The performance of polymer networks is directly determined by their structure.Understanding the network structure offers insights into optimizing material performance,such as elasticity,toughness,and swelling behavior...The performance of polymer networks is directly determined by their structure.Understanding the network structure offers insights into optimizing material performance,such as elasticity,toughness,and swelling behavior.Herein,in this study we introduce the Dijkstra algorithm from graph theory to characterize polymer networks based on star-shaped multi-armed precursors by employing coarse-grained molecular dynamics simulations coupled with stochastic reaction model.Our research focuses on the structure characteristics of the generated networks,including the number and size of loops,as well as network dispersity characterized by loops.Tracking the number of loops during network generation allows for the identification of the gel point.The size distribution of loops in the network is primarily related to the functionality of the precursors,and the system with fewer precursor arms exhibiting larger average loop sizes.Strain-stress curves indicate that materials with identical functionality and precursor arm lengths generally exhibit superior performance.This method of characterizing network structures helps to refine microscopic structural analysis and contributes to the enhancement and optimization of material properties.展开更多
Existing imaging techniques cannot simultaneously achieve high resolution and a wide field of view,and manual multi-mineral segmentation in shale lacks precision.To address these limitations,we propose a comprehensive...Existing imaging techniques cannot simultaneously achieve high resolution and a wide field of view,and manual multi-mineral segmentation in shale lacks precision.To address these limitations,we propose a comprehensive framework based on generative adversarial network(GAN)for characterizing pore structure properties of shale,which incorporates image augmentation,super-resolution reconstruction,and multi-mineral auto-segmentation.Using real 2D and 3D shale images,the framework was assessed through correlation function,entropy,porosity,pore size distribution,and permeability.The application results show that this framework enables the enhancement of 3D low-resolution digital cores by a scale factor of 8,without paired shale images,effectively reconstructing the unresolved fine-scale pores under a low resolution,rather than merely denoising,deblurring,and edge clarification.The trained GAN-based segmentation model effectively improves manual multi-mineral segmentation results,resulting in a strong resemblance to real samples in terms of pore size distribution and permeability.This framework significantly improves the characterization of complex shale microstructures and can be expanded to other heterogeneous porous media,such as carbonate,coal,and tight sandstone reservoirs.展开更多
To assess the high-temperature creep properties of titanium matrix composites for aircraft skin,the TA15 alloy,TiB/TA15 and TiB/(TA15−Si)composites with network structure were fabricated using low-energy milling and v...To assess the high-temperature creep properties of titanium matrix composites for aircraft skin,the TA15 alloy,TiB/TA15 and TiB/(TA15−Si)composites with network structure were fabricated using low-energy milling and vacuum hot pressing sintering techniques.The results show that introducing TiB and Si can reduce the steady-state creep rate by an order of magnitude at 600℃ compared to the alloy.However,the beneficial effect of Si can be maintained at 700℃ while the positive effect of TiB gradually diminishes due to the pores near TiB and interface debonding.The creep deformation mechanism of the as-sintered TiB/(TA15−Si)composite is primarily governed by dislocation climbing.The high creep resistance at 600℃ can be mainly attributed to the absence of grain boundaryαphases,load transfer by TiB whisker,and the hindrance of dislocation movement by silicides.The low steady-state creep rate at 700℃ is mainly resulted from the elimination of grain boundaryαphases as well as increased dynamic precipitation of silicides andα_(2).展开更多
Background Post-stroke depression(PSD)is a common neuropsychiatric problem associated with a high disease burden and reduced quality of life(QoL).To date,few studies have examined the network structure of depressive s...Background Post-stroke depression(PSD)is a common neuropsychiatric problem associated with a high disease burden and reduced quality of life(QoL).To date,few studies have examined the network structure of depressive symptoms and their relationships with QoL in stroke survivors.Aims This study aimed to explore the network structure of depressive symptoms in PSD and investigate the interrelationships between specific depressive symptoms and QoL among older stroke survivors.Methods This study was based on the 2017–2018 collection of data from a large national survey in China.Depressive symptoms were assessed using the 10-item Centre for Epidemiological Studies Depression Scale(CESD),while QoL was measured with the World Health Organization Quality of Life-brief version.Network analysis was employed to explore the structure of PSD,using expected influence(EI)to identify the most central symptoms and the flow function to investigate the association between depressive symptoms and QoL.Results A total of 1123 stroke survivors were included,with an overall prevalence of depression of 34.3%(n=385;95%confidence interval 31.5%to 37.2%).In the network model of depression,the most central symptoms were CESD3(‘feeling blue/depressed’,EI:1.180),CESD6(‘feeling nervous/fearful’,EI:0.864)and CESD8(‘loneliness’,EI:0.843).In addition,CESD5(‘hopelessness’,EI:−0.195),CESD10(‘sleep disturbances’,EI:−0.169)and CESD4(‘everything was an effort’,EI:−0.150)had strong negative associations with QoL.Conclusion This study found that PSD was common among older Chinese stroke survivors.Given its negative impact on QoL,appropriate interventions targeting central symptoms and those associated with QoL should be developed and implemented for stroke survivors with PSD.展开更多
Dynamic publishing of social network graphs offers insights into user behavior but brings privacy risks, notably re-identification attacks on evolving data snapshots. Existing methods based on -anonymity can mitigate ...Dynamic publishing of social network graphs offers insights into user behavior but brings privacy risks, notably re-identification attacks on evolving data snapshots. Existing methods based on -anonymity can mitigate these attacks but are cumbersome, neglect dynamic protection of community structure, and lack precise utility measures. To address these challenges, we present a dynamic social network graph anonymity scheme with community structure protection (DSNGA-CSP), which achieves the dynamic anonymization process by incorporating community detection. First, DSNGA-CSP categorizes communities of the original graph into three types at each timestamp, and only partitions community subgraphs for a specific category at each updated timestamp. Then, DSNGA-CSP achieves intra-community and inter-community anonymization separately to retain more of the community structure of the original graph at each timestamp. It anonymizes community subgraphs by the proposed novel -composition method and anonymizes inter-community edges by edge isomorphism. Finally, a novel information loss metric is introduced in DSNGA-CSP to precisely capture the utility of the anonymized graph through original information preservation and anonymous information changes. Extensive experiments conducted on five real-world datasets demonstrate that DSNGA-CSP consistently outperforms existing methods, providing a more effective balance between privacy and utility. Specifically, DSNGA-CSP shows an average utility improvement of approximately 30% compared to TAKG and CTKGA for three dynamic graph datasets, according to the proposed information loss metric IL.展开更多
Effect of network structure on plasticity and fracture mode of Zr?Al?Ni?Cu bulk metallic glasses (BMGs) was investigated. The microstructures of transversal and longitudinal sections were exposed by chemical etch...Effect of network structure on plasticity and fracture mode of Zr?Al?Ni?Cu bulk metallic glasses (BMGs) was investigated. The microstructures of transversal and longitudinal sections were exposed by chemical etching and observed by scanning electron microscopy (SEM). The mechanical properties were examined by room-temperature uniaxial compression test. The results show that both plasticity and fracture mode are significantly affected by the network structure and the alteration occurs when the size of the network structure reaches up to a critical value. When the cell size (dc) of the network structure is ~3μm, Zr-based BMGs characterize in plasticity that decreases with increasingdc. The fracture mode gradually transforms from single 45° shear fracture to double 45° shear fracture and then cleavage fracture with increasingdc. In addition, the mechanisms of the transition of the plasticity and the fracture mode for these Zr-based BMGs are also discussed.展开更多
The multilayered structure of the European airport network(EAN),composed of connections and flights between European cities,is analyzed through the k-core decomposition of the connections network.This decomposition ...The multilayered structure of the European airport network(EAN),composed of connections and flights between European cities,is analyzed through the k-core decomposition of the connections network.This decomposition allows to identify the core,bridge and periphery layers of the EAN.The core layer includes the best-connected cities,which include important business air traffic destinations.The periphery layer includes cities with lesser connections,which serve low populated areas where air travel is an economic alternative.The remaining cities form the bridge of the EAN,including important leisure travel origins and destinations.The multilayered structure of the EAN affects network robustness,as the EAN is more robust to isolation of nodes of the core,than to the isolation of a combination of core and bridge nodes.展开更多
In this paper, the hydrogen bonding network models of konjac glucomannan (KGM) are predicted in the approach of molecular dynamics (MD). These models have been proved by experiments whose results are consistent wi...In this paper, the hydrogen bonding network models of konjac glucomannan (KGM) are predicted in the approach of molecular dynamics (MD). These models have been proved by experiments whose results are consistent with those from simulation. The results show that the hydrogen bonding network structures of KGM are stable and the key linking points of hydrogen bonding network are at the O(6) and O(2) positions on KGM ring. Moreover, acety has significant influence on hydrogen bonding network and hydrogen bonding network structures are more stable after deacetylation.展开更多
A zinc complex, [Zn(iso)_2(H_2O)_4](iso=C_6H_4NO_2^-), was synthesized and characterized by elemental analysis, thermal analysis and IR spectrum studies. The crystal structure of the complex was determined by X-ray di...A zinc complex, [Zn(iso)_2(H_2O)_4](iso=C_6H_4NO_2^-), was synthesized and characterized by elemental analysis, thermal analysis and IR spectrum studies. The crystal structure of the complex was determined by X-ray diffraction. The crystal crystallizes in the triclinic system, molecular formula ZnC12H16N2O8, Mr=381.64, space group P with a = 6.338(1), b =6.919(1), c=9.277(1), α=96.28(1), β=104.91(1), γ=112.85(1)°, V=352.12(9)?3, Z=1, Dc=1.80g?cm-3 and F(000)=196, μ =1.791mm-1. The crystal structure was solved by direct methods for final R=0.0204 and Rw=0.0542 for 1258 observed reflections with [Fo>4σ(Fo)]. The crystal structure reveals that zinc ion is trans-octahedral with two pyridyl nitrogens and two aque oxygens at the equational positions and two aqua oxygens at the axial positions. The complex forms a three-dimensional network through intermolecular hydrogen bonds.展开更多
This paper deals with a cyclic-periodic structure with a piezoelectric network. In such a system, there is not only mechanical connection but also electrical connection between adjacent periodic sectors. The objective...This paper deals with a cyclic-periodic structure with a piezoelectric network. In such a system, there is not only mechanical connection but also electrical connection between adjacent periodic sectors. The objective is to learn whether the presence of a piezoelectric network would change the dynamic characteristics of the system. The background of the research is about vibration reduction of a bladed disk in an aero-engine, and the system is simulated by a lumped parameter model. The dynamic equations of the system are derived, and then the analytical solution corresponding to the eigenvalue problem is given. The vibration responses to single traveling wave excitations (EO excitations) and multiple traveling wave excitations (NEO excitations) are studied. The results show that the presence of a piezoelectric network would change the natural frequencies of the system compared with those of the system with the piezoelectric shunt circuit. The forced response is sensitive to the connection type and the elements of the network. An energy analysis of the electro-mechanical coupling system has been performed to understand its dynamic behavior, and the following conclusion is obtained: a vibration reduction to excitations whose primary har- monic component is not zero can be achieved by a parallel piezoelectric network, while a reduction to other excitations should be based on a series piezoelectric network.展开更多
Finding out reasonable structures from bulky data is one of the difficulties in modeling of Bayesian network (BN), which is also necessary in promoting the application of BN. This pa- per proposes an immune algorith...Finding out reasonable structures from bulky data is one of the difficulties in modeling of Bayesian network (BN), which is also necessary in promoting the application of BN. This pa- per proposes an immune algorithm based method (BN-IA) for the learning of the BN structure with the idea of vaccination. Further- more, the methods on how to extract the effective vaccines from local optimal structure and root nodes are also described in details. Finally, the simulation studies are implemented with the helicopter convertor BN model and the car start BN model. The comparison results show that the proposed vaccines and the BN-IA can learn the BN structure effectively and efficiently.展开更多
Vibration monitoring by virtual sensing methods has been well developed for linear timeinvariant structures with limited sensors.However,few methods are proposed for Time-Varying(TV)structures which are inevitable in ...Vibration monitoring by virtual sensing methods has been well developed for linear timeinvariant structures with limited sensors.However,few methods are proposed for Time-Varying(TV)structures which are inevitable in aerospace engineering.The core of vibration monitoring for TV structures is to describe the TV structural dynamic characteristics with accuracy and efficiency.This paper propose a new method using the Long Short-Term Memory(LSTM)networks for Continuously Variable Configuration Structures(CVCSs),which is an important subclass of TV structures.The configuration parameters are used to represent the time-varying dynamic characteristics by the‘‘freezing"method.The relationship between TV dynamic characteristics and vibration responses is established by LSTM,and can be generalized to estimate the responses with unknown TV processes benefiting from the time translation invariance of LSTM.A numerical example and a liquid-filled pipe experiment are used to test the performance of the proposed method.The results demonstrate that the proposed method can accurately estimate the unmeasured responses for CVCSs to reveal the actual characteristics in time-domain and modal-domain.Besides,the average one-step estimation time of responses is less than the sampling interval.Thus,the proposed method is promising to on-line estimate the important responses of TV structures.展开更多
TiAl-based composites reinforced with different high volume fractions of nearly network TizAIC phase have been successfully prepared by mechanical alloying and hot-pressing method. Their microstructure. mechanical and...TiAl-based composites reinforced with different high volume fractions of nearly network TizAIC phase have been successfully prepared by mechanical alloying and hot-pressing method. Their microstructure. mechanical and tribological properties have been investigated. Ti2AIC network becomes continuous but the network wall grows thicker with increasing the Ti2AIC content. The continuity and wall size of the network Ti2AIC phase exert a significant influence on the mechanical properties. The bending strength of the composites first increases and then decreases with the Ti2A1C content. The compressive strength of the composite decreases slightly compared to the TiAI alloy, but the hardness is enhanced. Due to the high hardness and load-carrying capacity of the network structure, these composites have the better wear resistance. And this enhancement is more notable at low applied loads and high Ti2A1C content. The mechanisms simulating the role of network Ti2AIC phase on the wear behavior and the wear process of TiAl/Ti2AIC composites at different applied loads have been proposed.展开更多
Ordering based search methods have advantages over graph based search methods for structure learning of Bayesian networks in terms on the efficiency. With the aim of further increasing the accuracy of ordering based s...Ordering based search methods have advantages over graph based search methods for structure learning of Bayesian networks in terms on the efficiency. With the aim of further increasing the accuracy of ordering based search methods, we first propose to increase the search space, which can facilitate escaping from the local optima. We present our search operators with majorizations, which are easy to implement. Experiments show that the proposed algorithm can obtain significantly more accurate results. With regard to the problem of the decrease on efficiency due to the increase of the search space, we then propose to add path priors as constraints into the swap process. We analyze the coefficient which may influence the performance of the proposed algorithm, the experiments show that the constraints can enhance the efficiency greatly, while has little effect on the accuracy. The final experiments show that, compared to other competitive methods, the proposed algorithm can find better solutions while holding high efficiency at the same time on both synthetic and real data sets.展开更多
The nonlinear dynamical behaviors of artificial neural network (ANN) and their application to science and engineering were summarized. The mechanism of two kinds of dynamical processes, i.e. weight dynamics and activa...The nonlinear dynamical behaviors of artificial neural network (ANN) and their application to science and engineering were summarized. The mechanism of two kinds of dynamical processes, i.e. weight dynamics and activation dynamics in neural networks, and the stability of computing in structural analysis and design were stated briefly. It was successfully applied to nonlinear neural network to evaluate the stability of underground stope structure in a gold mine. With the application of BP network, it is proven that the neuro-com- puting is a practical and advanced tool for solving large-scale underground rock engineering problems.展开更多
In this paper,we use factor analysis to evaluate the urban comprehensive quality of each city in the Lanzhou-Xining(Lan-Xi)urban agglomeration.The time distance was obtained by using GIS spatial analysis,and the struc...In this paper,we use factor analysis to evaluate the urban comprehensive quality of each city in the Lanzhou-Xining(Lan-Xi)urban agglomeration.The time distance was obtained by using GIS spatial analysis,and the structure and pattern of the spatial network were analyzed by using the gravity model and social network analysis method.The results show that:1)The scale effect of the Lan-Xi urban agglomeration is gradually emerging,and it is gradually forming the urban agglomeration with Lanzhou and Xining as the core,the Lan-Xi high-speed railway as the axis,and a high-dense connection.2)Lanzhou and Xining are at the core of the Lan-Xi urban agglomeration,which has a strong attraction and spreads to neighboring cities.3)In the network structure of the Lan-Xi urban agglomeration,Lanzhou,Baiyin,Gaolan,Yuzhong,Yongdeng,Dingxi,Lintao,Xining,Ledu,Huangzhong,Ping’an,Minhe and Datong are located in the network core position,which have the superiority position and lead to the entire regional communication enhancement and the regional integration development.4)This urban agglomeration has significant subgroups,eight tertiary subgroups and four secondary subgroup;the tertiary subgroups which compose secondary subgroup have a close connection and mutually influence each other.5)The Lanzhou Metropolitan Area and the Xining Metropolitan Area have an important impact on the surrounding cities,and the peripheral cities are basically controlled by the central city.The Dingxi subgroup,Lintao-Linxia subgroup,Gonghe subgroup have more structural holes than the subgroups within the Lanzhou Metropolitan Area and the Xining Metropolitan Area,so the peripheral cities of these subgroups have relatively less connection with surrounding cities.展开更多
This paper proposes a novel idea that classifies faults into two different kinds: serious faults and small faults, and treats them with different strategies respectively. A kind of artificial neural network (ANN) i...This paper proposes a novel idea that classifies faults into two different kinds: serious faults and small faults, and treats them with different strategies respectively. A kind of artificial neural network (ANN) is proposed for detecting serious faults, and variable structure (VS) model-following control is constructed for accommodating small faults. The proposed framework takes both advantages of qualitative way and quantitative way of fault detection and accommodation. Moreover, the uncertainty case is investigated and the VS controller is modified. Simulation results of a remotely piloted aircraft with control actuator failures illustrate the performance of the developed algorithm.展开更多
Based on patent cooperation data,this study used a range of city network analysis approaches in order to explore the structure of the Chinese city network which is driven by technological knowledge flows.The results r...Based on patent cooperation data,this study used a range of city network analysis approaches in order to explore the structure of the Chinese city network which is driven by technological knowledge flows.The results revealed the spatial structure,composition structure,hierarchical structure,group structure,and control structure of Chinese city network,as well as its dynamic factors.The major findings are:1) the spatial pattern presents a diamond structure,in which Wuhan is the central city;2) although the invention patent knowledge network is the main part of the broader inter-city innovative cooperation network,it is weaker than the utility model patent;3) as the senior level cities,Beijing,Shanghai and the cities in the Zhujiang(Pearl) River Delta Region show a strong capability of both spreading and controlling technological knowledge;4) whilst a national technology alliance has preliminarily formed,regional alliances have not been adequately established;5) even though the cooperation level amongst weak connection cities is not high,such cities still play an important role in the network as a result of their location within ′structural holes′ in the network;and 6) the major driving forces facilitating inter-city technological cooperation are geographical proximity,hierarchical proximity and technological proximity.展开更多
Under unanticipated natural disasters, any failure of structure components may cause the crash of an entire structure system. Resilience is an important metric for the structure system. Although many resilience metric...Under unanticipated natural disasters, any failure of structure components may cause the crash of an entire structure system. Resilience is an important metric for the structure system. Although many resilience metrics and assessment approaches are proposed for engineering system, they are not suitable for complex structure systems, since the failure mechanisms of them are different under the influences of natural disasters. This paper proposes a novel resilience assessment metric for structure system from a macroscopic perspective, named structure resilience, and develops a corresponding assessment approach based on remaining useful life of key components. Dynamic Bayesian networks(DBNs) and Markov are applied to establish the resilience assessment model. In the degradation process, natural degradation and accelerated degradation are modelled by using Bayesian networks, and then coupled by using DBNs. In the recovery process, the model is established by combining Markov and DBNs. Subsea oil and gas pipelines are adopted to demonstrate the application of the proposed structure metric and assessment approach.展开更多
Scientific collaboration has become an important part of the people-to-people exchanges in the Belt and Road initiative,and remarkable progress has been made since 2013.Taking the 65 countries along the Belt and Road(...Scientific collaboration has become an important part of the people-to-people exchanges in the Belt and Road initiative,and remarkable progress has been made since 2013.Taking the 65 countries along the Belt and Road(BRI countries)as the research areas and using collaborated Web of Science(WOS)core collection papers to construct an international scientific collaboration matrix,the paper explores the spatial structure,hierarchy and formation mechanisms of scientific collaboration networks of 65 countries along the Belt and Road.The results show that:1)Beyond the Belt and Road regions(BRI regions),Central&Eastern Europe,China and West Asia&North Africa have formed a situation in which they all have the most external links with other countries beyond BRI regions.China has the dominant role over other BRI countries in generating scientific links.The overall spatial structure has changed to a skeleton structure consisting of many dense regions,such as Europe,North America,East Asia and Oceania.2)Within the Belt and Road regions,Central&Eastern Europe has become the largest collaboration partner with other sub-regions in BRI countries.The spatial structure of scientific collaboration networks has transformed from the‘dual core’composed of China and the Central&Eastern Europe region,to the‘multi-polarization’composed of‘one zone and multi-points’.3)The hierarchical structure of scientific collaboration networks presents a typical‘core-periphery’structure,and changes from‘single core’to‘double cores’.4)Among the formation mechanisms of scientific collaboration networks,scientific research strength and social proximity play the most important roles,while geographical distance gradually weakens the hindrance to scientific collaboration.展开更多
基金supported by the National Natural Science Foundation of China(No.22373024,22463006,and 52463015)the joint fund between the Gansu Provincial Science and Technology Plan Project(Natural Science Foundation)(No.23JRRA794)the Open Research Fund of the Songshan Lake Materials Laboratory(No.2023SLABFK11)。
文摘The performance of polymer networks is directly determined by their structure.Understanding the network structure offers insights into optimizing material performance,such as elasticity,toughness,and swelling behavior.Herein,in this study we introduce the Dijkstra algorithm from graph theory to characterize polymer networks based on star-shaped multi-armed precursors by employing coarse-grained molecular dynamics simulations coupled with stochastic reaction model.Our research focuses on the structure characteristics of the generated networks,including the number and size of loops,as well as network dispersity characterized by loops.Tracking the number of loops during network generation allows for the identification of the gel point.The size distribution of loops in the network is primarily related to the functionality of the precursors,and the system with fewer precursor arms exhibiting larger average loop sizes.Strain-stress curves indicate that materials with identical functionality and precursor arm lengths generally exhibit superior performance.This method of characterizing network structures helps to refine microscopic structural analysis and contributes to the enhancement and optimization of material properties.
基金Supported by the National Natural Science Foundation of China(U23A20595,52034010,52288101)National Key Research and Development Program of China(2022YFE0203400)+1 种基金Shandong Provincial Natural Science Foundation(ZR2024ZD17)Fundamental Research Funds for the Central Universities(23CX10004A).
文摘Existing imaging techniques cannot simultaneously achieve high resolution and a wide field of view,and manual multi-mineral segmentation in shale lacks precision.To address these limitations,we propose a comprehensive framework based on generative adversarial network(GAN)for characterizing pore structure properties of shale,which incorporates image augmentation,super-resolution reconstruction,and multi-mineral auto-segmentation.Using real 2D and 3D shale images,the framework was assessed through correlation function,entropy,porosity,pore size distribution,and permeability.The application results show that this framework enables the enhancement of 3D low-resolution digital cores by a scale factor of 8,without paired shale images,effectively reconstructing the unresolved fine-scale pores under a low resolution,rather than merely denoising,deblurring,and edge clarification.The trained GAN-based segmentation model effectively improves manual multi-mineral segmentation results,resulting in a strong resemblance to real samples in terms of pore size distribution and permeability.This framework significantly improves the characterization of complex shale microstructures and can be expanded to other heterogeneous porous media,such as carbonate,coal,and tight sandstone reservoirs.
基金financially supported by the National Key R&D Program of China(No.2022YFB3707405)the National Natural Science Foundation of China(Nos.U22A20113,52171137,52071116)+1 种基金Heilongjiang Provincial Natural Science Foundation,China(No.TD2020E001)Heilongjiang Touyan Team Program,China.
文摘To assess the high-temperature creep properties of titanium matrix composites for aircraft skin,the TA15 alloy,TiB/TA15 and TiB/(TA15−Si)composites with network structure were fabricated using low-energy milling and vacuum hot pressing sintering techniques.The results show that introducing TiB and Si can reduce the steady-state creep rate by an order of magnitude at 600℃ compared to the alloy.However,the beneficial effect of Si can be maintained at 700℃ while the positive effect of TiB gradually diminishes due to the pores near TiB and interface debonding.The creep deformation mechanism of the as-sintered TiB/(TA15−Si)composite is primarily governed by dislocation climbing.The high creep resistance at 600℃ can be mainly attributed to the absence of grain boundaryαphases,load transfer by TiB whisker,and the hindrance of dislocation movement by silicides.The low steady-state creep rate at 700℃ is mainly resulted from the elimination of grain boundaryαphases as well as increased dynamic precipitation of silicides andα_(2).
基金supported by Beijing High Level Public Health Technology Talent Construction Project(Discipline Backbone-01-028)the Beijing Municipal Science&Technology Commission(No.Z181100001518005)+2 种基金the Capital's Funds for Health Improvement and Research(CFH 2024-2-1174)the University of Macao(MYRG-GRG2023-00141-FHS,CPG2025-00021-FHS)the Science and Technology Plan Foundation of Guangzhou(No.202201011663).
文摘Background Post-stroke depression(PSD)is a common neuropsychiatric problem associated with a high disease burden and reduced quality of life(QoL).To date,few studies have examined the network structure of depressive symptoms and their relationships with QoL in stroke survivors.Aims This study aimed to explore the network structure of depressive symptoms in PSD and investigate the interrelationships between specific depressive symptoms and QoL among older stroke survivors.Methods This study was based on the 2017–2018 collection of data from a large national survey in China.Depressive symptoms were assessed using the 10-item Centre for Epidemiological Studies Depression Scale(CESD),while QoL was measured with the World Health Organization Quality of Life-brief version.Network analysis was employed to explore the structure of PSD,using expected influence(EI)to identify the most central symptoms and the flow function to investigate the association between depressive symptoms and QoL.Results A total of 1123 stroke survivors were included,with an overall prevalence of depression of 34.3%(n=385;95%confidence interval 31.5%to 37.2%).In the network model of depression,the most central symptoms were CESD3(‘feeling blue/depressed’,EI:1.180),CESD6(‘feeling nervous/fearful’,EI:0.864)and CESD8(‘loneliness’,EI:0.843).In addition,CESD5(‘hopelessness’,EI:−0.195),CESD10(‘sleep disturbances’,EI:−0.169)and CESD4(‘everything was an effort’,EI:−0.150)had strong negative associations with QoL.Conclusion This study found that PSD was common among older Chinese stroke survivors.Given its negative impact on QoL,appropriate interventions targeting central symptoms and those associated with QoL should be developed and implemented for stroke survivors with PSD.
基金supported by the Natural Science Foundation of China(No.U22A2099)the Innovation Project of Guangxi Graduate Education(YCBZ2023130).
文摘Dynamic publishing of social network graphs offers insights into user behavior but brings privacy risks, notably re-identification attacks on evolving data snapshots. Existing methods based on -anonymity can mitigate these attacks but are cumbersome, neglect dynamic protection of community structure, and lack precise utility measures. To address these challenges, we present a dynamic social network graph anonymity scheme with community structure protection (DSNGA-CSP), which achieves the dynamic anonymization process by incorporating community detection. First, DSNGA-CSP categorizes communities of the original graph into three types at each timestamp, and only partitions community subgraphs for a specific category at each updated timestamp. Then, DSNGA-CSP achieves intra-community and inter-community anonymization separately to retain more of the community structure of the original graph at each timestamp. It anonymizes community subgraphs by the proposed novel -composition method and anonymizes inter-community edges by edge isomorphism. Finally, a novel information loss metric is introduced in DSNGA-CSP to precisely capture the utility of the anonymized graph through original information preservation and anonymous information changes. Extensive experiments conducted on five real-world datasets demonstrate that DSNGA-CSP consistently outperforms existing methods, providing a more effective balance between privacy and utility. Specifically, DSNGA-CSP shows an average utility improvement of approximately 30% compared to TAKG and CTKGA for three dynamic graph datasets, according to the proposed information loss metric IL.
基金Projects(50874045,51301194)supported by the National Natural Science Foundation of ChinaProject(2144057)supported by the Natural Science Foundation of Beijing Municipality,China
文摘Effect of network structure on plasticity and fracture mode of Zr?Al?Ni?Cu bulk metallic glasses (BMGs) was investigated. The microstructures of transversal and longitudinal sections were exposed by chemical etching and observed by scanning electron microscopy (SEM). The mechanical properties were examined by room-temperature uniaxial compression test. The results show that both plasticity and fracture mode are significantly affected by the network structure and the alteration occurs when the size of the network structure reaches up to a critical value. When the cell size (dc) of the network structure is ~3μm, Zr-based BMGs characterize in plasticity that decreases with increasingdc. The fracture mode gradually transforms from single 45° shear fracture to double 45° shear fracture and then cleavage fracture with increasingdc. In addition, the mechanisms of the transition of the plasticity and the fracture mode for these Zr-based BMGs are also discussed.
文摘The multilayered structure of the European airport network(EAN),composed of connections and flights between European cities,is analyzed through the k-core decomposition of the connections network.This decomposition allows to identify the core,bridge and periphery layers of the EAN.The core layer includes the best-connected cities,which include important business air traffic destinations.The periphery layer includes cities with lesser connections,which serve low populated areas where air travel is an economic alternative.The remaining cities form the bridge of the EAN,including important leisure travel origins and destinations.The multilayered structure of the EAN affects network robustness,as the EAN is more robust to isolation of nodes of the core,than to the isolation of a combination of core and bridge nodes.
基金supported by the National Natural Science Foundation of China(30371009, 30471218) Science Foundation of Fujian Department of Education (JA03059)
文摘In this paper, the hydrogen bonding network models of konjac glucomannan (KGM) are predicted in the approach of molecular dynamics (MD). These models have been proved by experiments whose results are consistent with those from simulation. The results show that the hydrogen bonding network structures of KGM are stable and the key linking points of hydrogen bonding network are at the O(6) and O(2) positions on KGM ring. Moreover, acety has significant influence on hydrogen bonding network and hydrogen bonding network structures are more stable after deacetylation.
文摘A zinc complex, [Zn(iso)_2(H_2O)_4](iso=C_6H_4NO_2^-), was synthesized and characterized by elemental analysis, thermal analysis and IR spectrum studies. The crystal structure of the complex was determined by X-ray diffraction. The crystal crystallizes in the triclinic system, molecular formula ZnC12H16N2O8, Mr=381.64, space group P with a = 6.338(1), b =6.919(1), c=9.277(1), α=96.28(1), β=104.91(1), γ=112.85(1)°, V=352.12(9)?3, Z=1, Dc=1.80g?cm-3 and F(000)=196, μ =1.791mm-1. The crystal structure was solved by direct methods for final R=0.0204 and Rw=0.0542 for 1258 observed reflections with [Fo>4σ(Fo)]. The crystal structure reveals that zinc ion is trans-octahedral with two pyridyl nitrogens and two aque oxygens at the equational positions and two aqua oxygens at the axial positions. The complex forms a three-dimensional network through intermolecular hydrogen bonds.
文摘This paper deals with a cyclic-periodic structure with a piezoelectric network. In such a system, there is not only mechanical connection but also electrical connection between adjacent periodic sectors. The objective is to learn whether the presence of a piezoelectric network would change the dynamic characteristics of the system. The background of the research is about vibration reduction of a bladed disk in an aero-engine, and the system is simulated by a lumped parameter model. The dynamic equations of the system are derived, and then the analytical solution corresponding to the eigenvalue problem is given. The vibration responses to single traveling wave excitations (EO excitations) and multiple traveling wave excitations (NEO excitations) are studied. The results show that the presence of a piezoelectric network would change the natural frequencies of the system compared with those of the system with the piezoelectric shunt circuit. The forced response is sensitive to the connection type and the elements of the network. An energy analysis of the electro-mechanical coupling system has been performed to understand its dynamic behavior, and the following conclusion is obtained: a vibration reduction to excitations whose primary har- monic component is not zero can be achieved by a parallel piezoelectric network, while a reduction to other excitations should be based on a series piezoelectric network.
基金supported by the National Natural Science Foundation of China(7110111671271170)+1 种基金the Program for New Century Excellent Talents in University(NCET-13-0475)the Basic Research Foundation of NPU(JC20120228)
文摘Finding out reasonable structures from bulky data is one of the difficulties in modeling of Bayesian network (BN), which is also necessary in promoting the application of BN. This pa- per proposes an immune algorithm based method (BN-IA) for the learning of the BN structure with the idea of vaccination. Further- more, the methods on how to extract the effective vaccines from local optimal structure and root nodes are also described in details. Finally, the simulation studies are implemented with the helicopter convertor BN model and the car start BN model. The comparison results show that the proposed vaccines and the BN-IA can learn the BN structure effectively and efficiently.
文摘Vibration monitoring by virtual sensing methods has been well developed for linear timeinvariant structures with limited sensors.However,few methods are proposed for Time-Varying(TV)structures which are inevitable in aerospace engineering.The core of vibration monitoring for TV structures is to describe the TV structural dynamic characteristics with accuracy and efficiency.This paper propose a new method using the Long Short-Term Memory(LSTM)networks for Continuously Variable Configuration Structures(CVCSs),which is an important subclass of TV structures.The configuration parameters are used to represent the time-varying dynamic characteristics by the‘‘freezing"method.The relationship between TV dynamic characteristics and vibration responses is established by LSTM,and can be generalized to estimate the responses with unknown TV processes benefiting from the time translation invariance of LSTM.A numerical example and a liquid-filled pipe experiment are used to test the performance of the proposed method.The results demonstrate that the proposed method can accurately estimate the unmeasured responses for CVCSs to reveal the actual characteristics in time-domain and modal-domain.Besides,the average one-step estimation time of responses is less than the sampling interval.Thus,the proposed method is promising to on-line estimate the important responses of TV structures.
基金supported financially by the National Natural Science Foundation of China(Nos.51505459 and 51675510)the National Basic Research Program of China(No.2013CB632300)
文摘TiAl-based composites reinforced with different high volume fractions of nearly network TizAIC phase have been successfully prepared by mechanical alloying and hot-pressing method. Their microstructure. mechanical and tribological properties have been investigated. Ti2AIC network becomes continuous but the network wall grows thicker with increasing the Ti2AIC content. The continuity and wall size of the network Ti2AIC phase exert a significant influence on the mechanical properties. The bending strength of the composites first increases and then decreases with the Ti2A1C content. The compressive strength of the composite decreases slightly compared to the TiAI alloy, but the hardness is enhanced. Due to the high hardness and load-carrying capacity of the network structure, these composites have the better wear resistance. And this enhancement is more notable at low applied loads and high Ti2A1C content. The mechanisms simulating the role of network Ti2AIC phase on the wear behavior and the wear process of TiAl/Ti2AIC composites at different applied loads have been proposed.
基金supported by the National Natural Science Fundation of China(61573285)the Doctoral Fundation of China(2013ZC53037)
文摘Ordering based search methods have advantages over graph based search methods for structure learning of Bayesian networks in terms on the efficiency. With the aim of further increasing the accuracy of ordering based search methods, we first propose to increase the search space, which can facilitate escaping from the local optima. We present our search operators with majorizations, which are easy to implement. Experiments show that the proposed algorithm can obtain significantly more accurate results. With regard to the problem of the decrease on efficiency due to the increase of the search space, we then propose to add path priors as constraints into the swap process. We analyze the coefficient which may influence the performance of the proposed algorithm, the experiments show that the constraints can enhance the efficiency greatly, while has little effect on the accuracy. The final experiments show that, compared to other competitive methods, the proposed algorithm can find better solutions while holding high efficiency at the same time on both synthetic and real data sets.
基金This work was financially supported by the Key Project for National Science of "9.5" (Reward Ⅱ for National Science and Technol
文摘The nonlinear dynamical behaviors of artificial neural network (ANN) and their application to science and engineering were summarized. The mechanism of two kinds of dynamical processes, i.e. weight dynamics and activation dynamics in neural networks, and the stability of computing in structural analysis and design were stated briefly. It was successfully applied to nonlinear neural network to evaluate the stability of underground stope structure in a gold mine. With the application of BP network, it is proven that the neuro-com- puting is a practical and advanced tool for solving large-scale underground rock engineering problems.
基金Under the auspices of National Natural Science Foundation of China(No.41771130)
文摘In this paper,we use factor analysis to evaluate the urban comprehensive quality of each city in the Lanzhou-Xining(Lan-Xi)urban agglomeration.The time distance was obtained by using GIS spatial analysis,and the structure and pattern of the spatial network were analyzed by using the gravity model and social network analysis method.The results show that:1)The scale effect of the Lan-Xi urban agglomeration is gradually emerging,and it is gradually forming the urban agglomeration with Lanzhou and Xining as the core,the Lan-Xi high-speed railway as the axis,and a high-dense connection.2)Lanzhou and Xining are at the core of the Lan-Xi urban agglomeration,which has a strong attraction and spreads to neighboring cities.3)In the network structure of the Lan-Xi urban agglomeration,Lanzhou,Baiyin,Gaolan,Yuzhong,Yongdeng,Dingxi,Lintao,Xining,Ledu,Huangzhong,Ping’an,Minhe and Datong are located in the network core position,which have the superiority position and lead to the entire regional communication enhancement and the regional integration development.4)This urban agglomeration has significant subgroups,eight tertiary subgroups and four secondary subgroup;the tertiary subgroups which compose secondary subgroup have a close connection and mutually influence each other.5)The Lanzhou Metropolitan Area and the Xining Metropolitan Area have an important impact on the surrounding cities,and the peripheral cities are basically controlled by the central city.The Dingxi subgroup,Lintao-Linxia subgroup,Gonghe subgroup have more structural holes than the subgroups within the Lanzhou Metropolitan Area and the Xining Metropolitan Area,so the peripheral cities of these subgroups have relatively less connection with surrounding cities.
基金This work was supported by National Natural Science Foundation of China (60574083)Key Laboratory of Process Industry Automation, Ministry ofEducation of China (PAL200514)Innovation Scientific Fund of Nanjing University of Aeronautics and Astronautics (Y0508-031)
文摘This paper proposes a novel idea that classifies faults into two different kinds: serious faults and small faults, and treats them with different strategies respectively. A kind of artificial neural network (ANN) is proposed for detecting serious faults, and variable structure (VS) model-following control is constructed for accommodating small faults. The proposed framework takes both advantages of qualitative way and quantitative way of fault detection and accommodation. Moreover, the uncertainty case is investigated and the VS controller is modified. Simulation results of a remotely piloted aircraft with control actuator failures illustrate the performance of the developed algorithm.
基金Under the auspices of Major Project of National Social Science Foundation of China(No.13&ZD027)National Natural Science Foundation of China(No.41201128,71433008)
文摘Based on patent cooperation data,this study used a range of city network analysis approaches in order to explore the structure of the Chinese city network which is driven by technological knowledge flows.The results revealed the spatial structure,composition structure,hierarchical structure,group structure,and control structure of Chinese city network,as well as its dynamic factors.The major findings are:1) the spatial pattern presents a diamond structure,in which Wuhan is the central city;2) although the invention patent knowledge network is the main part of the broader inter-city innovative cooperation network,it is weaker than the utility model patent;3) as the senior level cities,Beijing,Shanghai and the cities in the Zhujiang(Pearl) River Delta Region show a strong capability of both spreading and controlling technological knowledge;4) whilst a national technology alliance has preliminarily formed,regional alliances have not been adequately established;5) even though the cooperation level amongst weak connection cities is not high,such cities still play an important role in the network as a result of their location within ′structural holes′ in the network;and 6) the major driving forces facilitating inter-city technological cooperation are geographical proximity,hierarchical proximity and technological proximity.
基金financially supported by the National Natural Science Foundation of China (Grant No. 51779267)the Taishan Scholars Project (Grant No. tsqn201909063)+3 种基金the Science and Technology Support Plan for Youth Innovation of Universities in Shandong Province (Grant No.2019KJB016)the National Key Research and Development Program of China (Grant No. 2019YFE0105100)the Fundamental Research Funds for the Central Universitiesthe Opening Fund of National Engineering Laboratory of Offshore Geophysical and Exploration Equipment (Grant No.20CX02301A)。
文摘Under unanticipated natural disasters, any failure of structure components may cause the crash of an entire structure system. Resilience is an important metric for the structure system. Although many resilience metrics and assessment approaches are proposed for engineering system, they are not suitable for complex structure systems, since the failure mechanisms of them are different under the influences of natural disasters. This paper proposes a novel resilience assessment metric for structure system from a macroscopic perspective, named structure resilience, and develops a corresponding assessment approach based on remaining useful life of key components. Dynamic Bayesian networks(DBNs) and Markov are applied to establish the resilience assessment model. In the degradation process, natural degradation and accelerated degradation are modelled by using Bayesian networks, and then coupled by using DBNs. In the recovery process, the model is established by combining Markov and DBNs. Subsea oil and gas pipelines are adopted to demonstrate the application of the proposed structure metric and assessment approach.
基金Under the auspices of Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA20010103)。
文摘Scientific collaboration has become an important part of the people-to-people exchanges in the Belt and Road initiative,and remarkable progress has been made since 2013.Taking the 65 countries along the Belt and Road(BRI countries)as the research areas and using collaborated Web of Science(WOS)core collection papers to construct an international scientific collaboration matrix,the paper explores the spatial structure,hierarchy and formation mechanisms of scientific collaboration networks of 65 countries along the Belt and Road.The results show that:1)Beyond the Belt and Road regions(BRI regions),Central&Eastern Europe,China and West Asia&North Africa have formed a situation in which they all have the most external links with other countries beyond BRI regions.China has the dominant role over other BRI countries in generating scientific links.The overall spatial structure has changed to a skeleton structure consisting of many dense regions,such as Europe,North America,East Asia and Oceania.2)Within the Belt and Road regions,Central&Eastern Europe has become the largest collaboration partner with other sub-regions in BRI countries.The spatial structure of scientific collaboration networks has transformed from the‘dual core’composed of China and the Central&Eastern Europe region,to the‘multi-polarization’composed of‘one zone and multi-points’.3)The hierarchical structure of scientific collaboration networks presents a typical‘core-periphery’structure,and changes from‘single core’to‘double cores’.4)Among the formation mechanisms of scientific collaboration networks,scientific research strength and social proximity play the most important roles,while geographical distance gradually weakens the hindrance to scientific collaboration.