Traditional chaotic maps struggle with narrow chaotic ranges and inefficiencies,limiting their use for lightweight,secure image encryption in resource-constrained Wireless Sensor Networks(WSNs).We propose the SPCM,a n...Traditional chaotic maps struggle with narrow chaotic ranges and inefficiencies,limiting their use for lightweight,secure image encryption in resource-constrained Wireless Sensor Networks(WSNs).We propose the SPCM,a novel one-dimensional discontinuous chaotic system integrating polynomial and sine functions,leveraging a piecewise function to achieve a broad chaotic range()and a high Lyapunov exponent(5.04).Validated through nine benchmarks,including standard randomness tests,Diehard tests,and Shannon entropy(3.883),SPCM demonstrates superior randomness and high sensitivity to initial conditions.Applied to image encryption,SPCM achieves 0.152582 s(39%faster than some techniques)and 433.42 KB/s throughput(134%higher than some techniques),setting new benchmarks for chaotic map-based methods in WSNs.Chaos-based permutation and exclusive or(XOR)diffusion yield near-zero correlation in encrypted images,ensuring strong resistance to Statistical Attacks(SA)and accurate recovery.SPCM also exhibits a strong avalanche effect(bit difference),making it an efficient,secure solution for WSNs in domains like healthcare and smart cities.展开更多
With the accelerated growth of the Internet of Things(IoT),real-time data processing on edge devices is increasingly important for reducing overhead and enhancing security by keeping sensitive data local.Since these d...With the accelerated growth of the Internet of Things(IoT),real-time data processing on edge devices is increasingly important for reducing overhead and enhancing security by keeping sensitive data local.Since these devices often handle personal information under limited resources,cryptographic algorithms must be executed efficiently.Their computational characteristics strongly affect system performance,making it necessary to analyze resource impact and predict usage under diverse configurations.In this paper,we analyze the phase-level resource usage of AES variants,ChaCha20,ECC,and RSA on an edge device and develop a prediction model.We apply these algorithms under varying parallelism levels and execution strategies across key generation,encryption,and decryption phases.Based on the analysis,we train a unified Random Forest model using execution context and temporal features,achieving R2 values up to 0.994 for power and 0.988 for temperature.Furthermore,the model maintains practical predictive performance even for cryptographic algorithms not included during training,demonstrating its ability to generalize across distinct computational characteristics.Our proposed approach reveals how execution characteristics and resource usage interacts,supporting proactive resource planning and efficient deployment of cryptographic workloads on edge devices.As our approach is grounded in phase-level computational characteristics rather than in any single algorithm,it provides generalizable insights that can be extended to a broader range of cryptographic algorithms that exhibit comparable phase-level execution patterns and to heterogeneous edge architectures.展开更多
As quantum computing continues to advance,traditional cryptographic methods are increasingly challenged,particularly when it comes to securing critical systems like Supervisory Control andData Acquisition(SCADA)system...As quantum computing continues to advance,traditional cryptographic methods are increasingly challenged,particularly when it comes to securing critical systems like Supervisory Control andData Acquisition(SCADA)systems.These systems are essential for monitoring and controlling industrial operations,making their security paramount.A key threat arises from Shor’s algorithm,a powerful quantum computing tool that can compromise current hash functions,leading to significant concerns about data integrity and confidentiality.To tackle these issues,this article introduces a novel Quantum-Resistant Hash Algorithm(QRHA)known as the Modular Hash Learning Algorithm(MHLA).This algorithm is meticulously crafted to withstand potential quantum attacks by incorporating advanced mathematical and algorithmic techniques,enhancing its overall security framework.Our research delves into the effectiveness ofMHLA in defending against both traditional and quantum-based threats,with a particular emphasis on its resilience to Shor’s algorithm.The findings from our study demonstrate that MHLA significantly enhances the security of SCADA systems in the context of quantum technology.By ensuring that sensitive data remains protected and confidential,MHLA not only fortifies individual systems but also contributes to the broader efforts of safeguarding industrial and infrastructure control systems against future quantumthreats.Our evaluation demonstrates that MHLA improves security by 38%against quantumattack simulations compared to traditional hash functionswhilemaintaining a computational efficiency ofO(m⋅n⋅k+v+n).The algorithm achieved a 98%success rate in detecting data tampering during integrity testing.These findings underline MHLA’s effectiveness in enhancing SCADA system security amidst evolving quantum technologies.This research represents a crucial step toward developing more secure cryptographic systems that can adapt to the rapidly changing technological landscape,ultimately ensuring the reliability and integrity of critical infrastructure in an era where quantum computing poses a growing risk.展开更多
Cloud environments are essential for modern computing,but are increasingly vulnerable to Side-Channel Attacks(SCAs),which exploit indirect information to compromise sensitive data.To address this critical challenge,we...Cloud environments are essential for modern computing,but are increasingly vulnerable to Side-Channel Attacks(SCAs),which exploit indirect information to compromise sensitive data.To address this critical challenge,we propose SecureCons Framework(SCF),a novel consensus-based cryptographic framework designed to enhance resilience against SCAs in cloud environments.SCF integrates a dual-layer approach combining lightweight cryptographic algorithms with a blockchain-inspired consensus mechanism to secure data exchanges and thwart potential side-channel exploits.The framework includes adaptive anomaly detection models,cryptographic obfuscation techniques,and real-time monitoring to identify and mitigate vulnerabilities proactively.Experimental evaluations demonstrate the framework's robustness,achieving over 95%resilience against advanced SCAs with minimal computational overhead.SCF provides a scalable,secure,and efficient solution,setting a new benchmark for side-channel attack mitigation in cloud ecosystems.展开更多
Semi-quantum secret sharing(SQSS) is an important branch of semi-quantum cryptography, and differs from quantum secret sharing(QSS) in that not all parties are required to possess quantum capabilities. All previous SQ...Semi-quantum secret sharing(SQSS) is an important branch of semi-quantum cryptography, and differs from quantum secret sharing(QSS) in that not all parties are required to possess quantum capabilities. All previous SQSS protocols have three common features:(i) they adopt product states or entangled states as initial quantum resource;(ii)the particles prepared by quantum party are transmitted in a tree-type way; and(iii) they require the classical parties to possess the measurement capability. In this paper, two circular SQSS protocols with single particles are suggested,where the first one requires the classical parties to possess the measurement capability while the second one does not have this requirement. Compared with the previous SQSS protocols, the proposed SQSS protocols have some distinct features:(i) they adopt single particles rather than product states or entangled states as initial quantum resource;(ii)the particles prepared by quantum party are transmitted in a circular way; and(iii) the second protocol releases the classical parties from the measurement capability. The proposed SQSS protocols are robust against some famous attacks from an eavesdropper, such as the measure-resend attack, the intercept-resend attack and the entangle-measure attack,and are feasible with present quantum technologies in reality.展开更多
A new public key encryption scheme is proposed in this paper, which is based on a hard problem over ergodic matrices. The security of this scheme is equal to the MQ-problem: multivariate quadratic equations over fini...A new public key encryption scheme is proposed in this paper, which is based on a hard problem over ergodic matrices. The security of this scheme is equal to the MQ-problem: multivariate quadratic equations over finite fields. This problem has been shown to be NP-complete and can't be solved with polynomial time algorithm.展开更多
An embedded cryptosystem needs higher reconfiguration capability and security. After analyzing the newly emerging side-channel attacks on elliptic curve cryptosystem (ECC), an efficient fractional width-w NAF (FWNA...An embedded cryptosystem needs higher reconfiguration capability and security. After analyzing the newly emerging side-channel attacks on elliptic curve cryptosystem (ECC), an efficient fractional width-w NAF (FWNAF) algorithm is proposed to secure ECC scalar multiplication from these attacks. This algorithm adopts the fractional window method and probabilistic SPA scheme to reconfigure the pre-computed table, and it allows designers to make a dynamic configuration on pre-computed table. And then, it is enhanced to resist SPA, DPA, RPA and ZPA attacks by using the random masking method. Compared with the WBRIP and EBRIP methods, our proposals has the lowest total computation cost and reduce the shake phenomenon due to sharp fluctuation on computation performance.展开更多
A new efficient two-party semi-quantum key agreement protocol is proposed with high-dimensional single-particle states.Different from the previous semi-quantum key agreement protocols based on the two-level quantum sy...A new efficient two-party semi-quantum key agreement protocol is proposed with high-dimensional single-particle states.Different from the previous semi-quantum key agreement protocols based on the two-level quantum system,the propounded protocol makes use of the advantage of the high-dimensional quantum system,which possesses higher efficiency and better robustness against eavesdropping.Besides,the protocol allows the classical participant to encode the secret key with qudit shifting operations without involving any quantum measurement abilities.The designed semi-quantum key agreement protocol could resist both participant attacks and outsider attacks.Meanwhile,the conjoint analysis of security and efficiency provides an appropriate choice for reference on the dimension of single-particle states and the number of decoy states.展开更多
Counterfactual quantum cryptography, recently proposed by Noh, is featured with no transmission of signal parti- cles. This exhibits evident security advantages, such as its immunity to the well-known photon-number-sp...Counterfactual quantum cryptography, recently proposed by Noh, is featured with no transmission of signal parti- cles. This exhibits evident security advantages, such as its immunity to the well-known photon-number-splitting attack. In this paper, the theoretical security of counterfactual quantum cryptography protocol against the general intercept- resend attacks is proved by bounding the information of an eavesdropper Eve more tightly than in Yin's proposal [Phys. Rev. A 82 042335 (2010)]. It is also shown that practical counterfactual quantum cryptography implementations may be vulnerable when equipped with imperfect apparatuses, by proving that a negative key rate can be achieved when Eve launches a time-shift attack based on imperfect detector efficiency.展开更多
In visual cryptography, many shares are generated which are illogical containing certain message within themselves. When all shares are piled jointly, they tend to expose the secret of the image. The notion of visual ...In visual cryptography, many shares are generated which are illogical containing certain message within themselves. When all shares are piled jointly, they tend to expose the secret of the image. The notion of visual secret sharing scheme is to encrypt a secret image into n illogical share images. It is unable to reveal any data on the original image if at least one of the shares is not achieved. The original image, in fact, is realized by overlapping the entire shares directly, in order that the human visual system is competent to identify the collective secret image without employing any complicated computational tools. Therefore, they are communicated steadily as number of shares. The elliptic curve cryptography approach, in turn, is employed to augment the privacy and safety of the image. The new.fangled technique is utilized to generate the multiple shares which are subjected to encryption and decryption by means of the elliptic curve cryptography technique. The test outcomes have revealed the fact that the peak signal to noise ratio is 58.0025, Mean square error value is 0.1164 and the correlation coefficient is 1 for the decrypted image without any sort of distortion of the original image.展开更多
Internet of things (IoT) is a developing technology with a lot of scope in the future. It can ease various different tasks for us. On one hand, IoT is useful for us, on the other hand, it has many serious security thr...Internet of things (IoT) is a developing technology with a lot of scope in the future. It can ease various different tasks for us. On one hand, IoT is useful for us, on the other hand, it has many serious security threats, like data breaches, side-channel attacks, and virus and data authentication. Classical cryptographic algorithms, like the Rivest-Shamir-Adleman (RSA) algorithm, work well under the classical computers. But the technology is slowly shifting towards quantum computing, which has immense processing power and is more than enough to break the current cryptographic algorithms easily. So it is required that we have to design quantum cryptographic algorithms to prevent our systems from security breaches even before quantum computers come in the market for commercial uses. IoT will also be one of the disciplines, which needs to be secured to prevent any malicious activities. In this paper, we review the common security threats in IoT and the presently available solutions with their drawbacks. Then quantum cryptography is introduced with some of its variations. And finally, the analysis has been carried out in terms of the pros and cons of implementing quantum cryptography for IoT security.展开更多
Private comparison is the basis of many encryption technologies,and several related Quantum Private Comparison(QPC)protocols have been published in recent years.In these existing protocols,secret information is encode...Private comparison is the basis of many encryption technologies,and several related Quantum Private Comparison(QPC)protocols have been published in recent years.In these existing protocols,secret information is encoded by using conjugate coding or orthogonal states,and all users are quantum participants.In this paper,a novel semi-quantum private comparison scheme is proposed,which employs Bell entangled states as quantum resources.Two semi-quantum participants compare the equivalence of their private information with the help of a semi-honest third party(TP).Compared with the previous classical protocols,these two semi-quantum users can only make some particular action,such as to measure,prepare and reflect quantum qubits only in the classical basis fj0i;j1ig,and TP needs to perform Bell basis measurement on reflecting qubits to obtain the results of the comparison.Further,analysis results show that this scheme can avoid outside and participant attacks and its’qubit efficiency is better than the other two protocols mentioned in the paper.展开更多
In the healthcare system,the Internet of Things(IoT)based distributed systems play a vital role in transferring the medical-related documents and information among the organizations to reduce the replication in medica...In the healthcare system,the Internet of Things(IoT)based distributed systems play a vital role in transferring the medical-related documents and information among the organizations to reduce the replication in medical tests.This datum is sensitive,and hence security is a must in transforming the sensational contents.In this paper,an Evolutionary Algorithm,namely the Memetic Algorithm is used for encrypting the text messages.The encrypted information is then inserted into the medical images using Discrete Wavelet Transform 1 level and 2 levels.The reverse method of the Memetic Algorithm is implemented when extracting a hidden message from the encoded letter.To show its precision,equivalent to five RGB images and five Grayscale images are used to test the proposed algorithm.The results of the proposed algorithm were analyzed using statistical methods,and the proposed algorithm showed the importance of data transfer in healthcare systems in a stable environment.In the future,to embed the privacy-preserving of medical data,it can be extended with blockchain technology.展开更多
A method for creating digital image copyright protection is proposed in this paper. The proposed method in this paper is based on visual cryptography defined by Noor and Shamir. The proposed method is working on selec...A method for creating digital image copyright protection is proposed in this paper. The proposed method in this paper is based on visual cryptography defined by Noor and Shamir. The proposed method is working on selection of random pixels from the original digital image instead of specific selection of pixels. The new method proposed does not require that the watermark pattern to be embedded in to the original digital image. Instead of that, verification information is generated which will be used to verify the ownership of the image. This leaves the marked image equal to the original image. The method is based on the relationship between randomly selected pixels and their 8-neighbors’ pixels. This relationship keeps the marked image coherent against diverse attacks even if the most significant bits of randomly selected pixels have been changed by attacker as we will see later in this paper. Experimental results show the proposed method can recover the watermark pattern from the marked image even if major changes are made to the original digital image.展开更多
Visual cryptography scheme (VCS) is a secure method that encrypts a secret image by subdividing it into shadow images. Due to the nature of encryption VCS is categorized into two types: the deterministic VCS (DVCS...Visual cryptography scheme (VCS) is a secure method that encrypts a secret image by subdividing it into shadow images. Due to the nature of encryption VCS is categorized into two types: the deterministic VCS (DVCS) and the probabilistie VCS (PVCS). For the DVCS, we use m (known as the pixel expansion) subpixels to represent a secret pixel. The PVCS uses only one subpixel to represent a secret pixel, while the quality of reconstructed image is degraded. A well-known construction of (k, n)-PVCS is obtained from the (k, n)-DVCS. In this paper, we show another construction of (k, n)-PVCS by extending the (k, k)-PVCS.展开更多
Modular arithmetic is a fundamental operation and plays an important role in public key cryptosystem. A new method and its theory evidence on the basis of modular arithmetic with large integer modulus-changeable modul...Modular arithmetic is a fundamental operation and plays an important role in public key cryptosystem. A new method and its theory evidence on the basis of modular arithmetic with large integer modulus-changeable modulus algorithm is proposed to improve the speed of the modular arithmetic in the presented paper. For changeable modulus algorithm, when modular computation of modulo n is difficult, it can be realized by computation of modulo n-1 and n-2 on the perquisite of easy modular computations of modulo n-1 and modulo n-2. The conclusion is that the new method is better than the direct method by computing the modular arithmetic operation with large modulus. Especially, when computations of modulo n-1 and modulo n-2 are easy and computation of modulo n is difficult, this new method will be faster and has more advantages than other algorithms on modular arithmetic. Lastly, it is suggested that the proposed method be applied in public key cryptography based on modular multiplication and modular exponentiation with large integer modulus effectively展开更多
As it circled the Earth one night in 2017, the Chinese satellite Mozi, also called Micius, aimed a laser at a ground station in northeastern China (Fig. 1). Then, as it traveled toward Europe and into range, it direct...As it circled the Earth one night in 2017, the Chinese satellite Mozi, also called Micius, aimed a laser at a ground station in northeastern China (Fig. 1). Then, as it traveled toward Europe and into range, it directed a beam at a different receiver in Austria. These transmissions, delivered to sites 7600 km apart, were noteworthy because they marked the first time a satellite had relayed secret quantum keys for decrypting and viewing messages. With the keys, scientists in China and Austria were able to exchange and decipher encrypted images. And on 29 September 2017, the researchers used the system to set up an encrypted 75-minute video conference between members of the Chinese Academy of Sciences in Beijing and their counterparts at the Austrian Academy of Sciences in Vienna [1].展开更多
Quantum private comparison is an important topic in quantum cryptography.Recently,the idea of semi-quantumness has been often used in designing private comparison protocol,which allows some of the participants to rema...Quantum private comparison is an important topic in quantum cryptography.Recently,the idea of semi-quantumness has been often used in designing private comparison protocol,which allows some of the participants to remain classical.In this paper,we propose a semi quantum private comparison scheme based on Greenberge-Horne-Zeilinger(GHZ)class states,which allows two classical participants to compare the equality of their private secret with the help of a quantum third party(server).In the proposed protocol,server is semi-honest who will follow the protocol honestly,but he may try to learn additional information from the protocol execution.The classical participants’activities are restricted to either measuring a quantum state or reflecting it in the classical basis{0,1}.In addition,security and efficiency of the proposed schemes have been discussed.展开更多
Visual cryptography is a method of encrypting an image into several encrypted images. Conventional visual cryptography can display only monochrome images. We previously proposed a color visual cryptography method that...Visual cryptography is a method of encrypting an image into several encrypted images. Conventional visual cryptography can display only monochrome images. We previously proposed a color visual cryptography method that uses the interference color of high-order retarder films and encrypts one secret image into two encrypted images. In other words, this method can only encrypt one image at a time. In this paper, we propose a new method that encrypts two color images using interference color.展开更多
In Shamir’s(t,n) threshold of the secret sharing scheme, a secret is divided into n shares by a dealer and is shared among n shareholders in such a way that (a) the secret can be reconstructed when there are t or mor...In Shamir’s(t,n) threshold of the secret sharing scheme, a secret is divided into n shares by a dealer and is shared among n shareholders in such a way that (a) the secret can be reconstructed when there are t or more than t shares;and (b) the secret cannot be obtained when there are fewer than t shares. In the secret reconstruction, participating users can be either legitimate shareholders or attackers. Shamir’s scheme only considers the situation when all participating users are legitimate shareholders. In this paper, we show that when there are more than t users participating and shares are released asynchronously in the secret reconstruction, an attacker can always release his share last. In such a way, after knowing t valid shares of legitimate shareholders, the attacker can obtain the secret and therefore, can successfully impersonate to be a legitimate shareholder without being detected. We propose a simple modification of Shamir’s scheme to fix this security problem. Threshold cryptography is a research of group-oriented applications based on the secret sharing scheme. We show that a similar security problem also exists in threshold cryptographic applications. We propose a modified scheme to fix this security problem as well.展开更多
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korean government Ministry of Science and ICT(MIST)(RS-2022-00165225).
文摘Traditional chaotic maps struggle with narrow chaotic ranges and inefficiencies,limiting their use for lightweight,secure image encryption in resource-constrained Wireless Sensor Networks(WSNs).We propose the SPCM,a novel one-dimensional discontinuous chaotic system integrating polynomial and sine functions,leveraging a piecewise function to achieve a broad chaotic range()and a high Lyapunov exponent(5.04).Validated through nine benchmarks,including standard randomness tests,Diehard tests,and Shannon entropy(3.883),SPCM demonstrates superior randomness and high sensitivity to initial conditions.Applied to image encryption,SPCM achieves 0.152582 s(39%faster than some techniques)and 433.42 KB/s throughput(134%higher than some techniques),setting new benchmarks for chaotic map-based methods in WSNs.Chaos-based permutation and exclusive or(XOR)diffusion yield near-zero correlation in encrypted images,ensuring strong resistance to Statistical Attacks(SA)and accurate recovery.SPCM also exhibits a strong avalanche effect(bit difference),making it an efficient,secure solution for WSNs in domains like healthcare and smart cities.
基金supported in part by the National Research Foundation of Korea(NRF)(No.RS-2025-00554650)supported by the Chung-Ang University research grant in 2024。
文摘With the accelerated growth of the Internet of Things(IoT),real-time data processing on edge devices is increasingly important for reducing overhead and enhancing security by keeping sensitive data local.Since these devices often handle personal information under limited resources,cryptographic algorithms must be executed efficiently.Their computational characteristics strongly affect system performance,making it necessary to analyze resource impact and predict usage under diverse configurations.In this paper,we analyze the phase-level resource usage of AES variants,ChaCha20,ECC,and RSA on an edge device and develop a prediction model.We apply these algorithms under varying parallelism levels and execution strategies across key generation,encryption,and decryption phases.Based on the analysis,we train a unified Random Forest model using execution context and temporal features,achieving R2 values up to 0.994 for power and 0.988 for temperature.Furthermore,the model maintains practical predictive performance even for cryptographic algorithms not included during training,demonstrating its ability to generalize across distinct computational characteristics.Our proposed approach reveals how execution characteristics and resource usage interacts,supporting proactive resource planning and efficient deployment of cryptographic workloads on edge devices.As our approach is grounded in phase-level computational characteristics rather than in any single algorithm,it provides generalizable insights that can be extended to a broader range of cryptographic algorithms that exhibit comparable phase-level execution patterns and to heterogeneous edge architectures.
基金Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2025R343),Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabiathe Deanship of Scientific Research at Northern Border University,Arar,Saudi Arabia for funding this research work through the project number NBU-FFR-2025-1092-10.
文摘As quantum computing continues to advance,traditional cryptographic methods are increasingly challenged,particularly when it comes to securing critical systems like Supervisory Control andData Acquisition(SCADA)systems.These systems are essential for monitoring and controlling industrial operations,making their security paramount.A key threat arises from Shor’s algorithm,a powerful quantum computing tool that can compromise current hash functions,leading to significant concerns about data integrity and confidentiality.To tackle these issues,this article introduces a novel Quantum-Resistant Hash Algorithm(QRHA)known as the Modular Hash Learning Algorithm(MHLA).This algorithm is meticulously crafted to withstand potential quantum attacks by incorporating advanced mathematical and algorithmic techniques,enhancing its overall security framework.Our research delves into the effectiveness ofMHLA in defending against both traditional and quantum-based threats,with a particular emphasis on its resilience to Shor’s algorithm.The findings from our study demonstrate that MHLA significantly enhances the security of SCADA systems in the context of quantum technology.By ensuring that sensitive data remains protected and confidential,MHLA not only fortifies individual systems but also contributes to the broader efforts of safeguarding industrial and infrastructure control systems against future quantumthreats.Our evaluation demonstrates that MHLA improves security by 38%against quantumattack simulations compared to traditional hash functionswhilemaintaining a computational efficiency ofO(m⋅n⋅k+v+n).The algorithm achieved a 98%success rate in detecting data tampering during integrity testing.These findings underline MHLA’s effectiveness in enhancing SCADA system security amidst evolving quantum technologies.This research represents a crucial step toward developing more secure cryptographic systems that can adapt to the rapidly changing technological landscape,ultimately ensuring the reliability and integrity of critical infrastructure in an era where quantum computing poses a growing risk.
文摘Cloud environments are essential for modern computing,but are increasingly vulnerable to Side-Channel Attacks(SCAs),which exploit indirect information to compromise sensitive data.To address this critical challenge,we propose SecureCons Framework(SCF),a novel consensus-based cryptographic framework designed to enhance resilience against SCAs in cloud environments.SCF integrates a dual-layer approach combining lightweight cryptographic algorithms with a blockchain-inspired consensus mechanism to secure data exchanges and thwart potential side-channel exploits.The framework includes adaptive anomaly detection models,cryptographic obfuscation techniques,and real-time monitoring to identify and mitigate vulnerabilities proactively.Experimental evaluations demonstrate the framework's robustness,achieving over 95%resilience against advanced SCAs with minimal computational overhead.SCF provides a scalable,secure,and efficient solution,setting a new benchmark for side-channel attack mitigation in cloud ecosystems.
基金Supported by the National Nature Science Foundation of China under Grant No.61871347the Natural Science Foundation of Zhejiang Province under Grant No.LY18F020007
文摘Semi-quantum secret sharing(SQSS) is an important branch of semi-quantum cryptography, and differs from quantum secret sharing(QSS) in that not all parties are required to possess quantum capabilities. All previous SQSS protocols have three common features:(i) they adopt product states or entangled states as initial quantum resource;(ii)the particles prepared by quantum party are transmitted in a tree-type way; and(iii) they require the classical parties to possess the measurement capability. In this paper, two circular SQSS protocols with single particles are suggested,where the first one requires the classical parties to possess the measurement capability while the second one does not have this requirement. Compared with the previous SQSS protocols, the proposed SQSS protocols have some distinct features:(i) they adopt single particles rather than product states or entangled states as initial quantum resource;(ii)the particles prepared by quantum party are transmitted in a circular way; and(iii) the second protocol releases the classical parties from the measurement capability. The proposed SQSS protocols are robust against some famous attacks from an eavesdropper, such as the measure-resend attack, the intercept-resend attack and the entangle-measure attack,and are feasible with present quantum technologies in reality.
基金Supported bythe Specialized Research Fundfor the Doctoral Programof Higher Education of China (20050183032) the Science Foundation Project of Jilin Province Education Office(2005180 ,2005181)
文摘A new public key encryption scheme is proposed in this paper, which is based on a hard problem over ergodic matrices. The security of this scheme is equal to the MQ-problem: multivariate quadratic equations over finite fields. This problem has been shown to be NP-complete and can't be solved with polynomial time algorithm.
基金supported by the National Natural Science Foundation of China(60373109)Ministry of Science and Technologyof China and the National Commercial Cryptography Application Technology Architecture and Application DemonstrationProject(2008BAA22B02).
文摘An embedded cryptosystem needs higher reconfiguration capability and security. After analyzing the newly emerging side-channel attacks on elliptic curve cryptosystem (ECC), an efficient fractional width-w NAF (FWNAF) algorithm is proposed to secure ECC scalar multiplication from these attacks. This algorithm adopts the fractional window method and probabilistic SPA scheme to reconfigure the pre-computed table, and it allows designers to make a dynamic configuration on pre-computed table. And then, it is enhanced to resist SPA, DPA, RPA and ZPA attacks by using the random masking method. Compared with the WBRIP and EBRIP methods, our proposals has the lowest total computation cost and reduce the shake phenomenon due to sharp fluctuation on computation performance.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61871205 and 61561033)the Major Academic Discipline and Technical Leader of Jiangxi Province,China(Grant No.20162BCB22011).
文摘A new efficient two-party semi-quantum key agreement protocol is proposed with high-dimensional single-particle states.Different from the previous semi-quantum key agreement protocols based on the two-level quantum system,the propounded protocol makes use of the advantage of the high-dimensional quantum system,which possesses higher efficiency and better robustness against eavesdropping.Besides,the protocol allows the classical participant to encode the secret key with qudit shifting operations without involving any quantum measurement abilities.The designed semi-quantum key agreement protocol could resist both participant attacks and outsider attacks.Meanwhile,the conjoint analysis of security and efficiency provides an appropriate choice for reference on the dimension of single-particle states and the number of decoy states.
基金Project supported by the National Natural Science Foundation of China (Grant No 60872052)
文摘Counterfactual quantum cryptography, recently proposed by Noh, is featured with no transmission of signal parti- cles. This exhibits evident security advantages, such as its immunity to the well-known photon-number-splitting attack. In this paper, the theoretical security of counterfactual quantum cryptography protocol against the general intercept- resend attacks is proved by bounding the information of an eavesdropper Eve more tightly than in Yin's proposal [Phys. Rev. A 82 042335 (2010)]. It is also shown that practical counterfactual quantum cryptography implementations may be vulnerable when equipped with imperfect apparatuses, by proving that a negative key rate can be achieved when Eve launches a time-shift attack based on imperfect detector efficiency.
文摘In visual cryptography, many shares are generated which are illogical containing certain message within themselves. When all shares are piled jointly, they tend to expose the secret of the image. The notion of visual secret sharing scheme is to encrypt a secret image into n illogical share images. It is unable to reveal any data on the original image if at least one of the shares is not achieved. The original image, in fact, is realized by overlapping the entire shares directly, in order that the human visual system is competent to identify the collective secret image without employing any complicated computational tools. Therefore, they are communicated steadily as number of shares. The elliptic curve cryptography approach, in turn, is employed to augment the privacy and safety of the image. The new.fangled technique is utilized to generate the multiple shares which are subjected to encryption and decryption by means of the elliptic curve cryptography technique. The test outcomes have revealed the fact that the peak signal to noise ratio is 58.0025, Mean square error value is 0.1164 and the correlation coefficient is 1 for the decrypted image without any sort of distortion of the original image.
文摘Internet of things (IoT) is a developing technology with a lot of scope in the future. It can ease various different tasks for us. On one hand, IoT is useful for us, on the other hand, it has many serious security threats, like data breaches, side-channel attacks, and virus and data authentication. Classical cryptographic algorithms, like the Rivest-Shamir-Adleman (RSA) algorithm, work well under the classical computers. But the technology is slowly shifting towards quantum computing, which has immense processing power and is more than enough to break the current cryptographic algorithms easily. So it is required that we have to design quantum cryptographic algorithms to prevent our systems from security breaches even before quantum computers come in the market for commercial uses. IoT will also be one of the disciplines, which needs to be secured to prevent any malicious activities. In this paper, we review the common security threats in IoT and the presently available solutions with their drawbacks. Then quantum cryptography is introduced with some of its variations. And finally, the analysis has been carried out in terms of the pros and cons of implementing quantum cryptography for IoT security.
基金the National Natural Science Foundation of China(Grant Nos.61402058,61572086)Major Project of Education Department in Sichuan(Grant No.18ZA0109)Web Culture Project Sponsored by the Humanities and Social Science Research Base of the Sichuan Provincial Education Department(Grant No.WLWH18-22).
文摘Private comparison is the basis of many encryption technologies,and several related Quantum Private Comparison(QPC)protocols have been published in recent years.In these existing protocols,secret information is encoded by using conjugate coding or orthogonal states,and all users are quantum participants.In this paper,a novel semi-quantum private comparison scheme is proposed,which employs Bell entangled states as quantum resources.Two semi-quantum participants compare the equivalence of their private information with the help of a semi-honest third party(TP).Compared with the previous classical protocols,these two semi-quantum users can only make some particular action,such as to measure,prepare and reflect quantum qubits only in the classical basis fj0i;j1ig,and TP needs to perform Bell basis measurement on reflecting qubits to obtain the results of the comparison.Further,analysis results show that this scheme can avoid outside and participant attacks and its’qubit efficiency is better than the other two protocols mentioned in the paper.
文摘In the healthcare system,the Internet of Things(IoT)based distributed systems play a vital role in transferring the medical-related documents and information among the organizations to reduce the replication in medical tests.This datum is sensitive,and hence security is a must in transforming the sensational contents.In this paper,an Evolutionary Algorithm,namely the Memetic Algorithm is used for encrypting the text messages.The encrypted information is then inserted into the medical images using Discrete Wavelet Transform 1 level and 2 levels.The reverse method of the Memetic Algorithm is implemented when extracting a hidden message from the encoded letter.To show its precision,equivalent to five RGB images and five Grayscale images are used to test the proposed algorithm.The results of the proposed algorithm were analyzed using statistical methods,and the proposed algorithm showed the importance of data transfer in healthcare systems in a stable environment.In the future,to embed the privacy-preserving of medical data,it can be extended with blockchain technology.
文摘A method for creating digital image copyright protection is proposed in this paper. The proposed method in this paper is based on visual cryptography defined by Noor and Shamir. The proposed method is working on selection of random pixels from the original digital image instead of specific selection of pixels. The new method proposed does not require that the watermark pattern to be embedded in to the original digital image. Instead of that, verification information is generated which will be used to verify the ownership of the image. This leaves the marked image equal to the original image. The method is based on the relationship between randomly selected pixels and their 8-neighbors’ pixels. This relationship keeps the marked image coherent against diverse attacks even if the most significant bits of randomly selected pixels have been changed by attacker as we will see later in this paper. Experimental results show the proposed method can recover the watermark pattern from the marked image even if major changes are made to the original digital image.
基金supported in part by the Testbed@TWISC, National Science Council under the Grant No. 100-2219-E-006-001in part by National Natural Science Foundation of China under the Grant No. 60903210
文摘Visual cryptography scheme (VCS) is a secure method that encrypts a secret image by subdividing it into shadow images. Due to the nature of encryption VCS is categorized into two types: the deterministic VCS (DVCS) and the probabilistie VCS (PVCS). For the DVCS, we use m (known as the pixel expansion) subpixels to represent a secret pixel. The PVCS uses only one subpixel to represent a secret pixel, while the quality of reconstructed image is degraded. A well-known construction of (k, n)-PVCS is obtained from the (k, n)-DVCS. In this paper, we show another construction of (k, n)-PVCS by extending the (k, k)-PVCS.
基金Supported by the National Natural Science Foun-dation of China (60373087)
文摘Modular arithmetic is a fundamental operation and plays an important role in public key cryptosystem. A new method and its theory evidence on the basis of modular arithmetic with large integer modulus-changeable modulus algorithm is proposed to improve the speed of the modular arithmetic in the presented paper. For changeable modulus algorithm, when modular computation of modulo n is difficult, it can be realized by computation of modulo n-1 and n-2 on the perquisite of easy modular computations of modulo n-1 and modulo n-2. The conclusion is that the new method is better than the direct method by computing the modular arithmetic operation with large modulus. Especially, when computations of modulo n-1 and modulo n-2 are easy and computation of modulo n is difficult, this new method will be faster and has more advantages than other algorithms on modular arithmetic. Lastly, it is suggested that the proposed method be applied in public key cryptography based on modular multiplication and modular exponentiation with large integer modulus effectively
文摘As it circled the Earth one night in 2017, the Chinese satellite Mozi, also called Micius, aimed a laser at a ground station in northeastern China (Fig. 1). Then, as it traveled toward Europe and into range, it directed a beam at a different receiver in Austria. These transmissions, delivered to sites 7600 km apart, were noteworthy because they marked the first time a satellite had relayed secret quantum keys for decrypting and viewing messages. With the keys, scientists in China and Austria were able to exchange and decipher encrypted images. And on 29 September 2017, the researchers used the system to set up an encrypted 75-minute video conference between members of the Chinese Academy of Sciences in Beijing and their counterparts at the Austrian Academy of Sciences in Vienna [1].
基金supported by the National Natural Science Foundation of China(Grant No.61572086)Major Project of Education Department in Sichuan(Grant No.18ZA0109)Web Culture Project Sponsored by the Humanities and Social Science Research Base of the Sichuan Provincial Education Department(Grant No.WLWH18-22).
文摘Quantum private comparison is an important topic in quantum cryptography.Recently,the idea of semi-quantumness has been often used in designing private comparison protocol,which allows some of the participants to remain classical.In this paper,we propose a semi quantum private comparison scheme based on Greenberge-Horne-Zeilinger(GHZ)class states,which allows two classical participants to compare the equality of their private secret with the help of a quantum third party(server).In the proposed protocol,server is semi-honest who will follow the protocol honestly,but he may try to learn additional information from the protocol execution.The classical participants’activities are restricted to either measuring a quantum state or reflecting it in the classical basis{0,1}.In addition,security and efficiency of the proposed schemes have been discussed.
文摘Visual cryptography is a method of encrypting an image into several encrypted images. Conventional visual cryptography can display only monochrome images. We previously proposed a color visual cryptography method that uses the interference color of high-order retarder films and encrypts one secret image into two encrypted images. In other words, this method can only encrypt one image at a time. In this paper, we propose a new method that encrypts two color images using interference color.
文摘In Shamir’s(t,n) threshold of the secret sharing scheme, a secret is divided into n shares by a dealer and is shared among n shareholders in such a way that (a) the secret can be reconstructed when there are t or more than t shares;and (b) the secret cannot be obtained when there are fewer than t shares. In the secret reconstruction, participating users can be either legitimate shareholders or attackers. Shamir’s scheme only considers the situation when all participating users are legitimate shareholders. In this paper, we show that when there are more than t users participating and shares are released asynchronously in the secret reconstruction, an attacker can always release his share last. In such a way, after knowing t valid shares of legitimate shareholders, the attacker can obtain the secret and therefore, can successfully impersonate to be a legitimate shareholder without being detected. We propose a simple modification of Shamir’s scheme to fix this security problem. Threshold cryptography is a research of group-oriented applications based on the secret sharing scheme. We show that a similar security problem also exists in threshold cryptographic applications. We propose a modified scheme to fix this security problem as well.