out of the top ten predictions corroborated by post-2011 evidence.To promote transparency and reproducibility,all data and codes used in this study were open-sourced,providing resources for pro-cessing CTPs,KG,and LLM-based similarity calculations,along with the complete AMVL algorithm and benchmarking procedures.By unifying diverse data modalities,AMVL offers a robust and scalable so-lution for accelerating drug discovery,fostering advancements in translational medicine and integrating multi-omics data.We aim to inspire further innovations in multi-source data integration and support the development of more precise and efficient strategies for advancing drug discovery and translational medicine.展开更多
Recently,Network Functions Virtualization(NFV)has become a critical resource for optimizing capability utilization in the 5G/B5G era.NFV decomposes the network resource paradigm,demonstrating the efficient utilization...Recently,Network Functions Virtualization(NFV)has become a critical resource for optimizing capability utilization in the 5G/B5G era.NFV decomposes the network resource paradigm,demonstrating the efficient utilization of Network Functions(NFs)to enable configurable service priorities and resource demands.Telecommunications Service Providers(TSPs)face challenges in network utilization,as the vast amounts of data generated by the Internet of Things(IoT)overwhelm existing infrastructures.IoT applications,which generate massive volumes of diverse data and require real-time communication,contribute to bottlenecks and congestion.In this context,Multiaccess Edge Computing(MEC)is employed to support resource and priority-aware IoT applications by implementing Virtual Network Function(VNF)sequences within Service Function Chaining(SFC).This paper proposes the use of Deep Reinforcement Learning(DRL)combined with Graph Neural Networks(GNN)to enhance network processing,performance,and resource pooling capabilities.GNN facilitates feature extraction through Message-Passing Neural Network(MPNN)mechanisms.Together with DRL,Deep Q-Networks(DQN)are utilized to dynamically allocate resources based on IoT network priorities and demands.Our focus is on minimizing delay times for VNF instance execution,ensuring effective resource placement,and allocation in SFC deployments,offering flexibility to adapt to real-time changes in priority and workload.Simulation results demonstrate that our proposed scheme outperforms reference models in terms of reward,delay,delivery,service drop ratios,and average completion ratios,proving its potential for IoT applications.展开更多
With the availability of high-performance computing technology and the development of advanced numerical simulation methods, Computational Fluid Dynamics (CFD) is becoming more and more practical and efficient in engi...With the availability of high-performance computing technology and the development of advanced numerical simulation methods, Computational Fluid Dynamics (CFD) is becoming more and more practical and efficient in engineering. As one of the high-precision representative algorithms, the high-order Discontinuous Galerkin Method (DGM) has not only attracted widespread attention from scholars in the CFD research community, but also received strong development. However, when DGM is extended to high-speed aerodynamic flow field calculations, non-physical numerical Gibbs oscillations near shock waves often significantly affect the numerical accuracy and even cause calculation failure. Data driven approaches based on machine learning techniques can be used to learn the characteristics of Gibbs noise, which motivates us to use it in high-speed DG applications. To achieve this goal, labeled data need to be generated in order to train the machine learning models. This paper proposes a new method for denoising modeling of Gibbs phenomenon using a machine learning technique, the zero-shot learning strategy, to eliminate acquiring large amounts of CFD data. The model adopts a graph convolutional network combined with graph attention mechanism to learn the denoising paradigm from synthetic Gibbs noise data and generalize to DGM numerical simulation data. Numerical simulation results show that the Gibbs denoising model proposed in this paper can suppress the numerical oscillation near shock waves in the high-order DGM. Our work automates the extension of DGM to high-speed aerodynamic flow field calculations with higher generalization and lower cost.展开更多
文摘Using resting-state functional magnetic resonance imaging (fMRI) technology to assist in identifying brain diseases has great potential. In the identification of brain diseases, graph-based models have been widely used, where graph represents the similarity between patients or brain regions of interest. In these models, constructing high-quality graphs is of paramount importance. Researchers have proposed various methods for constructing graphs from different perspectives, among which the simplest and most popular one is Pearson Correlation (PC). Although existing methods have achieved significant results, these graphs are usually fixed once they are constructed, and are generally operated separately from downstream task. Such a separation may result in neither the constructed graph nor the extracted features being ideal. To solve this problem, we use the graph-optimized locality preserving projection algorithm to extract features and the population graph simultaneously, aiming in higher identification accuracy through a task-dependent automatic optimization of the graph. At the same time, we incorporate supervised information to enable more flexible modelling. Specifically, the proposed method first uses PC to construct graph as the initial feature for each subject. Then, the projection matrix and graph are iteratively optimized through graph-optimization locality preserving projections based on semi-supervised learning, which fully employs the knowledge in various transformation spaces. Finally, the obtained projection matrix is applied to construct the subject-level graph and perform classification using support vector machines. To verify the effectiveness of the proposed method, we conduct experiments to identify subjects with mild cognitive impairment (MCI) and Autism spectrum disorder (ASD) from normal controls (NCs), and the results showed that the classification performance of our method is better than that of the baseline method.
基金supported by the National Natural Science Foundation of China(No.52207229)the Key Research and Development Program of Ningxia Hui Autonomous Region of China(No.2024BEE02003)+1 种基金the financial support from the AEGiS Research Grant 2024,University of Wollongong(No.R6254)the financial support from the China Scholarship Council(No.202207550010).
文摘Accurate prediction of the remaining useful life(RUL)is crucial for the design and management of lithium-ion batteries.Although various machine learning models offer promising predictions,one critical but often overlooked challenge is their demand for considerable run-to-failure data for training.Collection of such training data leads to prohibitive testing efforts as the run-to-failure tests can last for years.Here,we propose a semi-supervised representation learning method to enhance prediction accuracy by learning from data without RUL labels.Our approach builds on a sophisticated deep neural network that comprises an encoder and three decoder heads to extract time-dependent representation features from short-term battery operating data regardless of the existence of RUL labels.The approach is validated using three datasets collected from 34 batteries operating under various conditions,encompassing over 19,900 charge and discharge cycles.Our method achieves a root mean squared error(RMSE)within 25 cycles,even when only 1/50 of the training dataset is labelled,representing a reduction of 48%compared to the conventional approach.We also demonstrate the method's robustness with varying numbers of labelled data and different weights assigned to the three decoder heads.The projection of extracted features in low space reveals that our method effectively learns degradation features from unlabelled data.Our approach highlights the promise of utilising semi-supervised learning to reduce the data demand for reliability monitoring of energy devices.
基金supported by the Key Program of Jiangsu Science Foundation(BK20243012)the National Natural Science Foundation of China(NSFC)(Grant Nos.62306133,62176118).
文摘Semi-supervised learning(SSL)aims to improve performance by exploiting unlabeled data when labels are scarce.Conventional SSL studies typically assume close environments where important factors(e.g.,label,feature,distribution)between labeled and unlabeled data are consistent.However,more practical tasks involve open environments where important factors between labeled and unlabeled data are inconsistent.It has been reported that exploiting inconsistent unlabeled data causes severe performance degradation,even worse than the simple supervised learning baseline.Manually verifying the quality of unlabeled data is not desirable,therefore,it is important to study robust SSL with inconsistent unlabeled data in open environments.This paper briefly introduces some advances in this line of research,focusing on techniques concerning label,feature,and data distribution inconsistency in SSL,and presents the evaluation benchmarks.Open research problems are also discussed for reference purposes.
基金supported by the National Key Project of the National Natural Science Foundation of China under Grant No.U23A20305.
文摘Identifying influential users in social networks is of great significance in areas such as public opinion monitoring and commercial promotion.Existing identification methods based on Graph Neural Networks(GNNs)often lead to yield inaccurate features of influential users due to neighborhood aggregation,and require a large substantial amount of labeled data for training,making them difficult and challenging to apply in practice.To address this issue,we propose a semi-supervised contrastive learning method for identifying influential users.First,the proposed method constructs positive and negative samples for contrastive learning based on multiple node centrality metrics related to influence;then,contrastive learning is employed to guide the encoder to generate various influence-related features for users;finally,with only a small amount of labeled data,an attention-based user classifier is trained to accurately identify influential users.Experiments conducted on three public social network datasets demonstrate that the proposed method,using only 20%of the labeled data as the training set,achieves F1 values that are 5.9%,5.8%,and 8.7%higher than those unsupervised EVC method,and it matches the performance of GNN-based methods such as DeepInf,InfGCN and OlapGN,which require 80%of labeled data as the training set.
基金This research is partially supported by the National Natural Science Foundation of China under Grant No.62376043Science and Technology Program of Sichuan Province under Grant Nos.2020JDRC0067,2023JDRC0087,and 24NSFTD0025.
文摘With the rapid development of Internet of Things(IoT)technology,IoT systems have been widely applied in health-care,transportation,home,and other fields.However,with the continuous expansion of the scale and increasing complexity of IoT systems,the stability and security issues of IoT systems have become increasingly prominent.Thus,it is crucial to detect anomalies in the collected IoT time series from various sensors.Recently,deep learning models have been leveraged for IoT anomaly detection.However,owing to the challenges associated with data labeling,most IoT anomaly detection methods resort to unsupervised learning techniques.Nevertheless,the absence of accurate abnormal information in unsupervised learning methods limits their performance.To address these problems,we propose AS-GCN-MTM,an adaptive structural Graph Convolutional Networks(GCN)-based framework using a mean-teacher mechanism(AS-GCN-MTM)for anomaly identification.It performs better than unsupervised methods using only a small amount of labeled data.Mean Teachers is an effective semi-supervised learning method that utilizes unlabeled data for training to improve the generalization ability and performance of the model.However,the dependencies between data are often unknown in time series data.To solve this problem,we designed a graph structure adaptive learning layer based on neural networks,which can automatically learn the graph structure from time series data.It not only better captures the relationships between nodes but also enhances the model’s performance by augmenting key data.Experiments have demonstrated that our method improves the baseline model with the highest F1 value by 10.4%,36.1%,and 5.6%,respectively,on three real datasets with a 10%data labeling rate.
基金supported by the DOD National Defense Science and Engineering Graduate(NDSEG)Research Fellowshipsupported by the NGA under Contract No.HM04762110003.
文摘Active learning in semi-supervised classification involves introducing additional labels for unlabelled data to improve the accuracy of the underlying classifier.A challenge is to identify which points to label to best improve performance while limiting the number of new labels."Model Change"active learning quantifies the resulting change incurred in the classifier by introducing the additional label(s).We pair this idea with graph-based semi-supervised learning(SSL)methods,that use the spectrum of the graph Laplacian matrix,which can be truncated to avoid prohibitively large computational and storage costs.We consider a family of convex loss functions for which the acquisition function can be efficiently approximated using the Laplace approximation of the posterior distribution.We show a variety of multiclass examples that illustrate improved performance over prior state-of-art.
基金supported by the National Natural Science Foundation of China(Nos.12272104,U22B2013).
文摘This paper investigates the challenges associated with Unmanned Aerial Vehicle (UAV) collaborative search and target tracking in dynamic and unknown environments characterized by limited field of view. The primary objective is to explore the unknown environments to locate and track targets effectively. To address this problem, we propose a novel Multi-Agent Reinforcement Learning (MARL) method based on Graph Neural Network (GNN). Firstly, a method is introduced for encoding continuous-space multi-UAV problem data into spatial graphs which establish essential relationships among agents, obstacles, and targets. Secondly, a Graph AttenTion network (GAT) model is presented, which focuses exclusively on adjacent nodes, learns attention weights adaptively and allows agents to better process information in dynamic environments. Reward functions are specifically designed to tackle exploration challenges in environments with sparse rewards. By introducing a framework that integrates centralized training and distributed execution, the advancement of models is facilitated. Simulation results show that the proposed method outperforms the existing MARL method in search rate and tracking performance with less collisions. The experiments show that the proposed method can be extended to applications with a larger number of agents, which provides a potential solution to the challenging problem of multi-UAV autonomous tracking in dynamic unknown environments.
基金supported by InnerMongolia Natural Science Foundation Project(2021LHMS06003)Inner Mongolia University Basic Research Business Fee Project(114).
文摘Federated Graph Learning (FGL) enables model training without requiring each client to share local graph data, effectively breaking data silos by aggregating the training parameters from each terminal while safeguarding data privacy. Traditional FGL relies on a centralized server for model aggregation;however, this central server presents challenges such as a single point of failure and high communication overhead. Additionally, efficiently training a robust personalized local model for each client remains a significant objective in federated graph learning. To address these issues, we propose a decentralized Federated Graph Learning framework with efficient communication, termed Decentralized Federated Graph Learning via Surrogate Model (SD_FGL). In SD_FGL, each client is required to maintain two models: a private model and a surrogate model. The surrogate model is publicly shared and can exchange and update information directly with any client, eliminating the need for a central server and reducing communication overhead. The private model is independently trained by each client, allowing it to calculate similarity with other clients based on local data as well as information shared through the surrogate model. This enables the private model to better adjust its training strategy and selectively update its parameters. Additionally, local differential privacy is incorporated into the surrogate model training process to enhance privacy protection. Testing on three real-world graph datasets demonstrates that the proposed framework improves accuracy while achieving decentralized Federated Graph Learning with lower communication overhead and stronger privacy safeguards.
基金supported by grants from the Joint Research Project of the Science and Technology Innovation Community in Yangtze River Delta(No.2023CSJZN0200)the National Natural Science Foundation of China(Grant No.62337001)and the Fundamental Research Funds for the Central Universities.
文摘The remarkable success in graph neural networks(GNNs)promotes the explainable graph learning methods.Among them,the graph rationalization methods draw significant attentions,which aim to provide explanations to support the prediction results by identifying a small subset of the original graph(i.e.,rationale).Although existing methods have achieved promising results,recent studies have proved that these methods still suffer from exploiting shortcuts in the data to yield task results and compose rationales.Different from previous methods plagued by shortcuts,in this paper,we propose a Shortcut-guided Graph Rationalization(SGR)method,which identifies rationales by learning from shortcuts.Specifically,SGR consists of two training stages.In the first stage,we train a shortcut guider with an early stop strategy to obtain shortcut information.During the second stage,SGR separates the graph into the rationale and non-rationale subgraphs.Then SGR lets them learn from the shortcut information generated by the frozen shortcut guider to identify which information belongs to shortcuts and which does not.Finally,we employ the non-rationale subgraphs as environments and identify the invariant rationales which filter out the shortcuts under environment shifts.Extensive experiments conducted on synthetic and real-world datasets provide clear validation of the effectiveness of the proposed SGR method,underscoring its ability to provide faithful explanations.
文摘Graph similarity learning aims to calculate the similarity between pairs of graphs.Existing unsupervised graph similarity learning methods based on contrastive learning encounter challenges related to random graph augmentation strategies,which can harm the semantic and structural information of graphs and overlook the rich structural information present in subgraphs.To address these issues,we propose a graph similarity learning model based on learnable augmentation and multi-level contrastive learning.First,to tackle the problem of random augmentation disrupting the semantics and structure of the graph,we design a learnable augmentation method to selectively choose nodes and edges within the graph.To enhance contrastive levels,we employ a biased random walk method to generate corresponding subgraphs,enriching the contrastive hierarchy.Second,to solve the issue of previous work not considering multi-level contrastive learning,we utilize graph convolutional networks to learn node representations of augmented views and the original graph and calculate the interaction information between the attribute-augmented and structure-augmented views and the original graph.The goal is to maximize node consistency between different views and learn node matching between different graphs,resulting in node-level representations for each graph.Subgraph representations are then obtained through pooling operations,and we conduct contrastive learning utilizing both node and subgraph representations.Finally,the graph similarity score is computed according to different downstream tasks.We conducted three sets of experiments across eight datasets,and the results demonstrate that the proposed model effectively mitigates the issues of random augmentation damaging the original graph’s semantics and structure,as well as the insufficiency of contrastive levels.Additionally,the model achieves the best overall performance.
基金supported by National Natural Science Foundation of China(62466045)Inner Mongolia Natural Science Foundation Project(2021LHMS06003)Inner Mongolia University Basic Research Business Fee Project(114).
文摘Graph Federated Learning(GFL)has shown great potential in privacy protection and distributed intelligence through distributed collaborative training of graph-structured data without sharing raw information.However,existing GFL approaches often lack the capability for comprehensive feature extraction and adaptive optimization,particularly in non-independent and identically distributed(NON-IID)scenarios where balancing global structural understanding and local node-level detail remains a challenge.To this end,this paper proposes a novel framework called GFL-SAR(Graph Federated Collaborative Learning Framework Based on Structural Amplification and Attention Refinement),which enhances the representation learning capability of graph data through a dual-branch collaborative design.Specifically,we propose the Structural Insight Amplifier(SIA),which utilizes an improved Graph Convolutional Network(GCN)to strengthen structural awareness and improve modeling of topological patterns.In parallel,we propose the Attentive Relational Refiner(ARR),which employs an enhanced Graph Attention Network(GAT)to perform fine-grained modeling of node relationships and neighborhood features,thereby improving the expressiveness of local interactions and preserving critical contextual information.GFL-SAR effectively integrates multi-scale features from every branch via feature fusion and federated optimization,thereby addressing existing GFL limitations in structural modeling and feature representation.Experiments on standard benchmark datasets including Cora,Citeseer,Polblogs,and Cora_ML demonstrate that GFL-SAR achieves superior performance in classification accuracy,convergence speed,and robustness compared to existing methods,confirming its effectiveness and generalizability in GFL tasks.
文摘Graphs have been widely used in fields ranging from chemical informatics to social network analysis.Graph-related problems become increasingly significant,with subgraph matching standing out as one of the most challenging tasks.The goal of subgraph matching is to find all subgraphs in the data graph that are isomorphic to the query graph.Traditional methods mostly rely on search strategies with high computational complexity and are hard to apply to large-scale real datasets.With the advent of graph neural networks(GNNs),researchers have turned to GNNs to address subgraph matching problems.However,the multi-attributed features on nodes and edges are overlooked during the learning of graphs,which causes inaccurate results in real-world scenarios.To tackle this problem,we propose a novel model called subgraph matching on multi-attributed graph network(SGMAN).SGMAN first utilizes improved line graphs to capture node and edge features.Then,SGMAN integrates GNN and contrastive learning(CL)to derive graph representation embeddings and calculate the matching matrix to represent the matching results.We conduct experiments on public datasets,and the results affirm the superior performance of our model.
基金supported by the National Key R&D Program of China(Grant No.2022YFB3104601)the Big Data Computing Center of Southeast University.
文摘Social media has significantly accelerated the rapid dissemination of information,but it also boosts propagation of fake news,posing serious challenges to public awareness and social stability.In real-world contexts,the volume of trustable information far exceeds that of rumors,resulting in a class imbalance that leads models to prioritize the majority class during training.This focus diminishes the model’s ability to recognize minority class samples.Furthermore,models may experience overfitting when encountering these minority samples,further compromising their generalization capabilities.Unlike node-level classification tasks,fake news detection in social networks operates on graph-level samples,where traditional interpolation and oversampling methods struggle to effectively generate high-quality graph-level samples.This challenge complicates the identification of new instances of false information.To address this issue,this paper introduces the FHGraph(Fake News Hunting Graph)framework,which employs a generative data augmentation approach and a latent diffusion model to create graph structures that align with news communication patterns.Using the few-sample learning capabilities of large language models(LLMs),the framework generates diverse texts for minority class nodes.FHGraph comprises a hierarchical multiview graph contrastive learning module,in which two horizontal views and three vertical levels are utilized for self-supervised learning,resulting in more optimized representations.Experimental results show that FHGraph significantly outperforms state-of-the-art(SOTA)graph-level class imbalance methods and SOTA graph-level contrastive learning methods.Specifically,FHGraph has achieved a 2%increase in F1 Micro and a 2.5%increase in F1 Macro in the PHEME dataset,as well as a 3.5%improvement in F1 Micro and a 4.3%improvement in F1 Macro on RumorEval dataset.
基金supported by the National Natural Science Foundation of China(Nos.62201419,62372357)the Natural Science Foundation of Chongqing(CSTB2023NSCQ-LMX0032)the ISN State Key Laboratory.
文摘Existing wireless networks are flooded with video data transmissions,and the demand for high-speed and low-latency video services continues to surge.This has brought with it challenges to networks in the form of congestion as well as the need for more resources and more dedicated caching schemes.Recently,Multi-access Edge Computing(MEC)-enabled heterogeneous networks,which leverage edge caches for proximity delivery,have emerged as a promising solution to all of these problems.Designing an effective edge caching scheme is critical to its success,however,in the face of limited resources.We propose a novel Knowledge Graph(KG)-based Dueling Deep Q-Network(KG-DDQN)for cooperative caching in MEC-enabled heterogeneous networks.The KGDDQN scheme leverages a KG to uncover video relations,providing valuable insights into user preferences for the caching scheme.Specifically,the KG guides the selection of related videos as caching candidates(i.e.,actions in the DDQN),thus providing a rich reference for implementing a personalized caching scheme while also improving the decision efficiency of the DDQN.Extensive simulation results validate the convergence effectiveness of the KG-DDQN,and it also outperforms baselines regarding cache hit rate and service delay.
基金funded by Soonchunhyang University,Grant Numbers 20241422BK21 FOUR(Fostering Outstanding Universities for Research,Grant Number 5199990914048).
文摘Recommendation systems(RSs)are crucial in personalizing user experiences in digital environments by suggesting relevant content or items.Collaborative filtering(CF)is a widely used personalization technique that leverages user-item interactions to generate recommendations.However,it struggles with challenges like the cold-start problem,scalability issues,and data sparsity.To address these limitations,we develop a Graph Convolutional Networks(GCNs)model that captures the complex network of interactions between users and items,identifying subtle patterns that traditional methods may overlook.We integrate this GCNs model into a federated learning(FL)framework,enabling themodel to learn fromdecentralized datasets.This not only significantly enhances user privacy—a significant improvement over conventionalmodels but also reassures users about the safety of their data.Additionally,by securely incorporating demographic information,our approach further personalizes recommendations and mitigates the coldstart issue without compromising user data.We validate our RSs model using the openMovieLens dataset and evaluate its performance across six key metrics:Precision,Recall,Area Under the Receiver Operating Characteristic Curve(ROC-AUC),F1 Score,Normalized Discounted Cumulative Gain(NDCG),and Mean Reciprocal Rank(MRR).The experimental results demonstrate significant enhancements in recommendation quality,underscoring that combining GCNs with CF in a federated setting provides a transformative solution for advanced recommendation systems.
基金supported by the National Natural Science Foundation of China(U23A20272,U22A2069,62272146)Natural Science Foundation of Henan(252300421237).
文摘The increase in population and vehicles exacerbates traffic congestion and management difficulties.Therefore,achieving accurate and efficient traffic flow prediction is crucial for urban transportation.For that reason,we propose a graph federated learning-based digital twin traffic flow prediction method(GFLDT)by integrating the benefits of collaborative intelligence and computation of intelligent IoT.Specifically,we construct a digital twin network for predicting traffic flow,which is divided into client twin and global twin.Based on this,we adopt the concept of graph federated learning to learn the temporal dependence of traffic flow using local data from client twins,and the spatial dependence of traffic flow using global information from global twins.In addition,we validate on a real traffic dataset,and the results show that through collaborative training of the client twins and the global twins,GFLDT achieves accurate traffic flow prediction while protecting data security.
文摘Container-based virtualization technology has been more widely used in edge computing environments recently due to its advantages of lighter resource occupation, faster startup capability, and better resource utilization efficiency. To meet the diverse needs of tasks, it usually needs to instantiate multiple network functions in the form of containers interconnect various generated containers to build a Container Cluster(CC). Then CCs will be deployed on edge service nodes with relatively limited resources. However, the increasingly complex and timevarying nature of tasks brings great challenges to optimal placement of CC. This paper regards the charges for various resources occupied by providing services as revenue, the service efficiency and energy consumption as cost, thus formulates a Mixed Integer Programming(MIP) model to describe the optimal placement of CC on edge service nodes. Furthermore, an Actor-Critic based Deep Reinforcement Learning(DRL) incorporating Graph Convolutional Networks(GCN) framework named as RL-GCN is proposed to solve the optimization problem. The framework obtains an optimal placement strategy through self-learning according to the requirements and objectives of the placement of CC. Particularly, through the introduction of GCN, the features of the association relationship between multiple containers in CCs can be effectively extracted to improve the quality of placement.The experiment results show that under different scales of service nodes and task requests, the proposed method can obtain the improved system performance in terms of placement error ratio, time efficiency of solution output and cumulative system revenue compared with other representative baseline methods.
基金supported by the National Natural Science Foundation of China(Grant No.:62101087)the China Postdoctoral Science Foundation(Grant No.:2021MD703942)+2 种基金the Chongqing Postdoctoral Research Project Special Funding,China(Grant No.:2021XM2016)the Science Foundation of Chongqing Municipal Commission of Education,China(Grant No.:KJQN202100642)the Chongqing Natural Science Foundation,China(Grant No.:cstc2021jcyj-msxmX0834).
文摘Drug repurposing offers a promising alternative to traditional drug development and significantly re-duces costs and timelines by identifying new therapeutic uses for existing drugs.However,the current approaches often rely on limited data sources and simplistic hypotheses,which restrict their ability to capture the multi-faceted nature of biological systems.This study introduces adaptive multi-view learning(AMVL),a novel methodology that integrates chemical-induced transcriptional profiles(CTPs),knowledge graph(KG)embeddings,and large language model(LLM)representations,to enhance drug repurposing predictions.AMVL incorporates an innovative similarity matrix expansion strategy and leverages multi-view learning(MVL),matrix factorization,and ensemble optimization techniques to integrate heterogeneous multi-source data.Comprehensive evaluations on benchmark datasets(Fdata-set,Cdataset,and Ydataset)and the large-scale iDrug dataset demonstrate that AMVL outperforms state-of-the-art(SOTA)methods,achieving superior accuracy in predicting drug-disease associations across multiple metrics.Literature-based validation further confirmed the model's predictive capabilities,with seven out of the top ten predictions corroborated by post-2011 evidence.To promote transparency and reproducibility,all data and codes used in this study were open-sourced,providing resources for pro-cessing CTPs,KG,and LLM-based similarity calculations,along with the complete AMVL algorithm and benchmarking procedures.By unifying diverse data modalities,AMVL offers a robust and scalable so-lution for accelerating drug discovery,fostering advancements in translational medicine and integrating multi-omics data.We aim to inspire further innovations in multi-source data integration and support the development of more precise and efficient strategies for advancing drug discovery and translational medicine.
基金supported by Institute of Information&Communications Technology Planning and Evaluation(IITP)grant funded by the Korean government(MSIT)(No.RS-2022-00167197,Development of Intelligent 5G/6G Infrastructure Technology for the Smart City)in part by the National Research Foundation of Korea(NRF),Ministry of Education,through the Basic Science Research Program under Grant NRF-2020R1I1A3066543+1 种基金in part by BK21 FOUR(Fostering Outstanding Universities for Research)under Grant 5199990914048in part by the Soonchunhyang University Research Fund.
文摘Recently,Network Functions Virtualization(NFV)has become a critical resource for optimizing capability utilization in the 5G/B5G era.NFV decomposes the network resource paradigm,demonstrating the efficient utilization of Network Functions(NFs)to enable configurable service priorities and resource demands.Telecommunications Service Providers(TSPs)face challenges in network utilization,as the vast amounts of data generated by the Internet of Things(IoT)overwhelm existing infrastructures.IoT applications,which generate massive volumes of diverse data and require real-time communication,contribute to bottlenecks and congestion.In this context,Multiaccess Edge Computing(MEC)is employed to support resource and priority-aware IoT applications by implementing Virtual Network Function(VNF)sequences within Service Function Chaining(SFC).This paper proposes the use of Deep Reinforcement Learning(DRL)combined with Graph Neural Networks(GNN)to enhance network processing,performance,and resource pooling capabilities.GNN facilitates feature extraction through Message-Passing Neural Network(MPNN)mechanisms.Together with DRL,Deep Q-Networks(DQN)are utilized to dynamically allocate resources based on IoT network priorities and demands.Our focus is on minimizing delay times for VNF instance execution,ensuring effective resource placement,and allocation in SFC deployments,offering flexibility to adapt to real-time changes in priority and workload.Simulation results demonstrate that our proposed scheme outperforms reference models in terms of reward,delay,delivery,service drop ratios,and average completion ratios,proving its potential for IoT applications.
基金co-supported by the Aeronautical Science Foundation of China(Nos.2018ZA52002,2019ZA052011).
文摘With the availability of high-performance computing technology and the development of advanced numerical simulation methods, Computational Fluid Dynamics (CFD) is becoming more and more practical and efficient in engineering. As one of the high-precision representative algorithms, the high-order Discontinuous Galerkin Method (DGM) has not only attracted widespread attention from scholars in the CFD research community, but also received strong development. However, when DGM is extended to high-speed aerodynamic flow field calculations, non-physical numerical Gibbs oscillations near shock waves often significantly affect the numerical accuracy and even cause calculation failure. Data driven approaches based on machine learning techniques can be used to learn the characteristics of Gibbs noise, which motivates us to use it in high-speed DG applications. To achieve this goal, labeled data need to be generated in order to train the machine learning models. This paper proposes a new method for denoising modeling of Gibbs phenomenon using a machine learning technique, the zero-shot learning strategy, to eliminate acquiring large amounts of CFD data. The model adopts a graph convolutional network combined with graph attention mechanism to learn the denoising paradigm from synthetic Gibbs noise data and generalize to DGM numerical simulation data. Numerical simulation results show that the Gibbs denoising model proposed in this paper can suppress the numerical oscillation near shock waves in the high-order DGM. Our work automates the extension of DGM to high-speed aerodynamic flow field calculations with higher generalization and lower cost.