The escalating complexity and heterogeneity of modern energy systems—particularly in smart grid and distributed energy infrastructures—has intensified the need for intelligent and scalable security vulnerability cla...The escalating complexity and heterogeneity of modern energy systems—particularly in smart grid and distributed energy infrastructures—has intensified the need for intelligent and scalable security vulnerability classification.To address this challenge,we propose Vulnerability2Vec,a graph-embedding-based framework designed to enhance the automated classification of security vulnerabilities that threaten energy system resilience.Vulnerability2Vec converts Common Vulnerabilities and Exposures(CVE)text explanations to semantic graphs,where nodes represent CVE IDs and key terms(nouns,verbs,and adjectives),and edges capture co-occurrence relationships.Then,it embeds the semantic graphs to a low-dimensional vector space with random-walk sampling and skip-gram with negative sampling.It is possible to identify the latent relationships and structural patterns that traditional sparse vector methods fail to capture.Experimental results demonstrate a classification accuracy of up to 80%,significantly outperforming baseline methods.This approach offers a theoretical basis for classifying vulnerability types as structured semantic patterns in complex software systems.The proposed method models the semantic structure of vulnerabilities,providing a theoretical foundation for their classification.展开更多
The existing graph convolution methods usually suffer high computational burdens,large memory requirements,and intractable batch-processing.In this paper,we propose a high-efficient variational gridded graph convoluti...The existing graph convolution methods usually suffer high computational burdens,large memory requirements,and intractable batch-processing.In this paper,we propose a high-efficient variational gridded graph convolution network(VG-GCN)to encode non-regular graph data,which overcomes all these aforementioned problems.To capture graph topology structures efficiently,in the proposed framework,we propose a hierarchically-coarsened random walk(hcr-walk)by taking advantage of the classic random walk and node/edge encapsulation.The hcr-walk greatly mitigates the problem of exponentially explosive sampling times which occur in the classic version,while preserving graph structures well.To efficiently encode local hcr-walk around one reference node,we project hcrwalk into an ordered space to form image-like grid data,which favors those conventional convolution networks.Instead of the direct 2-D convolution filtering,a variational convolution block(VCB)is designed to model the distribution of the randomsampling hcr-walk inspired by the well-formulated variational inference.We experimentally validate the efficiency and effectiveness of our proposed VG-GCN,which has high computation speed,and the comparable or even better performance when compared with baseline GCNs.展开更多
Classic Graph Convolutional Networks (GCNs) often learn node representation holistically, which ignores the distinct impacts from different neighbors when aggregating their features to update a node’s representation....Classic Graph Convolutional Networks (GCNs) often learn node representation holistically, which ignores the distinct impacts from different neighbors when aggregating their features to update a node’s representation. Disentangled GCNs have been proposed to divide each node’s representation into several feature units. However, current disentangling methods do not try to figure out how many inherent factors the model should assign to help extract the best representation of each node. This paper then proposes D^(2)-GCN to provide dynamic disentanglement in GCNs and present the most appropriate factorization of each node’s mixed features. The convergence of the proposed method is proved both theoretically and experimentally. Experiments on real-world datasets show that D^(2)-GCN outperforms the baseline models concerning node classification results in both single- and multi-label tasks.展开更多
Graph Neural Networks(GNNs)have demonstrated outstanding capabilities in processing graph-structured data and are increasingly being integrated into large-scale pre-trained models,such as Large Language Models(LLMs),t...Graph Neural Networks(GNNs)have demonstrated outstanding capabilities in processing graph-structured data and are increasingly being integrated into large-scale pre-trained models,such as Large Language Models(LLMs),to enhance structural reasoning,knowledge retrieval,and memory management.The expansion of their application scope imposes higher requirements on the robustness of GNNs.However,as GNNs are applied to more dynamic and heterogeneous environments,they become increasingly vulnerable to real-world perturbations.In particular,graph data frequently encounters joint adversarial perturbations that simultaneously affect both structures and features,which are significantly more challenging than isolated attacks.These disruptions,caused by incomplete data,malicious attacks,or inherent noise,pose substantial threats to the stable and reliable performance of traditional GNN models.To address this issue,this study proposes the Dual-Shield Graph Neural Network(DSGNN),a defense model that simultaneously mitigates structural and feature perturbations.DSGNN utilizes two parallel GNN channels to independently process structural noise and feature noise,and introduces an adaptive fusion mechanism that integrates information from both pathways to generate robust node representations.Theoretical analysis demonstrates that DSGNN achieves a tighter robustness boundary under joint perturbations compared to conventional single-channel methods.Experimental evaluations across Cora,CiteSeer,and Industry datasets show that DSGNN achieves the highest average classification accuracy under various adversarial settings,reaching 81.24%,71.94%,and 81.66%,respectively,outperforming GNNGuard,GCN-Jaccard,GCN-SVD,RGCN,and NoisyGNN.These results underscore the importance of multi-view perturbation decoupling in constructing resilient GNN models for real-world applications.展开更多
Graph conjoint attention(CAT)network is one of the best graph convolutional networks(GCNs)frameworks,which uses a weighting mechanism to identify important neighbor nodes.However,this weighting mechanism is learned ba...Graph conjoint attention(CAT)network is one of the best graph convolutional networks(GCNs)frameworks,which uses a weighting mechanism to identify important neighbor nodes.However,this weighting mechanism is learned based on static information,which means it is susceptible to noisy nodes and edges,resulting in significant limitations.In this paper,a method is proposed to obtain context dynamically based on random walk,which allows the context-based weighting mechanism to better avoid noise interference.Furthermore,the proposed context-based weighting mechanism is combined with the node content-based weighting mechanism of the graph attention(GAT)network to form a model based on a mixed weighting mechanism.The model is named as the context-based and content-based graph convolutional network(CCGCN).CCGCN can better discover important neighbors,eliminate noise edges,and learn node embedding by message passing.Experiments show that CCGCN achieves state-of-the-art performance on node classification tasks in multiple datasets.展开更多
With the rapid advancement of 5G technology,the Internet of Things(IoT)has entered a new phase of appli-cations and is rapidly becoming a significant force in promoting economic development.Due to the vast amounts of ...With the rapid advancement of 5G technology,the Internet of Things(IoT)has entered a new phase of appli-cations and is rapidly becoming a significant force in promoting economic development.Due to the vast amounts of data created by numerous 5G IoT devices,the Ethereum platform has become a tool for the storage and sharing of IoT device data,thanks to its open and tamper-resistant characteristics.So,Ethereum account security is necessary for the Internet of Things to grow quickly and improve people's lives.By modeling Ethereum trans-action records as a transaction network,the account types are well identified by the Ethereum account classifi-cation system established based on Graph Neural Networks(GNNs).This work first investigates the Ethereum transaction network.Surprisingly,experimental metrics reveal that the Ethereum transaction network is neither optimal nor even satisfactory in terms of accurately representing transactions per account.This flaw may significantly impede the classification capability of GNNs,which is mostly governed by their attributes.This work proposes an Adaptive Multi-channel Bayesian Graph Attention Network(AMBGAT)for Ethereum account clas-sification to address this difficulty.AMBGAT uses attention to enhance node features,estimate graph topology that conforms to the ground truth,and efficiently extract node features pertinent to downstream tasks.An extensive experiment with actual Ethereum transaction data demonstrates that AMBGAT obtains competitive performance in the classification of Ethereum accounts while accurately estimating the graph topology.展开更多
图垂直联邦学习是一种结合图数据和垂直联邦学习的分布式机器学习方法,广泛应用于金融服务、医疗健康和社交网络等领域。该方法在保护隐私的同时,利用数据多样性显著提升模型性能。然而,研究表明图垂直联邦学习容易受到对抗攻击的威胁...图垂直联邦学习是一种结合图数据和垂直联邦学习的分布式机器学习方法,广泛应用于金融服务、医疗健康和社交网络等领域。该方法在保护隐私的同时,利用数据多样性显著提升模型性能。然而,研究表明图垂直联邦学习容易受到对抗攻击的威胁。现有的针对图神经网络的对抗攻击方法,如梯度最大化攻击、简化梯度攻击等方法在图垂直联邦框架中实施时仍然面临攻击成功率低、隐蔽性差、在防御情况下无法实施等问题。为应对这些挑战,提出了一种面向图垂直联邦的对抗攻击方法(Node and Feature Adversarial Attack,NFAttack),该方法分别设计了节点攻击策略与特征攻击策略,从不同维度实施高效攻击。首先,节点攻击策略基于度中心性指标评估节点的重要性,通过连接一定数量的虚假节点以形成虚假边,从而干扰高中心性节点。其次,特征攻击策略在节点特征中注入由随机噪声与梯度噪声构成的混合噪声,进而扰乱分类结果。最后,在6个数据集和3种图神经网络模型上进行实验,结果表明NFAttack的平均攻击成功率达到80%,比其他算法提高了约30%。此外,即使在多种联邦学习防御机制下,NFAttack仍展现出较强的攻击效果。展开更多
图池化作为图神经网络中重要的组件,在获取图的多粒度信息的过程中扮演了重要角色。而当前的图池化操作均以平等地位看待数据点,普遍未考虑利用邻域内数据之间的偏序关系,从而造成图结构信息破坏。针对此问题,本文提出一种基于偏序关系...图池化作为图神经网络中重要的组件,在获取图的多粒度信息的过程中扮演了重要角色。而当前的图池化操作均以平等地位看待数据点,普遍未考虑利用邻域内数据之间的偏序关系,从而造成图结构信息破坏。针对此问题,本文提出一种基于偏序关系的多视图多粒度图表示学习框架(multi-view and multi-granularity graph representation learning based on partial order relationships,MVMGr-PO),它通过从节点特征视图、图结构视图以及全局视图对节点进行综合评分,进而基于节点之间的偏序关系进行下采样操作。相比于其他图表示学习方法,MVMGr-PO可以有效地提取多粒度图结构信息,从而可以更全面地表征图的内在结构和属性。此外,MVMGr-PO可以集成多种图神经网络架构,包括GCN(graph convolutional network)、GAT(graph attention network)以及GraphSAGE(graph sample and aggregate)等。通过在6个数据集上进行实验评估,与现有基线模型相比,MVMGr-PO在分类准确率上有明显提升。展开更多
基金supported by the MSIT(Ministry of Science and ICT),Republic of Korea,under the Convergence Security Core Talent Training Business Support Program(IITP-2025-RS-2023-00266605,50%)in part by the Institute of Information&Communications Technology Planning&Evaluation(lITP)grant funded by the Korea government(MSIT)(RS-2025-02305436,Development of Digital Innovative Element Technologies for Rapid Prediction of Potential Complex Disasters and Continuous Disaster Prevention,30%)supported by the Chung-Ang University Graduate Research Scholar-ship in 2023(20%).
文摘The escalating complexity and heterogeneity of modern energy systems—particularly in smart grid and distributed energy infrastructures—has intensified the need for intelligent and scalable security vulnerability classification.To address this challenge,we propose Vulnerability2Vec,a graph-embedding-based framework designed to enhance the automated classification of security vulnerabilities that threaten energy system resilience.Vulnerability2Vec converts Common Vulnerabilities and Exposures(CVE)text explanations to semantic graphs,where nodes represent CVE IDs and key terms(nouns,verbs,and adjectives),and edges capture co-occurrence relationships.Then,it embeds the semantic graphs to a low-dimensional vector space with random-walk sampling and skip-gram with negative sampling.It is possible to identify the latent relationships and structural patterns that traditional sparse vector methods fail to capture.Experimental results demonstrate a classification accuracy of up to 80%,significantly outperforming baseline methods.This approach offers a theoretical basis for classifying vulnerability types as structured semantic patterns in complex software systems.The proposed method models the semantic structure of vulnerabilities,providing a theoretical foundation for their classification.
基金supported by the Natural Science Foundation of Jiangsu Province(BK20190019,BK20190452)the National Natural Science Foundation of China(62072244,61906094)the Natural Science Foundation of Shandong Province(ZR2020LZH008)。
文摘The existing graph convolution methods usually suffer high computational burdens,large memory requirements,and intractable batch-processing.In this paper,we propose a high-efficient variational gridded graph convolution network(VG-GCN)to encode non-regular graph data,which overcomes all these aforementioned problems.To capture graph topology structures efficiently,in the proposed framework,we propose a hierarchically-coarsened random walk(hcr-walk)by taking advantage of the classic random walk and node/edge encapsulation.The hcr-walk greatly mitigates the problem of exponentially explosive sampling times which occur in the classic version,while preserving graph structures well.To efficiently encode local hcr-walk around one reference node,we project hcrwalk into an ordered space to form image-like grid data,which favors those conventional convolution networks.Instead of the direct 2-D convolution filtering,a variational convolution block(VCB)is designed to model the distribution of the randomsampling hcr-walk inspired by the well-formulated variational inference.We experimentally validate the efficiency and effectiveness of our proposed VG-GCN,which has high computation speed,and the comparable or even better performance when compared with baseline GCNs.
基金supported by the National Natural Science Foundation of China(Grant Nos.62141214 and 62272171).
文摘Classic Graph Convolutional Networks (GCNs) often learn node representation holistically, which ignores the distinct impacts from different neighbors when aggregating their features to update a node’s representation. Disentangled GCNs have been proposed to divide each node’s representation into several feature units. However, current disentangling methods do not try to figure out how many inherent factors the model should assign to help extract the best representation of each node. This paper then proposes D^(2)-GCN to provide dynamic disentanglement in GCNs and present the most appropriate factorization of each node’s mixed features. The convergence of the proposed method is proved both theoretically and experimentally. Experiments on real-world datasets show that D^(2)-GCN outperforms the baseline models concerning node classification results in both single- and multi-label tasks.
基金funded by the Key Research and Development Program of Zhejiang Province No.2023C01141the Science and Technology Innovation Community Project of the Yangtze River Delta No.23002410100suported by the Open Research Fund of the State Key Laboratory of Blockchain and Data Security,Zhejiang University.
文摘Graph Neural Networks(GNNs)have demonstrated outstanding capabilities in processing graph-structured data and are increasingly being integrated into large-scale pre-trained models,such as Large Language Models(LLMs),to enhance structural reasoning,knowledge retrieval,and memory management.The expansion of their application scope imposes higher requirements on the robustness of GNNs.However,as GNNs are applied to more dynamic and heterogeneous environments,they become increasingly vulnerable to real-world perturbations.In particular,graph data frequently encounters joint adversarial perturbations that simultaneously affect both structures and features,which are significantly more challenging than isolated attacks.These disruptions,caused by incomplete data,malicious attacks,or inherent noise,pose substantial threats to the stable and reliable performance of traditional GNN models.To address this issue,this study proposes the Dual-Shield Graph Neural Network(DSGNN),a defense model that simultaneously mitigates structural and feature perturbations.DSGNN utilizes two parallel GNN channels to independently process structural noise and feature noise,and introduces an adaptive fusion mechanism that integrates information from both pathways to generate robust node representations.Theoretical analysis demonstrates that DSGNN achieves a tighter robustness boundary under joint perturbations compared to conventional single-channel methods.Experimental evaluations across Cora,CiteSeer,and Industry datasets show that DSGNN achieves the highest average classification accuracy under various adversarial settings,reaching 81.24%,71.94%,and 81.66%,respectively,outperforming GNNGuard,GCN-Jaccard,GCN-SVD,RGCN,and NoisyGNN.These results underscore the importance of multi-view perturbation decoupling in constructing resilient GNN models for real-world applications.
基金Supported by the Natural Science Foundation of Xiamen (3502Z20227067)。
文摘Graph conjoint attention(CAT)network is one of the best graph convolutional networks(GCNs)frameworks,which uses a weighting mechanism to identify important neighbor nodes.However,this weighting mechanism is learned based on static information,which means it is susceptible to noisy nodes and edges,resulting in significant limitations.In this paper,a method is proposed to obtain context dynamically based on random walk,which allows the context-based weighting mechanism to better avoid noise interference.Furthermore,the proposed context-based weighting mechanism is combined with the node content-based weighting mechanism of the graph attention(GAT)network to form a model based on a mixed weighting mechanism.The model is named as the context-based and content-based graph convolutional network(CCGCN).CCGCN can better discover important neighbors,eliminate noise edges,and learn node embedding by message passing.Experiments show that CCGCN achieves state-of-the-art performance on node classification tasks in multiple datasets.
基金supported in part by the National Natural Science Foundation of China under Grant 62272405,School and Locality Integration Development Project of Yantai City(2022)the Youth Innovation Science and Technology Support Program of Shandong Provincial under Grant 2021KJ080+2 种基金the Natural Science Foundation of Shandong Province,Grant ZR2022MF238Yantai Science and Technology Innovation Development Plan Project under Grant 2021YT06000645the Open Foundation of State key Laboratory of Networking and Switching Technology(Beijing University of Posts and Telecommunications)under Grant SKLNST-2022-1-12.
文摘With the rapid advancement of 5G technology,the Internet of Things(IoT)has entered a new phase of appli-cations and is rapidly becoming a significant force in promoting economic development.Due to the vast amounts of data created by numerous 5G IoT devices,the Ethereum platform has become a tool for the storage and sharing of IoT device data,thanks to its open and tamper-resistant characteristics.So,Ethereum account security is necessary for the Internet of Things to grow quickly and improve people's lives.By modeling Ethereum trans-action records as a transaction network,the account types are well identified by the Ethereum account classifi-cation system established based on Graph Neural Networks(GNNs).This work first investigates the Ethereum transaction network.Surprisingly,experimental metrics reveal that the Ethereum transaction network is neither optimal nor even satisfactory in terms of accurately representing transactions per account.This flaw may significantly impede the classification capability of GNNs,which is mostly governed by their attributes.This work proposes an Adaptive Multi-channel Bayesian Graph Attention Network(AMBGAT)for Ethereum account clas-sification to address this difficulty.AMBGAT uses attention to enhance node features,estimate graph topology that conforms to the ground truth,and efficiently extract node features pertinent to downstream tasks.An extensive experiment with actual Ethereum transaction data demonstrates that AMBGAT obtains competitive performance in the classification of Ethereum accounts while accurately estimating the graph topology.
文摘图垂直联邦学习是一种结合图数据和垂直联邦学习的分布式机器学习方法,广泛应用于金融服务、医疗健康和社交网络等领域。该方法在保护隐私的同时,利用数据多样性显著提升模型性能。然而,研究表明图垂直联邦学习容易受到对抗攻击的威胁。现有的针对图神经网络的对抗攻击方法,如梯度最大化攻击、简化梯度攻击等方法在图垂直联邦框架中实施时仍然面临攻击成功率低、隐蔽性差、在防御情况下无法实施等问题。为应对这些挑战,提出了一种面向图垂直联邦的对抗攻击方法(Node and Feature Adversarial Attack,NFAttack),该方法分别设计了节点攻击策略与特征攻击策略,从不同维度实施高效攻击。首先,节点攻击策略基于度中心性指标评估节点的重要性,通过连接一定数量的虚假节点以形成虚假边,从而干扰高中心性节点。其次,特征攻击策略在节点特征中注入由随机噪声与梯度噪声构成的混合噪声,进而扰乱分类结果。最后,在6个数据集和3种图神经网络模型上进行实验,结果表明NFAttack的平均攻击成功率达到80%,比其他算法提高了约30%。此外,即使在多种联邦学习防御机制下,NFAttack仍展现出较强的攻击效果。
文摘图池化作为图神经网络中重要的组件,在获取图的多粒度信息的过程中扮演了重要角色。而当前的图池化操作均以平等地位看待数据点,普遍未考虑利用邻域内数据之间的偏序关系,从而造成图结构信息破坏。针对此问题,本文提出一种基于偏序关系的多视图多粒度图表示学习框架(multi-view and multi-granularity graph representation learning based on partial order relationships,MVMGr-PO),它通过从节点特征视图、图结构视图以及全局视图对节点进行综合评分,进而基于节点之间的偏序关系进行下采样操作。相比于其他图表示学习方法,MVMGr-PO可以有效地提取多粒度图结构信息,从而可以更全面地表征图的内在结构和属性。此外,MVMGr-PO可以集成多种图神经网络架构,包括GCN(graph convolutional network)、GAT(graph attention network)以及GraphSAGE(graph sample and aggregate)等。通过在6个数据集上进行实验评估,与现有基线模型相比,MVMGr-PO在分类准确率上有明显提升。