期刊文献+
共找到1,312篇文章
< 1 2 66 >
每页显示 20 50 100
Automated inverse design of asymmetric excavation retaining structures using multiobjective optimization
1
作者 Qiwei Wan Changjie Xu +2 位作者 Xiangyu Wang Haibin Ding Xiaozhen Fan 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第11期7351-7366,共16页
Conventional pit excavation engineering methods often struggle to manage the complex deformation patterns associated with asymmetric excavations,resulting in significant safety risks and increased project costs.These ... Conventional pit excavation engineering methods often struggle to manage the complex deformation patterns associated with asymmetric excavations,resulting in significant safety risks and increased project costs.These challenges highlight the need for more precise and efficient design methodologies to ensure structural stability and economic feasibility.This research proposes an innovative automatic optimization inverse design method(AOIDM)that integrates an enhanced genetic algorithm(EGA)with a multiobjective optimization model.By combining advanced computational techniques with engineering principles,this approach improves search efficiency by 30%and enhances deformation control accuracy by 25%.Additionally,the approach exhibits potential for reducing carbon emissions to align with sustainable engineering goals.The effectiveness of this approach was validated through comprehensive data analysis and practical case studies,demonstrating its ability to optimize retaining structure designs under complex asymmetric loading conditions.This research establishes a new standard for precision and efficiency in automated excavation design,with accompanying improvements in safety and cost-effectiveness.Furthermore,it lays the foundation for future geotechnical engineering advancements,offering a robust solution to one of the most challenging aspects of modern excavation projects. 展开更多
关键词 multiobjective optimization Enhanced genetic algorithm(EGA) Inverse design Deformation control Economic optimization
在线阅读 下载PDF
Variable Reconstruction for Evolutionary Expensive Large-Scale Multiobjective Optimization and Its Application on Aerodynamic Design
2
作者 Jianqing Lin Cheng He +1 位作者 Ye Tian Linqiang Pan 《IEEE/CAA Journal of Automatica Sinica》 2025年第4期719-733,共15页
Expensive multiobjective optimization problems(EMOPs)are complex optimization problems exacted from realworld applications,where each objective function evaluation(FE)involves expensive computations or physical experi... Expensive multiobjective optimization problems(EMOPs)are complex optimization problems exacted from realworld applications,where each objective function evaluation(FE)involves expensive computations or physical experiments.Many surrogate-assisted evolutionary algorithms(SAEAs)have been designed to solve EMOPs.Nevertheless,EMOPs with large-scale decision variables remain challenging for existing SAEAs,leading to difficulties in maintaining convergence and diversity.To address this deficiency,we proposed a variable reconstructionbased SAEA(VREA)to balance convergence enhancement and diversity maintenance.Generally,a cluster-based variable reconstruction strategy reconstructs the original large-scale decision variables into low-dimensional weight variables.Thus,the population can be rapidly pushed towards the Pareto set(PS)by optimizing low-dimensional weight variables with the assistance of surrogate models.Population diversity is improved due to the cluster-based variable reconstruction strategy.An adaptive search step size strategy is proposed to balance exploration and exploitation further.Experimental comparisons with four state-of-the-art SAEAs are conducted on benchmark EMOPs with up to 1000 decision variables and an aerodynamic design task.Experimental results demonstrate that VREA obtains well-converged and diverse solutions with limited real FEs. 展开更多
关键词 Aerodynamic design large-scale optimization multiobjective evolutionary algorithm surrogate model variable reconstruction
在线阅读 下载PDF
Higher-order optimality conditions for multiobjective optimization through a new type of directional derivatives
3
作者 HUANG Zheng-gang 《Applied Mathematics(A Journal of Chinese Universities)》 2025年第3期543-557,共15页
This paper deals with extensions of higher-order optimality conditions for scalar optimization to multiobjective optimization.A type of directional derivatives for a multiobjective function is proposed,and with this n... This paper deals with extensions of higher-order optimality conditions for scalar optimization to multiobjective optimization.A type of directional derivatives for a multiobjective function is proposed,and with this notion characterizations of strict local minima of order k for a multiobjective optimization problem with a nonempty set constraint are established,generalizing the corresponding scalar case obtained by Studniarski[3].Also necessary not sufficient and sufficient not necessary optimality conditions for this minima are derived based on our directional derivatives,which are generalizations of some existing scalar results and equivalent to some existing multiobjective ones.Many examples are given to illustrate them there. 展开更多
关键词 strict local minima of order k multiobjective optimization higher-order optimality conditions higher-order directional derivatives
在线阅读 下载PDF
The Optimality Conditions for Multiobjective Semi-infinite Programming Involving Generalized Unified (C, α, p, d)-convexity
4
作者 ZHANG Qing-xiang ZHANG Yong-zhan 《Chinese Quarterly Journal of Mathematics》 CSCD 2013年第2期241-249,共9页
The definition of generalized unified (C, α, ρ, d)-convex function is given. The concepts of generalized unified (C, α, ρ, d)-quasiconvexity, generalized unified (C, α, ρ, d)-pseudoconvexity and generalized unif... The definition of generalized unified (C, α, ρ, d)-convex function is given. The concepts of generalized unified (C, α, ρ, d)-quasiconvexity, generalized unified (C, α, ρ, d)-pseudoconvexity and generalized unified (C, α, ρ, d)-strictly pseudoconvex functions are presented. The sufficient optimality conditions for multiobjective nonsmooth semi-infinite programming are obtained involving these generalized convexity lastly. 展开更多
关键词 generalized convexity multiobjective semi-infinite programming efficient solution optimality conditions
在线阅读 下载PDF
New immune multiobjective optimization algorithm and its application in boiler combustion optimization 被引量:4
5
作者 周霞 沈炯 +1 位作者 沈剑贤 李益国 《Journal of Southeast University(English Edition)》 EI CAS 2010年第4期563-568,共6页
In order to meet the requirements of combustion optimization for saving energy and reducing pollutant emission simultaneously,an immune cell subsets based multiobjective optimization algorithm(ICSMOA)is proposed.In ... In order to meet the requirements of combustion optimization for saving energy and reducing pollutant emission simultaneously,an immune cell subsets based multiobjective optimization algorithm(ICSMOA)is proposed.In the ICSMOA,the subset division operator and the immunological tolerance operation are defined.Preference can be easily addressed by using the subset division operator,and the distribution of the solutions can be guaranteed by the immunological tolerance operation.Using the ICSMOA,a group of Pareto optimal solutions can be obtained.However,by the traditional weighting method(WM),only one solution can be obtained and it cannot be judged as Pareto optimal or not.In contrast to the solutions obtained by the repeatedly performed WM,the simulation results show that most solutions obtained by the ICSMOA are better than the solutions obtained by the WM.In addition,the Pareto front obtained by the ICSMOA is not as uniform as most classical multiobjective optimization algorithms.More optimal solutions which meet the preference set by the decision-maker can be obtained and they are very useful for industrial application. 展开更多
关键词 combustion optimization multiobjective optimizat-ion immune cell subsets
在线阅读 下载PDF
MULTIOBJECTIVE OPTIMIZATION OF EIGHT-DOF VEHICLE SUSPENSION BASED ON GAME THEORY
6
作者 宋崇智 赵又群 +1 位作者 谢能刚 王璐 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2010年第2期138-147,共10页
A systematic and effective optimization is proposed for the design of a three-dimensional (3-D) vehicle suspension model with eight degrees of freedom (DOF), including vertical seat motion, vehicle suspension, pit... A systematic and effective optimization is proposed for the design of a three-dimensional (3-D) vehicle suspension model with eight degrees of freedom (DOF), including vertical seat motion, vehicle suspension, pitching and rolling motions, and vertical wheel motions using the evolutionary game theory. A new design of the passive suspension is aided by game theory to attain the best compromise between ride quality and suspension deflections. Extensive simulations are performed on three type road surface models A, B, C pavement grades based on the guidelines provided by ISO-2631 with the Matlab/Simulink environment. The preliminary results show that, when the passive suspension is optimized via the proposed approach, a substantial improvement in the vertical ride quality is obtained while keeping the suspension deflections within their allowable clearance when the vehicle moves at a constant velocity v=20 m/s, and the comfort performance of a suspension seat can be enhanced by 20%-30%. 展开更多
关键词 vehicle suspensions multiobjective optimization game theory riding comfort
在线阅读 下载PDF
Preference-based multiobjective artificial bee colony algorithm for optimization of superheated steam temperature control
7
作者 周霞 沈炯 李益国 《Journal of Southeast University(English Edition)》 EI CAS 2014年第4期449-455,共7页
In order to incorporate the decision maker's preference into multiobjective optimization a preference-based multiobjective artificial bee colony algorithm PMABCA is proposed.In the proposed algorithm a novel referenc... In order to incorporate the decision maker's preference into multiobjective optimization a preference-based multiobjective artificial bee colony algorithm PMABCA is proposed.In the proposed algorithm a novel reference point based preference expression method is addressed.The fitness assignment function is defined based on the nondominated rank and the newly defined preference distance.An archive set is introduced for saving the nondominated solutions and an improved crowding-distance operator is addressed to remove the extra solutions in the archive.The experimental results of two benchmark test functions show that a preferred set of solutions and some other non-preference solutions are achieved simultaneously.The simulation results of the proportional-integral-derivative PID parameter optimization for superheated steam temperature verify that the PMABCA is efficient in aiding to making a reasonable decision. 展开更多
关键词 PREFERENCE multiobjective artificial bee colony superheated steam temperature control optimization
在线阅读 下载PDF
A Two-Layer Multiobjective Optimal Energy Management Strategy Considering Fuel Cell/Battery Lifetime
8
作者 Zhaoyang Shen Zhidong Qi +2 位作者 Jie Zhou Junsong Xu Liang Shan 《Carbon and Hydrogen》 2025年第1期80-96,共17页
To optimize the operating efficiency and extend the lifespan of the multistack fuel cell hybrid system(MFCHS),this paper proposes a two-layer multiobjective optimal energy management strategy that considers the degrad... To optimize the operating efficiency and extend the lifespan of the multistack fuel cell hybrid system(MFCHS),this paper proposes a two-layer multiobjective optimal energy management strategy that considers the degradation of the fuel cell and the battery.Regarding the issues that power fluctuations damage the fuel cells'lifespan and high-current charging and discharging lead to battery capacity decay,the first layer of the strategy adopts locally weighted scatterplot smoothing(LOWESS)to smooth the output power of the fuel cells and prevent the battery from operating under high-current conditions.The second layer considers the uneven degree of degradation among the fuel cells and employs the dandelion optimizer(DO)algorithm to solve the objective function with an aging adaptive factor,optimizing the efficiency and lifespan.Meanwhile,the DO algorithm is enhanced by tent chaotic mapping and differential variation to improve the convergence speed and accuracy.Compared with the equivalent hydrogen consumption minimization strategy(ECMS)and the equal distribution strategy,the proposed strategy improves the average operating efficiency of the fuel cells,effectively reduces the degradation of the fuel cells and the capacity degradation of the battery,and maintains the performance consistency among the fuel cells. 展开更多
关键词 dandelion optimizer multiobjective optimization multistack fuel cell hybrid system
在线阅读 下载PDF
Multiobjective Optimization of Simulated Moving Bed by Tissue P System 被引量:8
9
作者 黄亮 孙磊 +1 位作者 王宁 金晓明 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2007年第5期683-690,共8页
The binaphthol enantiomers separation process using simulation moving bed technology is simulated with the true moving bed approach (TMB). In order to systematically optimize the process with multiple productive obj... The binaphthol enantiomers separation process using simulation moving bed technology is simulated with the true moving bed approach (TMB). In order to systematically optimize the process with multiple productive objectives, this article develops a variant of tissue P system (TPS). Inspired by general tissue P systems, the special TPS has a tissue-like structure with several membranes. The key rules of each membrane are the communication rule and mutation rule. These characteristics contribute to the diversity of the population, the conquest of the multimodal of objective function, and the convergence of algorithm. The results of comparison with a popular algorithm——the non-dominated sorting genetic algorithm 2(NSGA-2) illustrate that the new algorithm has satisfactory performance. Using the algorithm, this study maximizes synchronously several conflicting objectives, purities of different products, and productivity. 展开更多
关键词 simulated moving bed tissue P systems multiobjective optimization Pareto optimality evolutionary algorithm binaphthol enantiomers separation process
在线阅读 下载PDF
Multiobjective optimization scheme for industrial synthesis gas sweetening plant in GTL process 被引量:4
10
作者 Alireza Behroozsarand Akbar Zamaniyan 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2011年第1期99-109,共11页
In industrial amine plants the optimized operating conditions are obtained from the conclusion of occurred events and challenges that are normal in the working units. For the sake of reducing the costs, time consuming... In industrial amine plants the optimized operating conditions are obtained from the conclusion of occurred events and challenges that are normal in the working units. For the sake of reducing the costs, time consuming, and preventing unsuitable accidents, the optimization could be performed by a computer program. In this paper, simulation and parameter analysis of amine plant is performed at first. The optimization of this unit is studied using Non-Dominated Sorting Genetic Algorithm-II in order to produce sweet gas with CO 2 mole percentage less than 2.0% and H 2 S concentration less than 10 ppm for application in Fischer-Tropsch synthesis. The simulation of the plant in HYSYS v.3.1 software has been linked with MATLAB code for real-parameter NSGA-II to simulate and optimize the amine process. Three scenarios are selected to cover the effect of (DEA/MDEA) mass composition percent ratio at amine solution on objective functions. Results show that sour gas temperature and pressure of 33.98 ? C and 14.96 bar, DEA/CO 2 molar flow ratio of 12.58, regeneration gas temperature and pressure of 94.92 ? C and 3.0 bar, regenerator pressure of 1.53 bar, and ratio of DEA/MDEA = 20%/10% are the best values for minimizing plant energy consumption, amine circulation rate, and carbon dioxide recovery. 展开更多
关键词 amine plant multiobjective optimization Non-Dominated Sorting Genetic Algorithm amine circulation rate
在线阅读 下载PDF
Hybrid particle swarm optimization for multiobjective resource allocation 被引量:4
11
作者 Yi Yang Li Xiaoxing Gu Chunqin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第5期959-964,共6页
Resource allocation(RA)is the problem of allocating resources among various artifacts or business units to meet one or more expected goals,such a.s maximizing the profits,minimizing the costs,or achieving the best qua... Resource allocation(RA)is the problem of allocating resources among various artifacts or business units to meet one or more expected goals,such a.s maximizing the profits,minimizing the costs,or achieving the best qualities.A complex multiobjective RA is addressed,and a multiobjective mathematical model is used to find solutions efficiently.Then,all improved particie swarm algorithm(mO_PSO)is proposed combined with a new particle diversity controller policies and dissipation operation.Meanwhile,a modified Pareto methods used in PSO to deal with multiobjectives optimization is presented.The effectiveness of the provided algorithm is validated by its application to some illustrative example dealing with multiobjective RA problems and with the comparative experiment with other algorithm. 展开更多
关键词 resource allocation multiobjective optimization improved particle swarm optimization.
在线阅读 下载PDF
Multiobjective optimization and multivariable control of the beer fermentation process with the use of evolutionary algorithms 被引量:7
12
作者 ANDRES-TOROB. GIRON-SIERRAJ.M. FERNANDEZ-BLANCOP. LOPEZ-OROZCOJ.A. BESADA-PORTASE. 《Journal of Zhejiang University Science》 CSCD 2004年第4期378-389,共12页
This paper describes empirical research on the model, optimization and supervisory control of beer fermentation.Conditions in the laboratory were made as similar as possible to brewery industry conditions. Since mathe... This paper describes empirical research on the model, optimization and supervisory control of beer fermentation.Conditions in the laboratory were made as similar as possible to brewery industry conditions. Since mathematical models that consider realistic industrial conditions were not available, a new mathematical model design involving industrial conditions was first developed. Batch fermentations are multiobjective dynamic processes that must be guided along optimal paths to obtain good results.The paper describes a direct way to apply a Pareto set approach with multiobjective evolutionary algorithms (MOEAs).Successful finding of optimal ways to drive these processes were reported.Once obtained, the mathematical fermentation model was used to optimize the fermentation process by using an intelligent control based on certain rules. 展开更多
关键词 multiobjective optimization Genetic algorithms Industrial control Multivariable control systems Fermenta- tion processes
在线阅读 下载PDF
Multiobjective Optimization of the Industrial Naphtha Catalytic Re-forming Process 被引量:7
13
作者 侯卫锋 苏宏业 +1 位作者 牟盛静 褚健 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2007年第1期75-80,共6页
In this article, a multiobjective optimization strategy for an industrial naphtha continuous catalytic reform-ing process that aims to obtain aromatic products is proposed. The process model is based on a 20-lumped ki... In this article, a multiobjective optimization strategy for an industrial naphtha continuous catalytic reform-ing process that aims to obtain aromatic products is proposed. The process model is based on a 20-lumped kinetics re-action network and has been proved to be quite effective in terms of industrial application. The primary objectives in-clude maximization of yield of the aromatics and minimization of the yield of heavy aromatics. Four reactor inlet tem-peratures, reaction pressure, and hydrogen-to-oil molar ratio are selected as the decision variables. A genetic algorithm, which is proposed by the authors and named as the neighborhood and archived genetic algorithm (NAGA), is applied to solve this multiobjective optimization problem. The relations between each decision variable and the two objectives are also proposed and used for choosing a suitable solution from the obtained Pareto set. 展开更多
关键词 multiobjective optimization catalytic reforming lumped kinetics model neighborhood and archived genetic algorithm (NAGA)
在线阅读 下载PDF
Multiobjective extremal optimization with applications to engineering design 被引量:3
14
作者 CHEN Min-rong LU Yong-zai YANG Gen-ke 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2007年第12期1905-1911,共7页
In this paper, we extend a novel unconstrained multiobjective optimization algorithm, so-called multiobjective extremal optimization (MOEO), to solve the constrained multiobjective optimization problems (MOPs). Th... In this paper, we extend a novel unconstrained multiobjective optimization algorithm, so-called multiobjective extremal optimization (MOEO), to solve the constrained multiobjective optimization problems (MOPs). The proposed approach is validated by three constrained benchmark problems and successfully applied to handling three multiobjective engineering design problems reported in literature. Simulation results indicate that the proposed approach is highly competitive with three state-of-the-art multiobjective evolutionary algorithms, i.e., NSGA-11, SPEA2 and PAES. Thus MOEO can be considered a good alternative to solve constrained multiobjective optimization problems. 展开更多
关键词 multiobjective optimization Extremal optimization (EO) Engineering design
在线阅读 下载PDF
Multiobjective optimal dispatch of microgrid based on analytic hierarchy process and quantum particle swarm optimization 被引量:7
15
作者 Yuxin Zhao Xiaotong Song +1 位作者 Fei Wang Dawei Cui 《Global Energy Interconnection》 CAS 2020年第6期562-570,共9页
Owing to the rapid development of microgrids(MGs)and growing applications of renewable energy resources,multiobjective optimal dispatch of MGs need to be studied in detail.In this study,a multiobjective optimal dispat... Owing to the rapid development of microgrids(MGs)and growing applications of renewable energy resources,multiobjective optimal dispatch of MGs need to be studied in detail.In this study,a multiobjective optimal dispatch model is developed for a standalone MG composed of wind turbines,photovoltaics,diesel engine unit,load,and battery energy storage system.The economic cost,environmental concerns,and power supply consistency are expressed via subobjectives with varying priorities.Then,the analytic hierarchy process algorithm is employed to reasonably specify the weight coefficients of the subobjectives.The quantum particle swarm optimization algorithm is thereafter employed as a solution to achieve optimal dispatch of the MG.Finally,the validity of the proposed model and solution methodology are con firmed by case studies.This study provides refere nee for mathematical model of multiojective optimizati on of MG and can be widely used in current research field. 展开更多
关键词 Analytic hierarchy process(AHP) Quantum particle swarm optimization(QPSO) multiobjective optimal dispatch Microgrid.
在线阅读 下载PDF
A multiobjective evolutionary optimization method based critical rainfall thresholds for debris flows initiation 被引量:2
16
作者 YAN Yan ZHANG Yu +4 位作者 HU Wang GUO Xiao-jun MA Chao WANG Zi-ang ZHANG Qun 《Journal of Mountain Science》 SCIE CSCD 2020年第8期1860-1873,共14页
At present,most researches on the critical rainfall threshold of debris flow initiation use a linear model obtained through regression.With relatively weak fault tolerance,this method not only ignores nonlinear effect... At present,most researches on the critical rainfall threshold of debris flow initiation use a linear model obtained through regression.With relatively weak fault tolerance,this method not only ignores nonlinear effects but also is susceptible to singular noise samples,which makes it difficult to characterize the true quantization relationship of the rainfall threshold.Besides,the early warning threshold determined by statistical parameters is susceptible to negative samples(samples where no debris flow has occurred),which leads to uncertainty in the reliability of the early warning results by the regression curve.To overcome the above limitations,this study develops a data-driven multiobjective evolutionary optimization method that combines an artificial neural network(ANN)and a multiobjective evolutionary optimization implemented by particle swarm optimization(PSO).Firstly,the Pareto optimality method is used to represent the nonlinear and conflicting critical thresholds for the rainfall intensity I and the rainfall duration D.An ANN is used to construct a dual-target(dual-task)predictive surrogate model,and then a PSO-based multiobjective evolutionary optimization algorithm is applied to train the ANN and stochastically search the trained ANN for obtaining the Pareto front of the I-D surrogate prediction model,which is intended to overcome the limitations of the existing linear regression-based threshold methods.Finally,a double early warning curve model that can effectively control the false alarm rate and negative alarm rate of hazard warnings are proposed based on the decision space and target space maps.This study provides theoretical guidance for the early warning and forecasting of debris flows and has strong applicability. 展开更多
关键词 Debris flow Critical rainfall thresholds multiobjective evolutionary optimization Artificial neural network Pareto optimality
原文传递
A New Global Scalarization Method for Multiobjective Optimization with an Arbitrary Ordering Cone 被引量:1
17
作者 El-Desouky Rahmo Marcin Studniarski 《Applied Mathematics》 2017年第2期154-163,共10页
We propose a new scalarization method which consists in constructing, for a given multiobjective optimization problem, a single scalarization function, whose global minimum points are exactly vector critical points of... We propose a new scalarization method which consists in constructing, for a given multiobjective optimization problem, a single scalarization function, whose global minimum points are exactly vector critical points of the original problem. This equivalence holds globally and enables one to use global optimization algorithms (for example, classical genetic algorithms with “roulette wheel” selection) to produce multiple solutions of the multiobjective problem. In this article we prove the mentioned equivalence and show that, if the ordering cone is polyhedral and the function being optimized is piecewise differentiable, then computing the values of a scalarization function reduces to solving a quadratic programming problem. We also present some preliminary numerical results pertaining to this new method. 展开更多
关键词 multiobjective optimization SCALARIZATION Function Generalized JACOBIAN VECTOR CRITICAL Point
在线阅读 下载PDF
Homotopy Continuous Method for Weak Efficient Solution of Multiobjective Optimization Problem with Feasible Set Unbounded Condition 被引量:1
18
作者 Wei Xing Boying Wu 《Applied Mathematics》 2012年第7期765-771,共7页
In this paper, we propose a homotopy continuous method (HCM) for solving a weak efficient solution of multiobjective optimization problem (MOP) with feasible set unbounded condition, which is arising in Economical Dis... In this paper, we propose a homotopy continuous method (HCM) for solving a weak efficient solution of multiobjective optimization problem (MOP) with feasible set unbounded condition, which is arising in Economical Distributions, Engineering Decisions, Resource Allocations and other field of mathematical economics and engineering problems. Under the suitable assumption, it is proved to globally converge to a weak efficient solution of (MOP), if its x-branch has no weak infinite solution. 展开更多
关键词 multiobjective optimization Problem Feasible Set UNBOUNDED HOMOTOPY Continuous Method Global CONVERGENCE
在线阅读 下载PDF
A FLEXIBLE OBJECTIVE-CONSTRAINT APPROACH AND A NEW ALGORITHM FOR CONSTRUCTING THE PARETO FRONT OF MULTIOBJECTIVE OPTIMIZATION PROBLEMS 被引量:1
19
作者 N.HOSEINPOOR M.GHAZNAVI 《Acta Mathematica Scientia》 SCIE CSCD 2024年第2期702-720,共19页
In this article, a novel scalarization technique, called the improved objective-constraint approach, is introduced to find efficient solutions of a given multiobjective programming problem. The presented scalarized pr... In this article, a novel scalarization technique, called the improved objective-constraint approach, is introduced to find efficient solutions of a given multiobjective programming problem. The presented scalarized problem extends the objective-constraint problem. It is demonstrated that how adding variables to the scalarized problem, can lead to find conditions for (weakly, properly) Pareto optimal solutions. Applying the obtained necessary and sufficient conditions, two algorithms for generating the Pareto front approximation of bi-objective and three-objective programming problems are designed. These algorithms are easy to implement and can achieve an even approximation of (weakly, properly) Pareto optimal solutions. These algorithms can be generalized for optimization problems with more than three criterion functions, too. The effectiveness and capability of the algorithms are demonstrated in test problems. 展开更多
关键词 multiobjective optimization Pareto front SCALARIZATION objective-constraint approach proper efficient solution
在线阅读 下载PDF
Multiobjective Differential Evolution for Higher-Dimensional Multimodal Multiobjective Optimization 被引量:1
20
作者 Jing Liang Hongyu Lin +2 位作者 Caitong Yue Ponnuthurai Nagaratnam Suganthan Yaonan Wang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第6期1458-1475,共18页
In multimodal multiobjective optimization problems(MMOPs),there are several Pareto optimal solutions corre-sponding to the identical objective vector.This paper proposes a new differential evolution algorithm to solve... In multimodal multiobjective optimization problems(MMOPs),there are several Pareto optimal solutions corre-sponding to the identical objective vector.This paper proposes a new differential evolution algorithm to solve MMOPs with higher-dimensional decision variables.Due to the increase in the dimensions of decision variables in real-world MMOPs,it is diffi-cult for current multimodal multiobjective optimization evolu-tionary algorithms(MMOEAs)to find multiple Pareto optimal solutions.The proposed algorithm adopts a dual-population framework and an improved environmental selection method.It utilizes a convergence archive to help the first population improve the quality of solutions.The improved environmental selection method enables the other population to search the remaining decision space and reserve more Pareto optimal solutions through the information of the first population.The combination of these two strategies helps to effectively balance and enhance conver-gence and diversity performance.In addition,to study the per-formance of the proposed algorithm,a novel set of multimodal multiobjective optimization test functions with extensible decision variables is designed.The proposed MMOEA is certified to be effective through comparison with six state-of-the-art MMOEAs on the test functions. 展开更多
关键词 Benchmark functions diversity measure evolution-ary algorithms multimodal multiobjective optimization.
在线阅读 下载PDF
上一页 1 2 66 下一页 到第
使用帮助 返回顶部