期刊文献+
共找到51,738篇文章
< 1 2 250 >
每页显示 20 50 100
Enhanced semi-supervised learning for top gas flow state classification to optimize emission and production in blast ironmaking furnaces
1
作者 Song Liu Qiqi Li +3 位作者 Qing Ye Zhiwei Zhao Dianyu E Shibo Kuang 《International Journal of Minerals,Metallurgy and Materials》 2026年第1期204-216,共13页
Automated classification of gas flow states in blast furnaces using top-camera imagery typically demands a large volume of labeled data,whose manual annotation is both labor-intensive and cost-prohibitive.To mitigate ... Automated classification of gas flow states in blast furnaces using top-camera imagery typically demands a large volume of labeled data,whose manual annotation is both labor-intensive and cost-prohibitive.To mitigate this challenge,we present an enhanced semi-supervised learning approach based on the Mean Teacher framework,incorporating a novel feature loss module to maximize classification performance with limited labeled samples.The model studies show that the proposed model surpasses both the baseline Mean Teacher model and fully supervised method in accuracy.Specifically,for datasets with 20%,30%,and 40%label ratios,using a single training iteration,the model yields accuracies of 78.61%,82.21%,and 85.2%,respectively,while multiple-cycle training iterations achieves 82.09%,81.97%,and 81.59%,respectively.Furthermore,scenario-specific training schemes are introduced to support diverse deployment need.These findings highlight the potential of the proposed technique in minimizing labeling requirements and advancing intelligent blast furnace diagnostics. 展开更多
关键词 blast furnace gas flow state semi-supervised learning mean teacher feature loss
在线阅读 下载PDF
Forecasting solar cycles using the time-series dense encoder deep learning model
2
作者 Cui Zhao Shangbin Yang +1 位作者 Jianguo Liu Shiyuan Liu 《Astronomical Techniques and Instruments》 2026年第1期43-54,共12页
The solar cycle(SC),a phenomenon caused by the quasi-periodic regular activities in the Sun,occurs approximately every 11 years.Intense solar activity can disrupt the Earth’s ionosphere,affecting communication and na... The solar cycle(SC),a phenomenon caused by the quasi-periodic regular activities in the Sun,occurs approximately every 11 years.Intense solar activity can disrupt the Earth’s ionosphere,affecting communication and navigation systems.Consequently,accurately predicting the intensity of the SC holds great significance,but predicting the SC involves a long-term time series,and many existing time series forecasting methods have fallen short in terms of accuracy and efficiency.The Time-series Dense Encoder model is a deep learning solution tailored for long time series prediction.Based on a multi-layer perceptron structure,it outperforms the best previously existing models in accuracy,while being efficiently trainable on general datasets.We propose a method based on this model for SC forecasting.Using a trained model,we predict the test set from SC 19 to SC 25 with an average mean absolute percentage error of 32.02,root mean square error of 30.3,mean absolute error of 23.32,and R^(2)(coefficient of determination)of 0.76,outperforming other deep learning models in terms of accuracy and training efficiency on sunspot number datasets.Subsequently,we use it to predict the peaks of SC 25 and SC 26.For SC 25,the peak time has ended,but a stronger peak is predicted for SC 26,of 199.3,within a range of 170.8-221.9,projected to occur during April 2034. 展开更多
关键词 Solar cycle Forecasting TIDE deep learning
在线阅读 下载PDF
Deep Learning-Assisted Organogel Pressure Sensor for Alphabet Recognition and Bio-Mechanical Motion Monitoring
3
作者 Kusum Sharma Kousik Bhunia +5 位作者 Subhajit Chatterjee Muthukumar Perumalsamy Anandhan Ayyappan Saj Theophilus Bhatti Yung‑Cheol Byun Sang-Jae Kim 《Nano-Micro Letters》 2026年第2期644-663,共20页
Wearable sensors integrated with deep learning techniques have the potential to revolutionize seamless human-machine interfaces for real-time health monitoring,clinical diagnosis,and robotic applications.Nevertheless,... Wearable sensors integrated with deep learning techniques have the potential to revolutionize seamless human-machine interfaces for real-time health monitoring,clinical diagnosis,and robotic applications.Nevertheless,it remains a critical challenge to simultaneously achieve desirable mechanical and electrical performance along with biocompatibility,adhesion,self-healing,and environmental robustness with excellent sensing metrics.Herein,we report a multifunctional,anti-freezing,selfadhesive,and self-healable organogel pressure sensor composed of cobalt nanoparticle encapsulated nitrogen-doped carbon nanotubes(CoN CNT)embedded in a polyvinyl alcohol-gelatin(PVA/GLE)matrix.Fabricated using a binary solvent system of water and ethylene glycol(EG),the CoN CNT/PVA/GLE organogel exhibits excellent flexibility,biocompatibility,and temperature tolerance with remarkable environmental stability.Electrochemical impedance spectroscopy confirms near-stable performance across a broad humidity range(40%-95%RH).Freeze-tolerant conductivity under sub-zero conditions(-20℃)is attributed to the synergistic role of CoN CNT and EG,preserving mobility and network integrity.The Co N CNT/PVA/GLE organogel sensor exhibits high sensitivity of 5.75 k Pa^(-1)in the detection range from 0 to 20 k Pa,ideal for subtle biomechanical motion detection.A smart human-machine interface for English letter recognition using deep learning achieved 98%accuracy.The organogel sensor utility was extended to detect human gestures like finger bending,wrist motion,and throat vibration during speech. 展开更多
关键词 Wearable ORGANOGEL deep learning Pressure sensor Bio-mechanical motion
在线阅读 下载PDF
Energy Optimization for Autonomous Mobile Robot Path Planning Based on Deep Reinforcement Learning
4
作者 Longfei Gao Weidong Wang Dieyun Ke 《Computers, Materials & Continua》 2026年第1期984-998,共15页
At present,energy consumption is one of the main bottlenecks in autonomous mobile robot development.To address the challenge of high energy consumption in path planning for autonomous mobile robots navigating unknown ... At present,energy consumption is one of the main bottlenecks in autonomous mobile robot development.To address the challenge of high energy consumption in path planning for autonomous mobile robots navigating unknown and complex environments,this paper proposes an Attention-Enhanced Dueling Deep Q-Network(ADDueling DQN),which integrates a multi-head attention mechanism and a prioritized experience replay strategy into a Dueling-DQN reinforcement learning framework.A multi-objective reward function,centered on energy efficiency,is designed to comprehensively consider path length,terrain slope,motion smoothness,and obstacle avoidance,enabling optimal low-energy trajectory generation in 3D space from the source.The incorporation of a multihead attention mechanism allows the model to dynamically focus on energy-critical state features—such as slope gradients and obstacle density—thereby significantly improving its ability to recognize and avoid energy-intensive paths.Additionally,the prioritized experience replay mechanism accelerates learning from key decision-making experiences,suppressing inefficient exploration and guiding the policy toward low-energy solutions more rapidly.The effectiveness of the proposed path planning algorithm is validated through simulation experiments conducted in multiple off-road scenarios.Results demonstrate that AD-Dueling DQN consistently achieves the lowest average energy consumption across all tested environments.Moreover,the proposed method exhibits faster convergence and greater training stability compared to baseline algorithms,highlighting its global optimization capability under energy-aware objectives in complex terrains.This study offers an efficient and scalable intelligent control strategy for the development of energy-conscious autonomous navigation systems. 展开更多
关键词 Autonomous mobile robot deep reinforcement learning energy optimization multi-attention mechanism prioritized experience replay dueling deep Q-Network
在线阅读 下载PDF
Nondestructive detection of key phenotypes for the canopy of the watermelon plug seedlings based on deep learning
5
作者 Lei Li Zhilong Bie +4 位作者 Yi Zhang Yuan Huang Chengli Peng Binbin Han Shengyong Xu 《Horticultural Plant Journal》 2026年第1期149-160,共12页
Nondestructive measurement technology of phenotype can provide substantial phenotypic data support for applications such as seedling breeding,management,and quality testing.The current method of measuring seedling phe... Nondestructive measurement technology of phenotype can provide substantial phenotypic data support for applications such as seedling breeding,management,and quality testing.The current method of measuring seedling phenotypes mainly relies on manual measurement which is inefficient,subjective and destroys samples.Therefore,the paper proposes a nondestructive measurement method for the canopy phenotype of the watermelon plug seedlings based on deep learning.The Azure Kinect was used to shoot canopy color images,depth images,and RGB-D images of the watermelon plug seedlings.The Mask-RCNN network was used to classify,segment,and count the canopy leaves of the watermelon plug seedlings.To reduce the error of leaf area measurement caused by mutual occlusion of leaves,the leaves were repaired by CycleGAN,and the depth images were restored by image processing.Then,the Delaunay triangulation was adopted to measure the leaf area in the leaf point cloud.The YOLOX target detection network was used to identify the growing point position of each seedling on the plug tray.Then the depth differences between the growing point and the upper surface of the plug tray were calculated to obtain plant height.The experiment results show that the nondestructive measurement algorithm proposed in this paper achieves good measurement performance for the watermelon plug seedlings from the 1 true-leaf to 3 true-leaf stages.The average relative error of measurement is 2.33%for the number of true leaves,4.59%for the number of cotyledons,8.37%for the leaf area,and 3.27%for the plant height.The experiment results demonstrate that the proposed algorithm in this paper provides an effective solution for the nondestructive measurement of the canopy phenotype of the plug seedlings. 展开更多
关键词 Watermelon seedlings Azure Kinect CANOPY Phenotype detection deep learning
在线阅读 下载PDF
A Deep Reinforcement Learning-Based Partitioning Method for Power System Parallel Restoration
6
作者 Changcheng Li Weimeng Chang +1 位作者 Dahai Zhang Jinghan He 《Energy Engineering》 2026年第1期243-264,共22页
Effective partitioning is crucial for enabling parallel restoration of power systems after blackouts.This paper proposes a novel partitioning method based on deep reinforcement learning.First,the partitioning decision... Effective partitioning is crucial for enabling parallel restoration of power systems after blackouts.This paper proposes a novel partitioning method based on deep reinforcement learning.First,the partitioning decision process is formulated as a Markov decision process(MDP)model to maximize the modularity.Corresponding key partitioning constraints on parallel restoration are considered.Second,based on the partitioning objective and constraints,the reward function of the partitioning MDP model is set by adopting a relative deviation normalization scheme to reduce mutual interference between the reward and penalty in the reward function.The soft bonus scaling mechanism is introduced to mitigate overestimation caused by abrupt jumps in the reward.Then,the deep Q network method is applied to solve the partitioning MDP model and generate partitioning schemes.Two experience replay buffers are employed to speed up the training process of the method.Finally,case studies on the IEEE 39-bus test system demonstrate that the proposed method can generate a high-modularity partitioning result that meets all key partitioning constraints,thereby improving the parallelism and reliability of the restoration process.Moreover,simulation results demonstrate that an appropriate discount factor is crucial for ensuring both the convergence speed and the stability of the partitioning training. 展开更多
关键词 Partitioning method parallel restoration deep reinforcement learning experience replay buffer partitioning modularity
在线阅读 下载PDF
Automated Pipe Defect Identification in Underwater Robot Imagery with Deep Learning
7
作者 Mansour Taheri Andani Farhad Ameri 《哈尔滨工程大学学报(英文版)》 2026年第1期197-215,共19页
Underwater pipeline inspection plays a vital role in the proactive maintenance and management of critical marine infrastructure and subaquatic systems.However,the inspection of underwater pipelines presents a challeng... Underwater pipeline inspection plays a vital role in the proactive maintenance and management of critical marine infrastructure and subaquatic systems.However,the inspection of underwater pipelines presents a challenge due to factors such as light scattering,absorption,restricted visibility,and ambient noise.The advancement of deep learning has introduced powerful techniques for processing large amounts of unstructured and imperfect data collected from underwater environments.This study evaluated the efficacy of the You Only Look Once(YOLO)algorithm,a real-time object detection and localization model based on convolutional neural networks,in identifying and classifying various types of pipeline defects in underwater settings.YOLOv8,the latest evolution in the YOLO family,integrates advanced capabilities,such as anchor-free detection,a cross-stage partial network backbone for efficient feature extraction,and a feature pyramid network+path aggregation network neck for robust multi-scale object detection,which make it particularly well-suited for complex underwater environments.Due to the lack of suitable open-access datasets for underwater pipeline defects,a custom dataset was captured using a remotely operated vehicle in a controlled environment.This application has the following assets available for use.Extensive experimentation demonstrated that YOLOv8 X-Large consistently outperformed other models in terms of pipe defect detection and classification and achieved a strong balance between precision and recall in identifying pipeline cracks,rust,corners,defective welds,flanges,tapes,and holes.This research establishes the baseline performance of YOLOv8 for underwater defect detection and showcases its potential to enhance the reliability and efficiency of pipeline inspection tasks in challenging underwater environments. 展开更多
关键词 YOLO8 Underwater robot Object detection Underwater pipelines Remotely operated vehicle deep learning
在线阅读 下载PDF
Deep Learning for Brain Tumor Segmentation and Classification: A Systematic Review of Methods and Trends
8
作者 Ameer Hamza Robertas Damaševicius 《Computers, Materials & Continua》 2026年第1期132-172,共41页
This systematic review aims to comprehensively examine and compare deep learning methods for brain tumor segmentation and classification using MRI and other imaging modalities,focusing on recent trends from 2022 to 20... This systematic review aims to comprehensively examine and compare deep learning methods for brain tumor segmentation and classification using MRI and other imaging modalities,focusing on recent trends from 2022 to 2025.The primary objective is to evaluate methodological advancements,model performance,dataset usage,and existing challenges in developing clinically robust AI systems.We included peer-reviewed journal articles and highimpact conference papers published between 2022 and 2025,written in English,that proposed or evaluated deep learning methods for brain tumor segmentation and/or classification.Excluded were non-open-access publications,books,and non-English articles.A structured search was conducted across Scopus,Google Scholar,Wiley,and Taylor&Francis,with the last search performed in August 2025.Risk of bias was not formally quantified but considered during full-text screening based on dataset diversity,validation methods,and availability of performance metrics.We used narrative synthesis and tabular benchmarking to compare performance metrics(e.g.,accuracy,Dice score)across model types(CNN,Transformer,Hybrid),imaging modalities,and datasets.A total of 49 studies were included(43 journal articles and 6 conference papers).These studies spanned over 9 public datasets(e.g.,BraTS,Figshare,REMBRANDT,MOLAB)and utilized a range of imaging modalities,predominantly MRI.Hybrid models,especially ResViT and UNetFormer,consistently achieved high performance,with classification accuracy exceeding 98%and segmentation Dice scores above 0.90 across multiple studies.Transformers and hybrid architectures showed increasing adoption post2023.Many studies lacked external validation and were evaluated only on a few benchmark datasets,raising concerns about generalizability and dataset bias.Few studies addressed clinical interpretability or uncertainty quantification.Despite promising results,particularly for hybrid deep learning models,widespread clinical adoption remains limited due to lack of validation,interpretability concerns,and real-world deployment barriers. 展开更多
关键词 Brain tumor segmentation brain tumor classification deep learning vision transformers hybrid models
在线阅读 下载PDF
A novel deep learning-based framework for forecasting
9
作者 Congqi Cao Ze Sun +2 位作者 Lanshu Hu Liujie Pan Yanning Zhang 《Atmospheric and Oceanic Science Letters》 2026年第1期22-26,共5页
Deep learning-based methods have become alternatives to traditional numerical weather prediction systems,offering faster computation and the ability to utilize large historical datasets.However,the application of deep... Deep learning-based methods have become alternatives to traditional numerical weather prediction systems,offering faster computation and the ability to utilize large historical datasets.However,the application of deep learning to medium-range regional weather forecasting with limited data remains a significant challenge.In this work,three key solutions are proposed:(1)motivated by the need to improve model performance in data-scarce regional forecasting scenarios,the authors innovatively apply semantic segmentation models,to better capture spatiotemporal features and improve prediction accuracy;(2)recognizing the challenge of overfitting and the inability of traditional noise-based data augmentation methods to effectively enhance model robustness,a novel learnable Gaussian noise mechanism is introduced that allows the model to adaptively optimize perturbations for different locations,ensuring more effective learning;and(3)to address the issue of error accumulation in autoregressive prediction,as well as the challenge of learning difficulty and the lack of intermediate data utilization in one-shot prediction,the authors propose a cascade prediction approach that effectively resolves these problems while significantly improving model forecasting performance.The method achieves a competitive result in The East China Regional AI Medium Range Weather Forecasting Competition.Ablation experiments further validate the effectiveness of each component,highlighting their contributions to enhancing prediction performance. 展开更多
关键词 Weather forecasting deep learning Semantic segmentation models learnable Gaussian noise Cascade prediction
在线阅读 下载PDF
A Multi-Objective Deep Reinforcement Learning Algorithm for Computation Offloading in Internet of Vehicles
10
作者 Junjun Ren Guoqiang Chen +1 位作者 Zheng-Yi Chai Dong Yuan 《Computers, Materials & Continua》 2026年第1期2111-2136,共26页
Vehicle Edge Computing(VEC)and Cloud Computing(CC)significantly enhance the processing efficiency of delay-sensitive and computation-intensive applications by offloading compute-intensive tasks from resource-constrain... Vehicle Edge Computing(VEC)and Cloud Computing(CC)significantly enhance the processing efficiency of delay-sensitive and computation-intensive applications by offloading compute-intensive tasks from resource-constrained onboard devices to nearby Roadside Unit(RSU),thereby achieving lower delay and energy consumption.However,due to the limited storage capacity and energy budget of RSUs,it is challenging to meet the demands of the highly dynamic Internet of Vehicles(IoV)environment.Therefore,determining reasonable service caching and computation offloading strategies is crucial.To address this,this paper proposes a joint service caching scheme for cloud-edge collaborative IoV computation offloading.By modeling the dynamic optimization problem using Markov Decision Processes(MDP),the scheme jointly optimizes task delay,energy consumption,load balancing,and privacy entropy to achieve better quality of service.Additionally,a dynamic adaptive multi-objective deep reinforcement learning algorithm is proposed.Each Double Deep Q-Network(DDQN)agent obtains rewards for different objectives based on distinct reward functions and dynamically updates the objective weights by learning the value changes between objectives using Radial Basis Function Networks(RBFN),thereby efficiently approximating the Pareto-optimal decisions for multiple objectives.Extensive experiments demonstrate that the proposed algorithm can better coordinate the three-tier computing resources of cloud,edge,and vehicles.Compared to existing algorithms,the proposed method reduces task delay and energy consumption by 10.64%and 5.1%,respectively. 展开更多
关键词 deep reinforcement learning internet of vehicles multi-objective optimization cloud-edge computing computation offloading service caching
在线阅读 下载PDF
HCL Net: Deep Learning for Accurate Classification of Honeycombing Lung and Ground Glass Opacity in CT Images
11
作者 Hairul Aysa Abdul Halim Sithiq Liyana Shuib +1 位作者 Muneer Ahmad Chermaine Deepa Antony 《Computers, Materials & Continua》 2026年第1期999-1023,共25页
Honeycombing Lung(HCL)is a chronic lung condition marked by advanced fibrosis,resulting in enlarged air spaces with thick fibrotic walls,which are visible on Computed Tomography(CT)scans.Differentiating between normal... Honeycombing Lung(HCL)is a chronic lung condition marked by advanced fibrosis,resulting in enlarged air spaces with thick fibrotic walls,which are visible on Computed Tomography(CT)scans.Differentiating between normal lung tissue,honeycombing lungs,and Ground Glass Opacity(GGO)in CT images is often challenging for radiologists and may lead to misinterpretations.Although earlier studies have proposed models to detect and classify HCL,many faced limitations such as high computational demands,lower accuracy,and difficulty distinguishing between HCL and GGO.CT images are highly effective for lung classification due to their high resolution,3D visualization,and sensitivity to tissue density variations.This study introduces Honeycombing Lungs Network(HCL Net),a novel classification algorithm inspired by ResNet50V2 and enhanced to overcome the shortcomings of previous approaches.HCL Net incorporates additional residual blocks,refined preprocessing techniques,and selective parameter tuning to improve classification performance.The dataset,sourced from the University Malaya Medical Centre(UMMC)and verified by expert radiologists,consists of CT images of normal,honeycombing,and GGO lungs.Experimental evaluations across five assessments demonstrated that HCL Net achieved an outstanding classification accuracy of approximately 99.97%.It also recorded strong performance in other metrics,achieving 93%precision,100%sensitivity,89%specificity,and an AUC-ROC score of 97%.Comparative analysis with baseline feature engineering methods confirmed the superior efficacy of HCL Net.The model significantly reduces misclassification,particularly between honeycombing and GGO lungs,enhancing diagnostic precision and reliability in lung image analysis. 展开更多
关键词 deep learning honeycombing lung ground glass opacity Resnet50v2 multiclass classification
在线阅读 下载PDF
Deep Learning-Enhanced Human Sensing with Channel State Information: A Survey
12
作者 Binglei Yue Aili Jiang +3 位作者 Chun Yang Junwei Lei Heng Liu Yin Zhang 《Computers, Materials & Continua》 2026年第1期1-28,共28页
With the growing advancement of wireless communication technologies,WiFi-based human sensing has gained increasing attention as a non-intrusive and device-free solution.Among the available signal types,Channel State I... With the growing advancement of wireless communication technologies,WiFi-based human sensing has gained increasing attention as a non-intrusive and device-free solution.Among the available signal types,Channel State Information(CSI)offers fine-grained temporal,frequency,and spatial insights into multipath propagation,making it a crucial data source for human-centric sensing.Recently,the integration of deep learning has significantly improved the robustness and automation of feature extraction from CSI in complex environments.This paper provides a comprehensive review of deep learning-enhanced human sensing based on CSI.We first outline mainstream CSI acquisition tools and their hardware specifications,then provide a detailed discussion of preprocessing methods such as denoising,time–frequency transformation,data segmentation,and augmentation.Subsequently,we categorize deep learning approaches according to sensing tasks—namely detection,localization,and recognition—and highlight representative models across application scenarios.Finally,we examine key challenges including domain generalization,multi-user interference,and limited data availability,and we propose future research directions involving lightweight model deployment,multimodal data fusion,and semantic-level sensing. 展开更多
关键词 Channel State Information(CSI) human sensing human activity recognition deep learning
在线阅读 下载PDF
Research on the visualization method of lithology intelligent recognition based on deep learning using mine tunnel images
13
作者 Aiai Wang Shuai Cao +1 位作者 Erol Yilmaz Hui Cao 《International Journal of Minerals,Metallurgy and Materials》 2026年第1期141-152,共12页
An image processing and deep learning method for identifying different types of rock images was proposed.Preprocessing,such as rock image acquisition,gray scaling,Gaussian blurring,and feature dimensionality reduction... An image processing and deep learning method for identifying different types of rock images was proposed.Preprocessing,such as rock image acquisition,gray scaling,Gaussian blurring,and feature dimensionality reduction,was conducted to extract useful feature information and recognize and classify rock images using Tensor Flow-based convolutional neural network(CNN)and Py Qt5.A rock image dataset was established and separated into workouts,confirmation sets,and test sets.The framework was subsequently compiled and trained.The categorization approach was evaluated using image data from the validation and test datasets,and key metrics,such as accuracy,precision,and recall,were analyzed.Finally,the classification model conducted a probabilistic analysis of the measured data to determine the equivalent lithological type for each image.The experimental results indicated that the method combining deep learning,Tensor Flow-based CNN,and Py Qt5 to recognize and classify rock images has an accuracy rate of up to 98.8%,and can be successfully utilized for rock image recognition.The system can be extended to geological exploration,mine engineering,and other rock and mineral resource development to more efficiently and accurately recognize rock samples.Moreover,it can match them with the intelligent support design system to effectively improve the reliability and economy of the support scheme.The system can serve as a reference for supporting the design of other mining and underground space projects. 展开更多
关键词 rock picture recognition convolutional neural network intelligent support for roadways deep learning lithology determination
在线阅读 下载PDF
Harnessing deep learning for the discovery of latent patterns in multi-omics medical data
14
作者 Okechukwu Paul-Chima Ugwu Fabian COgenyi +8 位作者 Chinyere Nkemjika Anyanwu Melvin Nnaemeka Ugwu Esther Ugo Alum Mariam Basajja Joseph Obiezu Chukwujekwu Ezeonwumelu Daniel Ejim Uti Ibe Michael Usman Chukwuebuka Gabriel Eze Simeon Ikechukwu Egba 《Medical Data Mining》 2026年第1期32-45,共14页
The rapid growth of biomedical data,particularly multi-omics data including genomes,transcriptomics,proteomics,metabolomics,and epigenomics,medical research and clinical decision-making confront both new opportunities... The rapid growth of biomedical data,particularly multi-omics data including genomes,transcriptomics,proteomics,metabolomics,and epigenomics,medical research and clinical decision-making confront both new opportunities and obstacles.The huge and diversified nature of these datasets cannot always be managed using traditional data analysis methods.As a consequence,deep learning has emerged as a strong tool for analysing numerous omics data due to its ability to handle complex and non-linear relationships.This paper explores the fundamental concepts of deep learning and how they are used in multi-omics medical data mining.We demonstrate how autoencoders,variational autoencoders,multimodal models,attention mechanisms,transformers,and graph neural networks enable pattern analysis and recognition across all omics data.Deep learning has been found to be effective in illness classification,biomarker identification,gene network learning,and therapeutic efficacy prediction.We also consider critical problems like as data quality,model explainability,whether findings can be repeated,and computational power requirements.We now consider future elements of combining omics with clinical and imaging data,explainable AI,federated learning,and real-time diagnostics.Overall,this study emphasises the need of collaborating across disciplines to advance deep learning-based multi-omics research for precision medicine and comprehending complicated disorders. 展开更多
关键词 deep learning multi-omics integration biomedical data mining precision medicine graph neural networks autoencoders and transformers
在线阅读 下载PDF
A Deep Learning Framework for Heart Disease Prediction with Explainable Artificial Intelligence
15
作者 Muhammad Adil Nadeem Javaid +2 位作者 Imran Ahmed Abrar Ahmed Nabil Alrajeh 《Computers, Materials & Continua》 2026年第1期1944-1963,共20页
Heart disease remains a leading cause of mortality worldwide,emphasizing the urgent need for reliable and interpretable predictive models to support early diagnosis and timely intervention.However,existing Deep Learni... Heart disease remains a leading cause of mortality worldwide,emphasizing the urgent need for reliable and interpretable predictive models to support early diagnosis and timely intervention.However,existing Deep Learning(DL)approaches often face several limitations,including inefficient feature extraction,class imbalance,suboptimal classification performance,and limited interpretability,which collectively hinder their deployment in clinical settings.To address these challenges,we propose a novel DL framework for heart disease prediction that integrates a comprehensive preprocessing pipeline with an advanced classification architecture.The preprocessing stage involves label encoding and feature scaling.To address the issue of class imbalance inherent in the personal key indicators of the heart disease dataset,the localized random affine shadowsampling technique is employed,which enhances minority class representation while minimizing overfitting.At the core of the framework lies the Deep Residual Network(DeepResNet),which employs hierarchical residual transformations to facilitate efficient feature extraction and capture complex,non-linear relationships in the data.Experimental results demonstrate that the proposed model significantly outperforms existing techniques,achieving improvements of 3.26%in accuracy,3.16%in area under the receiver operating characteristics,1.09%in recall,and 1.07%in F1-score.Furthermore,robustness is validated using 10-fold crossvalidation,confirming the model’s generalizability across diverse data distributions.Moreover,model interpretability is ensured through the integration of Shapley additive explanations and local interpretable model-agnostic explanations,offering valuable insights into the contribution of individual features to model predictions.Overall,the proposed DL framework presents a robust,interpretable,and clinically applicable solution for heart disease prediction. 展开更多
关键词 Heart disease deep learning localized random affine shadowsampling local interpretable modelagnostic explanations shapley additive explanations 10-fold cross-validation
在线阅读 下载PDF
Deep Learning-Based Toolkit Inspection: Object Detection and Segmentation in Assembly Lines
16
作者 Arvind Mukundan Riya Karmakar +1 位作者 Devansh Gupta Hsiang-Chen Wang 《Computers, Materials & Continua》 2026年第1期1255-1277,共23页
Modern manufacturing processes have become more reliant on automation because of the accelerated transition from Industry 3.0 to Industry 4.0.Manual inspection of products on assembly lines remains inefficient,prone t... Modern manufacturing processes have become more reliant on automation because of the accelerated transition from Industry 3.0 to Industry 4.0.Manual inspection of products on assembly lines remains inefficient,prone to errors and lacks consistency,emphasizing the need for a reliable and automated inspection system.Leveraging both object detection and image segmentation approaches,this research proposes a vision-based solution for the detection of various kinds of tools in the toolkit using deep learning(DL)models.Two Intel RealSense D455f depth cameras were arranged in a top down configuration to capture both RGB and depth images of the toolkits.After applying multiple constraints and enhancing them through preprocessing and augmentation,a dataset consisting of 3300 annotated RGB-D photos was generated.Several DL models were selected through a comprehensive assessment of mean Average Precision(mAP),precision-recall equilibrium,inference latency(target≥30 FPS),and computational burden,resulting in a preference for YOLO and Region-based Convolutional Neural Networks(R-CNN)variants over ViT-based models due to the latter’s increased latency and resource requirements.YOLOV5,YOLOV8,YOLOV11,Faster R-CNN,and Mask R-CNN were trained on the annotated dataset and evaluated using key performance metrics(Recall,Accuracy,F1-score,and Precision).YOLOV11 demonstrated balanced excellence with 93.0%precision,89.9%recall,and a 90.6%F1-score in object detection,as well as 96.9%precision,95.3%recall,and a 96.5%F1-score in instance segmentation with an average inference time of 25 ms per frame(≈40 FPS),demonstrating real-time performance.Leveraging these results,a YOLOV11-based windows application was successfully deployed in a real-time assembly line environment,where it accurately processed live video streams to detect and segment tools within toolkits,demonstrating its practical effectiveness in industrial automation.The application is capable of precisely measuring socket dimensions by utilising edge detection techniques on YOLOv11 segmentation masks,in addition to detection and segmentation.This makes it possible to do specification-level quality control right on the assembly line,which improves the ability to examine things in real time.The implementation is a big step forward for intelligent manufacturing in the Industry 4.0 paradigm.It provides a scalable,efficient,and accurate way to do automated inspection and dimensional verification activities. 展开更多
关键词 Tool detection image segmentation object detection assembly line automation Industry 4.0 Intel RealSense deep learning toolkit verification RGB-D imaging quality assurance
在线阅读 下载PDF
Towards Decentralized IoT Security: Optimized Detection of Zero-Day Multi-Class Cyber-Attacks Using Deep Federated Learning
17
作者 Misbah Anwer Ghufran Ahmed +3 位作者 Maha Abdelhaq Raed Alsaqour Shahid Hussain Adnan Akhunzada 《Computers, Materials & Continua》 2026年第1期744-758,共15页
The exponential growth of the Internet of Things(IoT)has introduced significant security challenges,with zero-day attacks emerging as one of the most critical and challenging threats.Traditional Machine Learning(ML)an... The exponential growth of the Internet of Things(IoT)has introduced significant security challenges,with zero-day attacks emerging as one of the most critical and challenging threats.Traditional Machine Learning(ML)and Deep Learning(DL)techniques have demonstrated promising early detection capabilities.However,their effectiveness is limited when handling the vast volumes of IoT-generated data due to scalability constraints,high computational costs,and the costly time-intensive process of data labeling.To address these challenges,this study proposes a Federated Learning(FL)framework that leverages collaborative and hybrid supervised learning to enhance cyber threat detection in IoT networks.By employing Deep Neural Networks(DNNs)and decentralized model training,the approach reduces computational complexity while improving detection accuracy.The proposed model demonstrates robust performance,achieving accuracies of 94.34%,99.95%,and 87.94%on the publicly available kitsune,Bot-IoT,and UNSW-NB15 datasets,respectively.Furthermore,its ability to detect zero-day attacks is validated through evaluations on two additional benchmark datasets,TON-IoT and IoT-23,using a Deep Federated Learning(DFL)framework,underscoring the generalization and effectiveness of the model in heterogeneous and decentralized IoT environments.Experimental results demonstrate superior performance over existing methods,establishing the proposed framework as an efficient and scalable solution for IoT security. 展开更多
关键词 Cyber-attack intrusion detection system(IDS) deep federated learning(DFL) zero-day attack distributed denial of services(DDoS) MULTI-CLASS Internet of Things(IoT)
在线阅读 下载PDF
A Hybrid Deep Learning Multi-Class Classification Model for Alzheimer’s Disease Using Enhanced MRI Images
18
作者 Ghadah Naif Alwakid 《Computers, Materials & Continua》 2026年第1期797-821,共25页
Alzheimer’s Disease(AD)is a progressive neurodegenerative disorder that significantly affects cognitive function,making early and accurate diagnosis essential.Traditional Deep Learning(DL)-based approaches often stru... Alzheimer’s Disease(AD)is a progressive neurodegenerative disorder that significantly affects cognitive function,making early and accurate diagnosis essential.Traditional Deep Learning(DL)-based approaches often struggle with low-contrast MRI images,class imbalance,and suboptimal feature extraction.This paper develops a Hybrid DL system that unites MobileNetV2 with adaptive classification methods to boost Alzheimer’s diagnosis by processing MRI scans.Image enhancement is done using Contrast-Limited Adaptive Histogram Equalization(CLAHE)and Enhanced Super-Resolution Generative Adversarial Networks(ESRGAN).A classification robustness enhancement system integrates class weighting techniques and a Matthews Correlation Coefficient(MCC)-based evaluation method into the design.The trained and validated model gives a 98.88%accuracy rate and 0.9614 MCC score.We also performed a 10-fold cross-validation experiment with an average accuracy of 96.52%(±1.51),a loss of 0.1671,and an MCC score of 0.9429 across folds.The proposed framework outperforms the state-of-the-art models with a 98%weighted F1-score while decreasing misdiagnosis results for every AD stage.The model demonstrates apparent separation abilities between AD progression stages according to the results of the confusion matrix analysis.These results validate the effectiveness of hybrid DL models with adaptive preprocessing for early and reliable Alzheimer’s diagnosis,contributing to improved computer-aided diagnosis(CAD)systems in clinical practice. 展开更多
关键词 Alzheimer’s disease deep learning MRI images MobileNetV2 contrast-limited adaptive histogram equalization(CLAHE) enhanced super-resolution generative adversarial networks(ESRGAN) multi-class classification
在线阅读 下载PDF
Enhanced battery life prediction with reduced data demand via semi-supervised representation learning 被引量:2
19
作者 Liang Ma Jinpeng Tian +2 位作者 Tieling Zhang Qinghua Guo Chi Yung Chung 《Journal of Energy Chemistry》 2025年第2期524-534,I0011,共12页
Accurate prediction of the remaining useful life(RUL)is crucial for the design and management of lithium-ion batteries.Although various machine learning models offer promising predictions,one critical but often overlo... Accurate prediction of the remaining useful life(RUL)is crucial for the design and management of lithium-ion batteries.Although various machine learning models offer promising predictions,one critical but often overlooked challenge is their demand for considerable run-to-failure data for training.Collection of such training data leads to prohibitive testing efforts as the run-to-failure tests can last for years.Here,we propose a semi-supervised representation learning method to enhance prediction accuracy by learning from data without RUL labels.Our approach builds on a sophisticated deep neural network that comprises an encoder and three decoder heads to extract time-dependent representation features from short-term battery operating data regardless of the existence of RUL labels.The approach is validated using three datasets collected from 34 batteries operating under various conditions,encompassing over 19,900 charge and discharge cycles.Our method achieves a root mean squared error(RMSE)within 25 cycles,even when only 1/50 of the training dataset is labelled,representing a reduction of 48%compared to the conventional approach.We also demonstrate the method's robustness with varying numbers of labelled data and different weights assigned to the three decoder heads.The projection of extracted features in low space reveals that our method effectively learns degradation features from unlabelled data.Our approach highlights the promise of utilising semi-supervised learning to reduce the data demand for reliability monitoring of energy devices. 展开更多
关键词 Lithium-ion batteries Battery degradation Remaining useful life semi-supervised learning
在线阅读 下载PDF
A Detection Algorithm for Two-Wheeled Vehicles in Complex Scenarios Based on Semi-Supervised Learning
20
作者 Mingen Zhong Kaibo Yang +4 位作者 Ziji Xiao Jiawei Tan Kang Fan Zhiying Deng Mengli Zhou 《Computers, Materials & Continua》 2025年第7期1055-1071,共17页
With the rapid urbanization and exponential population growth in China,two-wheeled vehicles have become a popular mode of transportation,particularly for short-distance travel.However,due to a lack of safety awareness... With the rapid urbanization and exponential population growth in China,two-wheeled vehicles have become a popular mode of transportation,particularly for short-distance travel.However,due to a lack of safety awareness,traffic violations by two-wheeled vehicle riders have become a widespread concern,contributing to urban traffic risks.Currently,significant human and material resources are being allocated to monitor and intercept non-compliant riders to ensure safe driving behavior.To enhance the safety,efficiency,and cost-effectiveness of traffic monitoring,automated detection systems based on image processing algorithms can be employed to identify traffic violations from eye-level video footage.In this study,we propose a robust detection algorithm specifically designed for two-wheeled vehicles,which serves as a fundamental step toward intelligent traffic monitoring.Our approach integrates a novel convolutional and attention mechanism to improve detection accuracy and efficiency.Additionally,we introduce a semi-supervised training strategy that leverages a large number of unlabeled images to enhance the model’s learning capability by extracting valuable background information.This method enables the model to generalize effectively to diverse urban environments and varying lighting conditions.We evaluate our proposed algorithm on a custom-built dataset,and experimental results demonstrate its superior performance,achieving an average precision(AP)of 95%and a recall(R)of 90.6%.Furthermore,the model maintains a computational efficiency of only 25.7 GFLOPs while achieving a high processing speed of 249 FPS,making it highly suitable for deployment on edge devices.Compared to existing detection methods,our approach significantly enhances the accuracy and robustness of two-wheeled vehicle identification while ensuring real-time performance. 展开更多
关键词 Two wheeled vehicles illegal behavior detection object detection semi supervised learning deep learning TRANSFORMER convolutional neural network
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部