S surface controllers have been proven to provide effective motion control for an autonomous underwater vehicle (AUV).However, it is difficult to adjust their control parameters manually.Choosing the optimum parameter...S surface controllers have been proven to provide effective motion control for an autonomous underwater vehicle (AUV).However, it is difficult to adjust their control parameters manually.Choosing the optimum parameters for the controller of a particular AUV is a significant challenge.To automate the process, a modified particle swarm optimization (MPSO) algorithm was proposed.It was based on immune theory, and used a nonlinear regression strategy for inertia weight to optimize AUV control parameters.A semi-physical simulation system for the AUV was developed as a platform to verify the proposed control method, and its structure was considered.The simulation results indicated that the semi-physical simulation platform was helpful, the optimization algorithm has good local and global searching abilities, and the method can be reliably used for an AUV.展开更多
Before the task of autonomous underwater vehicle(AUV) was implemented actually,its semi-physical simulation system of pipeline tracking had been designed.This semi-physical simulation system was used to test the softw...Before the task of autonomous underwater vehicle(AUV) was implemented actually,its semi-physical simulation system of pipeline tracking had been designed.This semi-physical simulation system was used to test the software logic,hardware architecture,data interface and reliability of the control system.To implement this system,the whole system plan,including interface computer and the methods of pipeline tracking,was described.Compared to numerical simulation,the semi-physical simulation was used to test the real software and hardware more veritably.In the semi-physical simulation system,tracking experiments of both straight lines and polygonal lines were carried out,considering the influence of ocean current and the situation of buried pipeline.The experimental results indicate that the AUV can do pipeline tracking task,when angles of pipeline are 15°,30°,45° and 60°.In the ocean current of 2 knots,AUV could track buried pipeline.展开更多
According to a research on the 30kVA simulation experimental platform of hydraulic wind tur- bine, its basic structure, composition and operation principle are expounded in this paper. An in- verter motor is used to s...According to a research on the 30kVA simulation experimental platform of hydraulic wind tur- bine, its basic structure, composition and operation principle are expounded in this paper. An in- verter motor is used to simulate the wind turbine, while a similarity calculation method is applied be- tween the small and large wind turbine. A fixed displacement pump-variable motor closed loop is used as the main transmission system, and a self-excited synchronous generator generates electricity through the grid connection. The experiment and simulation study on the speed and power control of the hydraulic wind turbine is conducted, based on the experimental platform, thus correctness and progressiveness of the experiment platform is further verified. The experimental platform study lays a foundation for further research on the characteristics of hydraulic wind turhln~展开更多
Missiles may be damaged when aeroservoelastic problem occurs,which is caused by the interaction of structure flexibility and flight control system.Because of the limit of wind tunnel test condition,numerical methods a...Missiles may be damaged when aeroservoelastic problem occurs,which is caused by the interaction of structure flexibility and flight control system.Because of the limit of wind tunnel test condition,numerical methods are mostly used in previous aeroservoelastic studies.However,series of assumptions and simplification on structures,aerodynamics and flight control systems are unavoidably introduced,and various nonlinear factors are also ignored,therefore,they result in considerable errors.A novel method called aeroservoelasticity semi-physical simulation test is proposed in this paper,which takes the flexible missile with control system as the test object.Vibration signals at several locations of the missile are measured by accelerometers,then corresponding unsteady aerodynamics is computed based on the fact that airflow at high Mach is nearly quasi-steady,and finally unsteady aerodynamics is exerted simultaneously by shakers at certain locations of the missile.The aeroservoelasticity semi-physical simulation test system can be constructed after the control system is closed.Open loop transfer function test and closed loop stability test are carried out in sequence.The test principle and method proposed in this paper are verified by the concordance between the results of numerical simulation and experiment.展开更多
A mathematical hydraulic support self-tracking model for three-machine cooperative mining is proposed to address low efficiency and difficulties in strategy evaluation of a fully mechanized coal face.The proposed mode...A mathematical hydraulic support self-tracking model for three-machine cooperative mining is proposed to address low efficiency and difficulties in strategy evaluation of a fully mechanized coal face.The proposed model uses the coordinates and traction speed of the shearer to calculate the frequency of the circular hydraulic support and realize the coordinated operation of the three-machine mining technology.A unity3d hardware-in-the-loop simulation experimental hearer and hydraulic support platform was used to validate the model of autonomous follow-up.The results indicate that collaborative control of coal mining allowed for an efficiency 3.76%higher than under automatic operation mode and 46.03%higher than under manual control;thus,The mathematical model provided an improved production efficiency of the fully mechanized mining face.The mathematical model also provides a more intelligent and reliable security support,and improves the intelligent level of hydraulic support follow-up control.展开更多
Because of the challenge of compounding lightweight,high-strength Ti/Al alloys due to their considerable disparity in properties,Al 6063 as intermediate layer was proposed to fabricate TC4/Al 6063/Al 7075 three-layer ...Because of the challenge of compounding lightweight,high-strength Ti/Al alloys due to their considerable disparity in properties,Al 6063 as intermediate layer was proposed to fabricate TC4/Al 6063/Al 7075 three-layer composite plate by explosive welding.The microscopic properties of each bonding interface were elucidated through field emission scanning electron microscope and electron backscattered diffraction(EBSD).A methodology combining finite element method-smoothed particle hydrodynamics(FEM-SPH)and molecular dynamics(MD)was proposed for the analysis of the forming and evolution characteristics of explosive welding interfaces at multi-scale.The results demonstrate that the bonding interface morphologies of TC4/Al 6063 and Al 6063/Al 7075 exhibit a flat and wavy configuration,without discernible defects or cracks.The phenomenon of grain refinement is observed in the vicinity of the two bonding interfaces.Furthermore,the degree of plastic deformation of TC4 and Al 7075 is more pronounced than that of Al 6063 in the intermediate layer.The interface morphology characteristics obtained by FEM-SPH simulation exhibit a high degree of similarity to the experimental results.MD simulations reveal that the diffusion of interfacial elements predominantly occurs during the unloading phase,and the simulated thickness of interfacial diffusion aligns well with experimental outcomes.The introduction of intermediate layer in the explosive welding process can effectively produce high-quality titanium/aluminum alloy composite plates.Furthermore,this approach offers a multi-scale simulation strategy for the study of explosive welding bonding interfaces.展开更多
Recent progress in microwave absorption materials stimulates the extensive exploration of rare earth oxide materials.Herein,we report the synthesis of a hollow sphere-based carbon material compounded with rare earth o...Recent progress in microwave absorption materials stimulates the extensive exploration of rare earth oxide materials.Herein,we report the synthesis of a hollow sphere-based carbon material compounded with rare earth oxides.Hollow N-doped carbon nano-spheres loaded ceria composites(H-NC@CeO_(2))were designed and prepared by the template method,combined with in-situ coating,pyrolysis and chemical etching.By controlling the loading content of H-NC@CeO_(2)and adjusting the impedance matching of the material,the H-NC@CeO_(2)/PS(polystyrene)composite exhibited a minimum reflection loss(RL)of-50.8 dB and an effective absorption band-width(EAB)of 4.64 GHz at a filler ratio of 20wt%and a thickness of 2 mm.In accordance with measured electromagnetic parameters,simulations using the high frequency structure simulator(HFSS)software were conducted to investigate the impact of the honeycomb structure on the electromagnetic wave performance of H-NC@CeO_(2)/PS.By calculating the surface electric field and the material’s bulk loss density,the mechanism of electromagnetic loss for the honeycomb structure was elaborated.A method for structural design and man-ufacturing of broadband absorbing devices was proposed and a broadband absorber with an EAB of 11.9 GHz was prepared.This study presents an innovative approach to designing advanced electromagnetic(EM)wave absorbing materials with broad absorption band-widths.展开更多
Large size titanium alloy parts are widely used in aerospace.However,they are difficult to manufacture using mechanical cutting technology because of severe tool wear.Electrochemical jet machining is a promising techn...Large size titanium alloy parts are widely used in aerospace.However,they are difficult to manufacture using mechanical cutting technology because of severe tool wear.Electrochemical jet machining is a promising technology to achieve high efficiency,because it has high machining flexibility and no machining tool wear.However,reports on the macro electrochemical jet machining of large size titanium alloy parts are very scarce,because it is difficult to achieve effective constraint of the flow field in macro electrochemical jet machining.In addition,titanium alloy is very sensitive to fluctuation of the flow field,and a turbulent flow field would lead to serious stray corrosion.This paper reports a series of investigations of the electrochemical jet machining of titanium alloy parts.Based on the flow analysis and experiments,the machining flow field was effectively constrained.TB6 titanium alloy part with a perimeter of one meter was machined.The machined surface was smooth with no obvious machining defects.The machining process was particularly stable with no obvious spark discharge.The research provides a reference for the application of electrochemical jet machining technology to achieve large allowance material removal in the machining of large titanium alloy parts.展开更多
The pre-wetting of aggregate surface is a means to improve the interface performance of SBS modified asphalt and aggregate.The effect of pre-wetting technology on the interaction between SBS modified asphalt and aggre...The pre-wetting of aggregate surface is a means to improve the interface performance of SBS modified asphalt and aggregate.The effect of pre-wetting technology on the interaction between SBS modified asphalt and aggregate was analyzed by molecular dynamics simulation.The diffusion coefficient and concentration distribution of SBS modified asphalt on aggregate surface are included.The simulation results show that the diffusion coefficient of the aggregate surface of SBS modified asphalt is increased by 47.6%and 70.5%respectively after 110#asphalt and 130#asphalt are pre-wetted.The concentration distribution of SBS modified asphalt on the aggregate surface after pre-wetting is more uniform.According to the results of interface energy calculation,the interface energy of SBS modified bitumen and aggregate can be increased by about 5%after pre-wetting.According to the results of molecular dynamics simulation,the pre-wetting technology can effectively improve the interface workability of SBS modified bitumen and aggregate,so as to improve the interface performance.展开更多
Burial dissolution is a critical diagenetic process influencing ultra-deep carbonate reservoir development and preservation.Artificial carbonate samples with different internal structures were prepared,and high-temper...Burial dissolution is a critical diagenetic process influencing ultra-deep carbonate reservoir development and preservation.Artificial carbonate samples with different internal structures were prepared,and high-temperature and highpressure dissolution kinetic simulations were conducted.The results demonstrate that the intensity of burial dissolution is controlled by temperature and pressure,while tectonic-fluid activity influences the development pattern of burial dissolution,ultimately determining the direction of its differential modification.Extensive burial dissolution is likely to occur primarily at relatively shallow depths,significantly influencing reservoir formation,preservation,modification,and adjustment.The development of faults facilitates the maintenance of the intensity of burial dissolution.The maximum intensity of burial dissolution occurs at the tips and overlap zones of faults and intersections of multiple faults.The larger the scale of the faults,the more conducive it is to the development of burial dissolution.Burial dissolution fosters the formation of fault networks characterized by enhanced reservoir capacity and permeability.Burial dissolution controlled by episodic tectonic-fluid activity is a plausible explanation for forming the Tarim Basin's ultra-deep fault-controlled“stringbead-like”reservoirs.展开更多
The graded density impactor(GDI)dynamic loading technique is crucial for acquiring the dynamic physical property parameters of materials used in weapons.The accuracy and timeliness of GDI structural design are key to ...The graded density impactor(GDI)dynamic loading technique is crucial for acquiring the dynamic physical property parameters of materials used in weapons.The accuracy and timeliness of GDI structural design are key to achieving controllable stress-strain rate loading.In this study,we have,for the first time,combined one-dimensional fluid computational software with machine learning methods.We first elucidated the mechanisms by which GDI structures control stress and strain rates.Subsequently,we constructed a machine learning model to create a structure-property response surface.The results show that altering the loading velocity and interlayer thickness has a pronounced regulatory effect on stress and strain rates.In contrast,the impedance distribution index and target thickness have less significant effects on stress regulation,although there is a matching relationship between target thickness and interlayer thickness.Compared with traditional design methods,the machine learning approach offers a10^(4)—10^(5)times increase in efficiency and the potential to achieve a global optimum,holding promise for guiding the design of GDI.展开更多
The 2025 M_(w)7.7 Myanmar earthquake highlighted the challenge of near-fault seismic intensity field reconstruction due to sparse seismic networks.To address this limitation,a framework was proposed integrating seismi...The 2025 M_(w)7.7 Myanmar earthquake highlighted the challenge of near-fault seismic intensity field reconstruction due to sparse seismic networks.To address this limitation,a framework was proposed integrating seismic wave simulation with a data-constrained finite-fault rupture model.The constraint is implemented by identifying the optimal ground motion models(GMMs)through a scoring system that selects the best-fit GMMs to mid-and far-field China Earthquake Networks Center(CENC)seismic network data;and applying the optimal GMMs to refine the rupture model parameters for near-fault intensity field simulation.The simulated near-fault seismic intensity field reproduces seismic intensities collected from Myanmar’s sparse seismic network and concentrated in≥Ⅷintensity zones within 50 km of the projected fault plane;and identifies abnormal intensity regions exhibiting≥Ⅹintensity along the Meiktila-Naypyidaw corridor and near Shwebo that are attributed to soft soil amplification effects and near-fault directivity.This framework can also be applied to post-earthquake assessments in other similar regions.展开更多
A suction casting experiment was conducted on Zr_(55)Cu_(30)Al_(10)Ni_(5)(at%)amorphous alloy.Using ProCAST software,numerical simulations were performed to analyze the filling and solidification processes.The velocit...A suction casting experiment was conducted on Zr_(55)Cu_(30)Al_(10)Ni_(5)(at%)amorphous alloy.Using ProCAST software,numerical simulations were performed to analyze the filling and solidification processes.The velocity field during the filling process and the temperature field during the solidification process of the alloy melt under different process parameters were obtained.Based on the simulation results,a Zr-based amorphous alloy micro-gear was prepared via casting.The results indicate that increasing the suction casting temperature enhances the fluidity of alloy melt but induces unstable flow rate during filling,which is detrimental to complete filling.Zr-based amorphous micro-gears with a module of 0.6 mm,a tooth top diameter of 8 mm,and 10 teeth were prepared through the suction casting.X-ray diffraction and differential scanning calorimetry analyses confirm that the fabricated micro-gear exhibits characteristic amorphous structural features,demonstrating well-defined geometrical contours and satisfactory forming completeness.展开更多
基金Supported by the 863 Project under Grant No.2008AA092301the Fundamental Research Foundation of Harbin Engineering University under Grant No.2007001
文摘S surface controllers have been proven to provide effective motion control for an autonomous underwater vehicle (AUV).However, it is difficult to adjust their control parameters manually.Choosing the optimum parameters for the controller of a particular AUV is a significant challenge.To automate the process, a modified particle swarm optimization (MPSO) algorithm was proposed.It was based on immune theory, and used a nonlinear regression strategy for inertia weight to optimize AUV control parameters.A semi-physical simulation system for the AUV was developed as a platform to verify the proposed control method, and its structure was considered.The simulation results indicated that the semi-physical simulation platform was helpful, the optimization algorithm has good local and global searching abilities, and the method can be reliably used for an AUV.
基金Projects(50909025,51179035) supported by the National Natural Science Foundation of ChinaProject(HEUCFZ1003) supported by the Fundamental Research Funds for Central Universities of China
文摘Before the task of autonomous underwater vehicle(AUV) was implemented actually,its semi-physical simulation system of pipeline tracking had been designed.This semi-physical simulation system was used to test the software logic,hardware architecture,data interface and reliability of the control system.To implement this system,the whole system plan,including interface computer and the methods of pipeline tracking,was described.Compared to numerical simulation,the semi-physical simulation was used to test the real software and hardware more veritably.In the semi-physical simulation system,tracking experiments of both straight lines and polygonal lines were carried out,considering the influence of ocean current and the situation of buried pipeline.The experimental results indicate that the AUV can do pipeline tracking task,when angles of pipeline are 15°,30°,45° and 60°.In the ocean current of 2 knots,AUV could track buried pipeline.
基金Supported by the National Key Basic Research Development Program of China(No.2014CB046405)the National Natural Science Foundation of China(No.51475406,51405423)the Hebei Youth Fund(No.QN20132017)
文摘According to a research on the 30kVA simulation experimental platform of hydraulic wind tur- bine, its basic structure, composition and operation principle are expounded in this paper. An in- verter motor is used to simulate the wind turbine, while a similarity calculation method is applied be- tween the small and large wind turbine. A fixed displacement pump-variable motor closed loop is used as the main transmission system, and a self-excited synchronous generator generates electricity through the grid connection. The experiment and simulation study on the speed and power control of the hydraulic wind turbine is conducted, based on the experimental platform, thus correctness and progressiveness of the experiment platform is further verified. The experimental platform study lays a foundation for further research on the characteristics of hydraulic wind turhln~
基金supported by the National Natural Science Foundation of China (Grant Nos. 90716006,10902006)
文摘Missiles may be damaged when aeroservoelastic problem occurs,which is caused by the interaction of structure flexibility and flight control system.Because of the limit of wind tunnel test condition,numerical methods are mostly used in previous aeroservoelastic studies.However,series of assumptions and simplification on structures,aerodynamics and flight control systems are unavoidably introduced,and various nonlinear factors are also ignored,therefore,they result in considerable errors.A novel method called aeroservoelasticity semi-physical simulation test is proposed in this paper,which takes the flexible missile with control system as the test object.Vibration signals at several locations of the missile are measured by accelerometers,then corresponding unsteady aerodynamics is computed based on the fact that airflow at high Mach is nearly quasi-steady,and finally unsteady aerodynamics is exerted simultaneously by shakers at certain locations of the missile.The aeroservoelasticity semi-physical simulation test system can be constructed after the control system is closed.Open loop transfer function test and closed loop stability test are carried out in sequence.The test principle and method proposed in this paper are verified by the concordance between the results of numerical simulation and experiment.
基金This work was supported by the Project funded by China Postdoctoral Science Foundation under Grant 2019M651081the Merit Funding for the Returned Overseas Personnel Sci-Tech Activities of Shanxi Province under Grant 2016 and Key Research and Development Program of Shanxi(2019)and Innovation Programs of Higher Education Institutions in Shanxi(2019L0305).
文摘A mathematical hydraulic support self-tracking model for three-machine cooperative mining is proposed to address low efficiency and difficulties in strategy evaluation of a fully mechanized coal face.The proposed model uses the coordinates and traction speed of the shearer to calculate the frequency of the circular hydraulic support and realize the coordinated operation of the three-machine mining technology.A unity3d hardware-in-the-loop simulation experimental hearer and hydraulic support platform was used to validate the model of autonomous follow-up.The results indicate that collaborative control of coal mining allowed for an efficiency 3.76%higher than under automatic operation mode and 46.03%higher than under manual control;thus,The mathematical model provided an improved production efficiency of the fully mechanized mining face.The mathematical model also provides a more intelligent and reliable security support,and improves the intelligent level of hydraulic support follow-up control.
基金Opening Foundation of Key Laboratory of Explosive Energy Utilization and Control,Anhui Province(BP20240104)Graduate Innovation Program of China University of Mining and Technology(2024WLJCRCZL049)Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX24_2701)。
文摘Because of the challenge of compounding lightweight,high-strength Ti/Al alloys due to their considerable disparity in properties,Al 6063 as intermediate layer was proposed to fabricate TC4/Al 6063/Al 7075 three-layer composite plate by explosive welding.The microscopic properties of each bonding interface were elucidated through field emission scanning electron microscope and electron backscattered diffraction(EBSD).A methodology combining finite element method-smoothed particle hydrodynamics(FEM-SPH)and molecular dynamics(MD)was proposed for the analysis of the forming and evolution characteristics of explosive welding interfaces at multi-scale.The results demonstrate that the bonding interface morphologies of TC4/Al 6063 and Al 6063/Al 7075 exhibit a flat and wavy configuration,without discernible defects or cracks.The phenomenon of grain refinement is observed in the vicinity of the two bonding interfaces.Furthermore,the degree of plastic deformation of TC4 and Al 7075 is more pronounced than that of Al 6063 in the intermediate layer.The interface morphology characteristics obtained by FEM-SPH simulation exhibit a high degree of similarity to the experimental results.MD simulations reveal that the diffusion of interfacial elements predominantly occurs during the unloading phase,and the simulated thickness of interfacial diffusion aligns well with experimental outcomes.The introduction of intermediate layer in the explosive welding process can effectively produce high-quality titanium/aluminum alloy composite plates.Furthermore,this approach offers a multi-scale simulation strategy for the study of explosive welding bonding interfaces.
基金supported by the Research Funding of Hangzhou International Innovation Institute of Beihang Uni-versity,China(No.2024KQ130)the National Natural Science Foundation of China(Nos.52073010 and 52373259).
文摘Recent progress in microwave absorption materials stimulates the extensive exploration of rare earth oxide materials.Herein,we report the synthesis of a hollow sphere-based carbon material compounded with rare earth oxides.Hollow N-doped carbon nano-spheres loaded ceria composites(H-NC@CeO_(2))were designed and prepared by the template method,combined with in-situ coating,pyrolysis and chemical etching.By controlling the loading content of H-NC@CeO_(2)and adjusting the impedance matching of the material,the H-NC@CeO_(2)/PS(polystyrene)composite exhibited a minimum reflection loss(RL)of-50.8 dB and an effective absorption band-width(EAB)of 4.64 GHz at a filler ratio of 20wt%and a thickness of 2 mm.In accordance with measured electromagnetic parameters,simulations using the high frequency structure simulator(HFSS)software were conducted to investigate the impact of the honeycomb structure on the electromagnetic wave performance of H-NC@CeO_(2)/PS.By calculating the surface electric field and the material’s bulk loss density,the mechanism of electromagnetic loss for the honeycomb structure was elaborated.A method for structural design and man-ufacturing of broadband absorbing devices was proposed and a broadband absorber with an EAB of 11.9 GHz was prepared.This study presents an innovative approach to designing advanced electromagnetic(EM)wave absorbing materials with broad absorption band-widths.
基金the National Natural Science Foundation of China(No.52205468)China Postdoctoral Science Foundation(No.2022M710061 and No.2023T160277)Natural Science Foundation of Jiangsu Province(No.BK20210755)。
文摘Large size titanium alloy parts are widely used in aerospace.However,they are difficult to manufacture using mechanical cutting technology because of severe tool wear.Electrochemical jet machining is a promising technology to achieve high efficiency,because it has high machining flexibility and no machining tool wear.However,reports on the macro electrochemical jet machining of large size titanium alloy parts are very scarce,because it is difficult to achieve effective constraint of the flow field in macro electrochemical jet machining.In addition,titanium alloy is very sensitive to fluctuation of the flow field,and a turbulent flow field would lead to serious stray corrosion.This paper reports a series of investigations of the electrochemical jet machining of titanium alloy parts.Based on the flow analysis and experiments,the machining flow field was effectively constrained.TB6 titanium alloy part with a perimeter of one meter was machined.The machined surface was smooth with no obvious machining defects.The machining process was particularly stable with no obvious spark discharge.The research provides a reference for the application of electrochemical jet machining technology to achieve large allowance material removal in the machining of large titanium alloy parts.
基金Funded by the Research Funds of China University of Mining and Technology(No.102523215)。
文摘The pre-wetting of aggregate surface is a means to improve the interface performance of SBS modified asphalt and aggregate.The effect of pre-wetting technology on the interaction between SBS modified asphalt and aggregate was analyzed by molecular dynamics simulation.The diffusion coefficient and concentration distribution of SBS modified asphalt on aggregate surface are included.The simulation results show that the diffusion coefficient of the aggregate surface of SBS modified asphalt is increased by 47.6%and 70.5%respectively after 110#asphalt and 130#asphalt are pre-wetted.The concentration distribution of SBS modified asphalt on the aggregate surface after pre-wetting is more uniform.According to the results of interface energy calculation,the interface energy of SBS modified bitumen and aggregate can be increased by about 5%after pre-wetting.According to the results of molecular dynamics simulation,the pre-wetting technology can effectively improve the interface workability of SBS modified bitumen and aggregate,so as to improve the interface performance.
基金supported by the National Natural Science Foundation of China(Grant No.U21B2062)supported by the Key Laboratory for Carbonate Reservoirs of China National Petroleum Corporation。
文摘Burial dissolution is a critical diagenetic process influencing ultra-deep carbonate reservoir development and preservation.Artificial carbonate samples with different internal structures were prepared,and high-temperature and highpressure dissolution kinetic simulations were conducted.The results demonstrate that the intensity of burial dissolution is controlled by temperature and pressure,while tectonic-fluid activity influences the development pattern of burial dissolution,ultimately determining the direction of its differential modification.Extensive burial dissolution is likely to occur primarily at relatively shallow depths,significantly influencing reservoir formation,preservation,modification,and adjustment.The development of faults facilitates the maintenance of the intensity of burial dissolution.The maximum intensity of burial dissolution occurs at the tips and overlap zones of faults and intersections of multiple faults.The larger the scale of the faults,the more conducive it is to the development of burial dissolution.Burial dissolution fosters the formation of fault networks characterized by enhanced reservoir capacity and permeability.Burial dissolution controlled by episodic tectonic-fluid activity is a plausible explanation for forming the Tarim Basin's ultra-deep fault-controlled“stringbead-like”reservoirs.
基金supported by the Guangdong Major Project of Basic and Applied Basic Research(Grant No.2021B0301030001)the National Key Research and Development Program of China(Grant No.2021YFB3802300)the Foundation of National Key Laboratory of Shock Wave and Detonation Physics(Grant No.JCKYS2022212004)。
文摘The graded density impactor(GDI)dynamic loading technique is crucial for acquiring the dynamic physical property parameters of materials used in weapons.The accuracy and timeliness of GDI structural design are key to achieving controllable stress-strain rate loading.In this study,we have,for the first time,combined one-dimensional fluid computational software with machine learning methods.We first elucidated the mechanisms by which GDI structures control stress and strain rates.Subsequently,we constructed a machine learning model to create a structure-property response surface.The results show that altering the loading velocity and interlayer thickness has a pronounced regulatory effect on stress and strain rates.In contrast,the impedance distribution index and target thickness have less significant effects on stress regulation,although there is a matching relationship between target thickness and interlayer thickness.Compared with traditional design methods,the machine learning approach offers a10^(4)—10^(5)times increase in efficiency and the potential to achieve a global optimum,holding promise for guiding the design of GDI.
基金Scientific Research Fund of Institute of Engineering Mechanics,China Earthquake Administration under Grant No.2023C01National Natural Science Foundation of China under Grant No.52478570Distinguished Young Scholars Program of the Natural Science Foundation of Heilongjiang Province,China under Grant No.JQ2024E002。
文摘The 2025 M_(w)7.7 Myanmar earthquake highlighted the challenge of near-fault seismic intensity field reconstruction due to sparse seismic networks.To address this limitation,a framework was proposed integrating seismic wave simulation with a data-constrained finite-fault rupture model.The constraint is implemented by identifying the optimal ground motion models(GMMs)through a scoring system that selects the best-fit GMMs to mid-and far-field China Earthquake Networks Center(CENC)seismic network data;and applying the optimal GMMs to refine the rupture model parameters for near-fault intensity field simulation.The simulated near-fault seismic intensity field reproduces seismic intensities collected from Myanmar’s sparse seismic network and concentrated in≥Ⅷintensity zones within 50 km of the projected fault plane;and identifies abnormal intensity regions exhibiting≥Ⅹintensity along the Meiktila-Naypyidaw corridor and near Shwebo that are attributed to soft soil amplification effects and near-fault directivity.This framework can also be applied to post-earthquake assessments in other similar regions.
基金National Natural Science Foundation of China(51971103)Key Research and Development Program in Gansu Province(20YF8GA052)。
文摘A suction casting experiment was conducted on Zr_(55)Cu_(30)Al_(10)Ni_(5)(at%)amorphous alloy.Using ProCAST software,numerical simulations were performed to analyze the filling and solidification processes.The velocity field during the filling process and the temperature field during the solidification process of the alloy melt under different process parameters were obtained.Based on the simulation results,a Zr-based amorphous alloy micro-gear was prepared via casting.The results indicate that increasing the suction casting temperature enhances the fluidity of alloy melt but induces unstable flow rate during filling,which is detrimental to complete filling.Zr-based amorphous micro-gears with a module of 0.6 mm,a tooth top diameter of 8 mm,and 10 teeth were prepared through the suction casting.X-ray diffraction and differential scanning calorimetry analyses confirm that the fabricated micro-gear exhibits characteristic amorphous structural features,demonstrating well-defined geometrical contours and satisfactory forming completeness.