期刊文献+
共找到2,165篇文章
< 1 2 109 >
每页显示 20 50 100
Multimodal Gas Detection Using E-Nose and Thermal Images:An Approach Utilizing SRGAN and Sparse Autoencoder
1
作者 Pratik Jadhav Vuppala Adithya Sairam +5 位作者 Niranjan Bhojane Abhyuday Singh Shilpa Gite Biswajeet Pradhan Mrinal Bachute Abdullah Alamri 《Computers, Materials & Continua》 2025年第5期3493-3517,共25页
Electronic nose and thermal images are effective ways to diagnose the presence of gases in real-time realtime.Multimodal fusion of these modalities can result in the development of highly accurate diagnostic systems.T... Electronic nose and thermal images are effective ways to diagnose the presence of gases in real-time realtime.Multimodal fusion of these modalities can result in the development of highly accurate diagnostic systems.The low-cost thermal imaging software produces low-resolution thermal images in grayscale format,hence necessitating methods for improving the resolution and colorizing the images.The objective of this paper is to develop and train a super-resolution generative adversarial network for improving the resolution of the thermal images,followed by a sparse autoencoder for colorization of thermal images and amultimodal convolutional neural network for gas detection using electronic nose and thermal images.The dataset used comprises 6400 thermal images and electronic nose measurements for four classes.A multimodal Convolutional Neural Network(CNN)comprising an EfficientNetB2 pre-trainedmodel was developed using both early and late feature fusion.The Super Resolution Generative Adversarial Network(SRGAN)model was developed and trained on low and high-resolution thermal images.Asparse autoencoder was trained on the grayscale and colorized thermal images.The SRGAN was trained on lowand high-resolution thermal images,achieving a Structural Similarity Index(SSIM)of 90.28,a Peak Signal-to-Noise Ratio(PSNR)of 68.74,and a Mean Absolute Error(MAE)of 0.066.The autoencoder model produced an MAE of 0.035,a Mean Squared Error(MSE)of 0.006,and a Root Mean Squared Error(RMSE)of 0.0705.The multimodal CNN,trained on these images and electronic nose measurements using both early and late fusion techniques,achieved accuracies of 97.89% and 98.55%,respectively.Hence,the proposed framework can be of great aid for the integration with low-cost software to generate high quality thermal camera images and highly accurate detection of gases in real-time. 展开更多
关键词 Thermal imaging gas detection multimodal learning generative models autoencoders
在线阅读 下载PDF
ALSTNet:Autoencoder fused long-and short-term time-series network for the prediction of tunnel structure
2
作者 Bowen Du Haohan Liang +3 位作者 Yuhang Wang Junchen Ye Xuyan Tan Weizhong Chen 《Deep Underground Science and Engineering》 2025年第1期72-82,共11页
It is crucial to predict future mechanical behaviors for the prevention of structural disasters.Especially for underground construction,the structural mechanical behaviors are affected by multiple internal and externa... It is crucial to predict future mechanical behaviors for the prevention of structural disasters.Especially for underground construction,the structural mechanical behaviors are affected by multiple internal and external factors due to the complex conditions.Given that the existing models fail to take into account all the factors and accurate prediction of the multiple time series simultaneously is difficult using these models,this study proposed an improved prediction model through the autoencoder fused long-and short-term time-series network driven by the mass number of monitoring data.Then,the proposed model was formalized on multiple time series of strain monitoring data.Also,the discussion analysis with a classical baseline and an ablation experiment was conducted to verify the effectiveness of the prediction model.As the results indicate,the proposed model shows obvious superiority in predicting the future mechanical behaviors of structures.As a case study,the presented model was applied to the Nanjing Dinghuaimen tunnel to predict the stain variation on a different time scale in the future. 展开更多
关键词 autoencoder deep learning structural health monitoring time-series prediction
原文传递
AESR3D:3D overcomplete autoencoder for trabecular computed tomography super resolution
3
作者 Shuwei Zhang Yefeng Liang +3 位作者 Xingyu Li Shibo Li Xiaofeng Xiong Lihai Zhang 《CAAI Transactions on Intelligence Technology》 2025年第3期652-665,共14页
Osteoporosis is a major cause of bone fracture and can be characterised by both mass loss and microstructure deterioration of the bone.The modern way of osteoporosis assessment is through the measurement of bone miner... Osteoporosis is a major cause of bone fracture and can be characterised by both mass loss and microstructure deterioration of the bone.The modern way of osteoporosis assessment is through the measurement of bone mineral density,which is not able to unveil the pathological condition from the mesoscale aspect.To obtain mesoscale information from computed tomography(CT),the super-resolution(SR)approach for volumetric imaging data is required.A deep learning model AESR3D is proposed to recover high-resolution(HR)Micro-CT from low-resolution Micro-CT and implement an unsupervised segmentation for better trabecular observation and measurement.A new regularisation overcomplete autoencoder framework for the SR task is proposed and theoretically analysed.The best performance is achieved on structural similarity measure of trabecular CT SR task compared with the state-of-the-art models in both natural and medical image SR tasks.The HR and SR images show a high correlation(r=0.996,intraclass correlation coefficients=0.917)on trabecular bone morphological indicators.The results also prove the effectiveness of our regularisation framework when training a large capacity model. 展开更多
关键词 overcomplete autoencoder SEGMENTATION super resolution trabecular CT
在线阅读 下载PDF
A Composite Loss-Based Autoencoder for Accurate and Scalable Missing Data Imputation
4
作者 Thierry Mugenzi Cahit Perkgoz 《Computers, Materials & Continua》 2026年第1期1985-2005,共21页
Missing data presents a crucial challenge in data analysis,especially in high-dimensional datasets,where missing data often leads to biased conclusions and degraded model performance.In this study,we present a novel a... Missing data presents a crucial challenge in data analysis,especially in high-dimensional datasets,where missing data often leads to biased conclusions and degraded model performance.In this study,we present a novel autoencoder-based imputation framework that integrates a composite loss function to enhance robustness and precision.The proposed loss combines(i)a guided,masked mean squared error focusing on missing entries;(ii)a noise-aware regularization term to improve resilience against data corruption;and(iii)a variance penalty to encourage expressive yet stable reconstructions.We evaluate the proposed model across four missingness mechanisms,such as Missing Completely at Random,Missing at Random,Missing Not at Random,and Missing Not at Random with quantile censorship,under systematically varied feature counts,sample sizes,and missingness ratios ranging from 5%to 60%.Four publicly available real-world datasets(Stroke Prediction,Pima Indians Diabetes,Cardiovascular Disease,and Framingham Heart Study)were used,and the obtained results show that our proposed model consistently outperforms baseline methods,including traditional and deep learning-based techniques.An ablation study reveals the additive value of each component in the loss function.Additionally,we assessed the downstream utility of imputed data through classification tasks,where datasets imputed by the proposed method yielded the highest receiver operating characteristic area under the curve scores across all scenarios.The model demonstrates strong scalability and robustness,improving performance with larger datasets and higher feature counts.These results underscore the capacity of the proposed method to produce not only numerically accurate but also semantically useful imputations,making it a promising solution for robust data recovery in clinical applications. 展开更多
关键词 Missing data imputation autoencoder deep learning missing mechanisms
在线阅读 下载PDF
Adapting Convolutional Autoencoder for DDoS Attack Detection via Joint Reconstruction Learning and Refined Anomaly Scoring
5
作者 Seulki Han Sangho Son +1 位作者 Won Sakong Haemin Jung 《Computers, Materials & Continua》 2025年第11期2893-2912,共20页
As cyber threats become increasingly sophisticated,Distributed Denial-of-Service(DDoS)attacks continue to pose a serious threat to network infrastructure,often disrupting critical services through overwhelming traffic... As cyber threats become increasingly sophisticated,Distributed Denial-of-Service(DDoS)attacks continue to pose a serious threat to network infrastructure,often disrupting critical services through overwhelming traffic.Although unsupervised anomaly detection using convolutional autoencoders(CAEs)has gained attention for its ability to model normal network behavior without requiring labeled data,conventional CAEs struggle to effectively distinguish between normal and attack traffic due to over-generalized reconstructions and naive anomaly scoring.To address these limitations,we propose CA-CAE,a novel anomaly detection framework designed to improve DDoS detection through asymmetric joint reconstruction learning and refined anomaly scoring.Our architecture connects two CAEs sequentially with asymmetric filter allocation,which amplifies reconstruction errors for anomalous data while preserving low errors for normal traffic.Additionally,we introduce a scoring mechanism that incorporates exponential decay weighting to emphasize recent anomalies and relative traffic volume adjustment to highlight highrisk instances,enabling more accurate and timely detection.We evaluate CA-CAE on a real-world network traffic dataset collected using Cisco NetFlow,containing over 190,000 normal instances and only 78 anomalous instances—an extremely imbalanced scenario(0.0004% anomalies).We validate the proposed framework through extensive experiments,including statistical tests and comparisons with baseline models.Despite this challenge,our method achieves significant improvement,increasing the F1-score from 0.515 obtained by the baseline CAE to 0.934,and outperforming other models.These results demonstrate the effectiveness,scalability,and practicality of CA-CAE for unsupervised DDoS detection in realistic network environments.By combining lightweight model architecture with a domain-aware scoring strategy,our framework provides a robust solution for early detection of DDoS attacks without relying on labeled attack data. 展开更多
关键词 Anomaly detection DDoS attack detection convolutional autoencoder
在线阅读 下载PDF
A two-stage method with twin autoencoders for the degradation trajectories prediction of lithium-ion batteries
6
作者 Lei Cai Jing Yan +5 位作者 Haiyan Jin Jinhao Meng Jichang Peng Bin Wang Wei Liang Remus Teodorescu 《Journal of Energy Chemistry》 2025年第4期759-772,共14页
To predict the lithium-ion(Li-ion)battery degradation trajectory in the early phase,arranging the maintenance of battery energy storage systems is of great importance.However,under different operation conditions,Li-io... To predict the lithium-ion(Li-ion)battery degradation trajectory in the early phase,arranging the maintenance of battery energy storage systems is of great importance.However,under different operation conditions,Li-ion batteries present distinct degradation patterns,and it is challenging to capture negligible capacity fade in early cycles.Despite the data-driven method showing promising performance,insufficient data is still a big issue since the ageing experiments on the batteries are too slow and expensive.In this study,we proposed twin autoencoders integrated into a two-stage method to predict the early cycles'degradation trajectories.The two-stage method can properly predict the degradation from course to fine.The twin autoencoders serve as a feature extractor and a synthetic data generator,respectively.Ultimately,a learning procedure based on the long-short term memory(LSTM)network is designed to hybridize the learning process between the real and synthetic data.The performance of the proposed method is verified on three datasets,and the experimental results show that the proposed method can achieve accurate predictions compared to its competitors. 展开更多
关键词 Battery degradation trajectory Early prediction autoencoder Synthetic data generation
在线阅读 下载PDF
A Hybrid Wasserstein GAN and Autoencoder Model for Robust Intrusion Detection in IoT
7
作者 Mohammed S.Alshehri Oumaima Saidani +4 位作者 Wajdan Al Malwi Fatima Asiri Shahid Latif Aizaz Ahmad Khattak Jawad Ahmad 《Computer Modeling in Engineering & Sciences》 2025年第6期3899-3920,共22页
The emergence of Generative Adversarial Network(GAN)techniques has garnered significant attention from the research community for the development of Intrusion Detection Systems(IDS).However,conventional GAN-based IDS ... The emergence of Generative Adversarial Network(GAN)techniques has garnered significant attention from the research community for the development of Intrusion Detection Systems(IDS).However,conventional GAN-based IDS models face several challenges,including training instability,high computational costs,and system failures.To address these limitations,we propose a Hybrid Wasserstein GAN and Autoencoder Model(WGAN-AE)for intrusion detection.The proposed framework leverages the stability of WGAN and the feature extraction capabilities of the Autoencoder Model.The model was trained and evaluated using two recent benchmark datasets,5GNIDD and IDSIoT2024.When trained on the 5GNIDD dataset,the model achieved an average area under the precisionrecall curve is 99.8%using five-fold cross-validation and demonstrated a high detection accuracy of 97.35%when tested on independent test data.Additionally,the model is well-suited for deployment on resource-limited Internetof-Things(IoT)devices due to its ability to detect attacks within microseconds and its small memory footprint of 60.24 kB.Similarly,when trained on the IDSIoT2024 dataset,the model achieved an average PR-AUC of 94.09%and an attack detection accuracy of 97.35%on independent test data,with a memory requirement of 61.84 kB.Extensive simulation results demonstrate that the proposed hybrid model effectively addresses the shortcomings of traditional GAN-based IDS approaches in terms of detection accuracy,computational efficiency,and applicability to real-world IoT environments. 展开更多
关键词 autoencoder CYBERSECURITY generative adversarial network Internet of Things intrusion detection system
在线阅读 下载PDF
Dynamic behavior recognition in aerial deployment of multi-segmented foldable-wing drones using variational autoencoders
8
作者 Yilin DOU Zhou ZHOU Rui WANG 《Chinese Journal of Aeronautics》 2025年第6期143-165,共23页
The aerial deployment method enables Unmanned Aerial Vehicles(UAVs)to be directly positioned at the required altitude for their mission.This method typically employs folding technology to improve loading efficiency,wi... The aerial deployment method enables Unmanned Aerial Vehicles(UAVs)to be directly positioned at the required altitude for their mission.This method typically employs folding technology to improve loading efficiency,with applications such as the gravity-only aerial deployment of high-aspect-ratio solar-powered UAVs,and aerial takeoff of fixed-wing drones in Mars research.However,the significant morphological changes during deployment are accompanied by strong nonlinear dynamic aerodynamic forces,which result in multiple degrees of freedom and an unstable character.This hinders the description and analysis of unknown dynamic behaviors,further leading to difficulties in the design of deployment strategies and flight control.To address this issue,this paper proposes an analysis method for dynamic behaviors during aerial deployment based on the Variational Autoencoder(VAE).Focusing on the gravity-only deployment problem of highaspect-ratio foldable-wing UAVs,the method encodes the multi-degree-of-freedom unstable motion signals into a low-dimensional feature space through a data-driven approach.By clustering in the feature space,this paper identifies and studies several dynamic behaviors during aerial deployment.The research presented in this paper offers a new method and perspective for feature extraction and analysis of complex and difficult-to-describe extreme flight dynamics,guiding the research on aerial deployment drones design and control strategies. 展开更多
关键词 Dynamic behavior recognition Aerial deployment technology Variational autoencoder Pattern recognition Multi-rigid-bodydynamics
原文传递
Multi-scale feature fused stacked autoencoder and its application for soft sensor modeling
9
作者 Zhi Li Yuchong Xia +2 位作者 Jian Long Chensheng Liu Longfei Zhang 《Chinese Journal of Chemical Engineering》 2025年第5期241-254,共14页
Deep Learning has been widely used to model soft sensors in modern industrial processes with nonlinear variables and uncertainty.Due to the outstanding ability for high-level feature extraction,stacked autoencoder(SAE... Deep Learning has been widely used to model soft sensors in modern industrial processes with nonlinear variables and uncertainty.Due to the outstanding ability for high-level feature extraction,stacked autoencoder(SAE)has been widely used to improve the model accuracy of soft sensors.However,with the increase of network layers,SAE may encounter serious information loss issues,which affect the modeling performance of soft sensors.Besides,there are typically very few labeled samples in the data set,which brings challenges to traditional neural networks to solve.In this paper,a multi-scale feature fused stacked autoencoder(MFF-SAE)is suggested for feature representation related to hierarchical output,where stacked autoencoder,mutual information(MI)and multi-scale feature fusion(MFF)strategies are integrated.Based on correlation analysis between output and input variables,critical hidden variables are extracted from the original variables in each autoencoder's input layer,which are correspondingly given varying weights.Besides,an integration strategy based on multi-scale feature fusion is adopted to mitigate the impact of information loss with the deepening of the network layers.Then,the MFF-SAE method is designed and stacked to form deep networks.Two practical industrial processes are utilized to evaluate the performance of MFF-SAE.Results from simulations indicate that in comparison to other cutting-edge techniques,the proposed method may considerably enhance the accuracy of soft sensor modeling,where the suggested method reduces the root mean square error(RMSE)by 71.8%,17.1%and 64.7%,15.1%,respectively. 展开更多
关键词 Multi-scale feature fusion Soft sensors Stacked autoencoders Computational chemistry Chemical processes Parameter estimation
在线阅读 下载PDF
Hybrid Memory-Enhanced Autoencoder with Adversarial Training for Anomaly Detection in Virtual Power Plants
10
作者 Yuqiao Liu Chen Pan +1 位作者 YeonJae Oh Chang Gyoon Lim 《Computers, Materials & Continua》 2025年第3期4593-4629,共37页
Virtual Power Plants(VPPs)are integral to modern energy systems,providing stability and reliability in the face of the inherent complexities and fluctuations of solar power data.Traditional anomaly detection methodolo... Virtual Power Plants(VPPs)are integral to modern energy systems,providing stability and reliability in the face of the inherent complexities and fluctuations of solar power data.Traditional anomaly detection methodologies often need to adequately handle these fluctuations from solar radiation and ambient temperature variations.We introduce the Memory-Enhanced Autoencoder with Adversarial Training(MemAAE)model to overcome these limitations,designed explicitly for robust anomaly detection in VPP environments.The MemAAE model integrates three principal components:an LSTM-based autoencoder that effectively captures temporal dynamics to distinguish between normal and anomalous behaviors,an adversarial training module that enhances system resilience across diverse operational scenarios,and a prediction module that aids the autoencoder during the reconstruction process,thereby facilitating precise anomaly identification.Furthermore,MemAAE features a memory mechanism that stores critical pattern information,mitigating overfitting,alongside a dynamic threshold adjustment mechanism that adapts detection thresholds in response to evolving operational conditions.Our empirical evaluation of the MemAAE model using real-world solar power data shows that the model outperforms other comparative models on both datasets.On the Sopan-Finder dataset,MemAAE has an accuracy of 99.17%and an F1-score of 95.79%,while on the Sunalab Faro PV 2017 dataset,it has an accuracy of 97.67%and an F1-score of 93.27%.Significant performance advantages have been achieved on both datasets.These results show that MemAAE model is an effective method for real-time anomaly detection in virtual power plants(VPPs),which can enhance robustness and adaptability to inherent variables in solar power generation. 展开更多
关键词 Virtual power plants(VPPs) anomaly detection memory-enhanced autoencoder adversarial training solar power
在线阅读 下载PDF
Spatially Constrained Variational Autoencoder for Geochemical Data Denoising and Uncertainty Quantification
11
作者 Dazheng Huang Renguang Zuo +1 位作者 Jian Wang Raimon Tolosana-Delgado 《Journal of Earth Science》 2025年第5期2317-2336,共20页
Geochemical survey data are essential across Earth Science disciplines but are often affected by noise,which can obscure important geological signals and compromise subsequent prediction and interpretation.Quantifying... Geochemical survey data are essential across Earth Science disciplines but are often affected by noise,which can obscure important geological signals and compromise subsequent prediction and interpretation.Quantifying prediction uncertainty is hence crucial for robust geoscientific decision-making.This study proposes a novel deep learning framework,the Spatially Constrained Variational Autoencoder(SC-VAE),for denoising geochemical survey data with integrated uncertainty quantification.The SC-VAE incorporates spatial regularization,which enforces spatial coherence by modeling inter-sample relationships directly within the latent space.The performance of the SC-VAE was systematically evaluated against a standard Variational Autoencoder(VAE)using geochemical data from the gold polymetallic district in the northwestern part of Sichuan Province,China.Both models were optimized using Bayesian optimization,with objective functions specifically designed to maintain essential geostatistical characteristics.Evaluation metrics include variogram analysis,quantitative measures of spatial interpolation accuracy,visual assessment of denoised maps,and statistical analysis of data distributions,as well as decomposition of uncertainties.Results show that the SC-VAE achieves superior noise suppression and better preservation of spatial structure compared to the standard VAE,as demonstrated by a significant reduction in the variogram nugget effect and an increased partial sill.The SC-VAE produces denoised maps with clearer anomaly delineation and more regularized data distributions,effectively mitigating outliers and reducing kurtosis.Additionally,it delivers improved interpolation accuracy and spatially explicit uncertainty estimates,facilitating more reliable and interpretable assessments of prediction confidence.The SC-VAE framework thus provides a robust,geostatistically informed solution for enhancing the quality and interpretability of geochemical data,with broad applicability in mineral exploration,environmental geochemistry,and other Earth Science domains. 展开更多
关键词 geochemical data denoising spatially constrained variational autoencoder GEOSTATISTICS bayesian optimization uncertainty analysis GEOCHEMISTRY
原文传递
A new maximum-a-posteriori-based gappy method for physical field reconstruction using proper orthogonal decomposition and autoencoder
12
作者 Wenwei JIANG Chenhao TAN +2 位作者 Yuntao ZHOU Kai YANG Xiaowei GAO 《Applied Mathematics and Mechanics(English Edition)》 2025年第9期1729-1752,I0001-I0007,共31页
A novel gappy technology, gappy autoencoder with proper orthogonal decomposition(Gappy POD-AE), is proposed for reconstructing physical fields from sparse data. High-dimensional data are reduced via proper orthogonal ... A novel gappy technology, gappy autoencoder with proper orthogonal decomposition(Gappy POD-AE), is proposed for reconstructing physical fields from sparse data. High-dimensional data are reduced via proper orthogonal decomposition(POD),and low-dimensional data are used to train an autoencoder(AE). By integrating the POD operator with the decoder, a nonlinear solution form is established and incorporated into a new maximum-a-posteriori(MAP)-based objective for online reconstruction.The numerical results on the two-dimensional(2D) Bhatnagar-Gross-Krook-Boltzmann(BGK-Boltzmann) equation, wave equation, shallow-water equation, and satellite data show that Gappy POD-AE achieves higher accuracy than gappy proper orthogonal decomposition(Gappy POD), especially for the data with slowly decaying singular values,and is more efficient in training than gappy autoencoder(Gappy AE). The MAP-based formulation and new gappy procedure further enhance the reconstruction accuracy. 展开更多
关键词 data reconstruction gappy technology proper orthogonal decomposition(POD) autoencoder(AE) maximum-a-posteriori(MAP)
在线阅读 下载PDF
Wavelet Transform-Based Bayesian Inference Learning with Conditional Variational Autoencoder for Mitigating Injection Attack in 6G Edge Network
13
作者 Binu Sudhakaran Pillai Raghavendra Kulkarni +1 位作者 Venkata Satya Suresh kumar Kondeti Surendran Rajendran 《Computer Modeling in Engineering & Sciences》 2025年第10期1141-1166,共26页
Future 6G communications will open up opportunities for innovative applications,including Cyber-Physical Systems,edge computing,supporting Industry 5.0,and digital agriculture.While automation is creating efficiencies... Future 6G communications will open up opportunities for innovative applications,including Cyber-Physical Systems,edge computing,supporting Industry 5.0,and digital agriculture.While automation is creating efficiencies,it can also create new cyber threats,such as vulnerabilities in trust and malicious node injection.Denialof-Service(DoS)attacks can stop many forms of operations by overwhelming networks and systems with data noise.Current anomaly detection methods require extensive software changes and only detect static threats.Data collection is important for being accurate,but it is often a slow,tedious,and sometimes inefficient process.This paper proposes a new wavelet transformassisted Bayesian deep learning based probabilistic(WT-BDLP)approach tomitigate malicious data injection attacks in 6G edge networks.The proposed approach combines outlier detection based on a Bayesian learning conditional variational autoencoder(Bay-LCVariAE)and traffic pattern analysis based on continuous wavelet transform(CWT).The Bay-LCVariAE framework allows for probabilistic modelling of generative features to facilitate capturing how features of interest change over time,spatially,and for recognition of anomalies.Similarly,CWT allows emphasizing the multi-resolution spectral analysis and permits temporally relevant frequency pattern recognition.Experimental testing showed that the flexibility of the Bayesian probabilistic framework offers a vast improvement in anomaly detection accuracy over existing methods,with a maximum accuracy of 98.21%recognizing anomalies. 展开更多
关键词 Bayesian inference learning automaton convolutional wavelet transform conditional variational autoencoder malicious data injection attack edge environment 6G communication
在线阅读 下载PDF
Reconstruction of pile-up events using a one-dimensional convolutional autoencoder for the NEDA detector array
14
作者 J.M.Deltoro G.Jaworski +15 位作者 A.Goasduff V.González A.Gadea M.Palacz J.J.Valiente-Dobón J.Nyberg S.Casans A.E.Navarro-Antón E.Sanchis G.de Angelis A.Boujrad S.Coudert T.Dupasquier S.Ertürk O.Stezowski R.Wadsworth 《Nuclear Science and Techniques》 2025年第2期62-70,共9页
Pulse pile-up is a problem in nuclear spectroscopy and nuclear reaction studies that occurs when two pulses overlap and distort each other,degrading the quality of energy and timing information.Different methods have ... Pulse pile-up is a problem in nuclear spectroscopy and nuclear reaction studies that occurs when two pulses overlap and distort each other,degrading the quality of energy and timing information.Different methods have been used for pile-up rejection,both digital and analogue,but some pile-up events may contain pulses of interest and need to be reconstructed.The paper proposes a new method for reconstructing pile-up events acquired with a neutron detector array(NEDA)using an one-dimensional convolutional autoencoder(1D-CAE).The datasets for training and testing the 1D-CAE are created from data acquired from the NEDA.The new pile-up signal reconstruction method is evaluated from the point of view of how similar the reconstructed signals are to the original ones.Furthermore,it is analysed considering the result of the neutron-gamma discrimination based on charge comparison,comparing the result obtained from original and reconstructed signals. 展开更多
关键词 1D-CAE autoencoder CAE Convolutional neural network(CNN) Neutron detector Neutron-gamma discrimination(NGD) Machine learning Pulse shape discrimination Pile-up pulse
在线阅读 下载PDF
Bridge damage identification based on convolutional autoencoders and extreme gradient boosting trees 被引量:5
15
作者 Duan Yuanfeng Duan Zhengteng +1 位作者 Zhang Hongmei Cheng J.J.Roger 《Journal of Southeast University(English Edition)》 EI CAS 2024年第3期221-229,共9页
To enhance the accuracy and efficiency of bridge damage identification,a novel data-driven damage identification method was proposed.First,convolutional autoencoder(CAE)was used to extract key features from the accele... To enhance the accuracy and efficiency of bridge damage identification,a novel data-driven damage identification method was proposed.First,convolutional autoencoder(CAE)was used to extract key features from the acceleration signal of the bridge structure through data reconstruction.The extreme gradient boosting tree(XGBoost)was then used to perform analysis on the feature data to achieve damage detection with high accuracy and high performance.The proposed method was applied in a numerical simulation study on a three-span continuous girder and further validated experimentally on a scaled model of a cable-stayed bridge.The numerical simulation results show that the identification errors remain within 2.9%for six single-damage cases and within 3.1%for four double-damage cases.The experimental validation results demonstrate that when the tension in a single cable of the cable-stayed bridge decreases by 20%,the method accurately identifies damage at different cable locations using only sensors installed on the main girder,achieving identification accuracies above 95.8%in all cases.The proposed method shows high identification accuracy and generalization ability across various damage scenarios. 展开更多
关键词 structural health monitoring damage identification convolutional autoencoder(CAE) extreme gradient boosting tree(XGBoost) machine learning
在线阅读 下载PDF
Masked Autoencoders as Single Object Tracking Learners 被引量:1
16
作者 Chunjuan Bo XinChen Junxing Zhang 《Computers, Materials & Continua》 SCIE EI 2024年第7期1105-1122,共18页
Significant advancements have beenwitnessed in visual tracking applications leveragingViT in recent years,mainly due to the formidablemodeling capabilities of Vision Transformer(ViT).However,the strong performance of ... Significant advancements have beenwitnessed in visual tracking applications leveragingViT in recent years,mainly due to the formidablemodeling capabilities of Vision Transformer(ViT).However,the strong performance of such trackers heavily relies on ViT models pretrained for long periods,limitingmore flexible model designs for tracking tasks.To address this issue,we propose an efficient unsupervised ViT pretraining method for the tracking task based on masked autoencoders,called TrackMAE.During pretraining,we employ two shared-parameter ViTs,serving as the appearance encoder and motion encoder,respectively.The appearance encoder encodes randomly masked image data,while the motion encoder encodes randomly masked pairs of video frames.Subsequently,an appearance decoder and a motion decoder separately reconstruct the original image data and video frame data at the pixel level.In this way,ViT learns to understand both the appearance of images and the motion between video frames simultaneously.Experimental results demonstrate that ViT-Base and ViT-Large models,pretrained with TrackMAE and combined with a simple tracking head,achieve state-of-the-art(SOTA)performance without additional design.Moreover,compared to the currently popular MAE pretraining methods,TrackMAE consumes only 1/5 of the training time,which will facilitate the customization of diverse models for tracking.For instance,we additionally customize a lightweight ViT-XS,which achieves SOTA efficient tracking performance. 展开更多
关键词 Visual object tracking vision transformer masked autoencoder visual representation learning
在线阅读 下载PDF
Network Intrusion Detection Model Based on Ensemble of Denoising Adversarial Autoencoder 被引量:1
17
作者 KE Rui XING Bin +1 位作者 SI Zhan-jun ZHANG Ying-xue 《印刷与数字媒体技术研究》 CAS 北大核心 2024年第5期185-194,218,共11页
Network security problems bring many imperceptible threats to the integrity of data and the reliability of device services,so proposing a network intrusion detection model with high reliability is of great research si... Network security problems bring many imperceptible threats to the integrity of data and the reliability of device services,so proposing a network intrusion detection model with high reliability is of great research significance for network security.Due to the strong generalization of invalid features during training process,it is more difficult for single autoencoder intrusion detection model to obtain effective results.A network intrusion detection model based on the Ensemble of Denoising Adversarial Autoencoder(EDAAE)was proposed,which had higher accuracy and reliability compared to the traditional anomaly detection model.Using the adversarial learning idea of Adversarial Autoencoder(AAE),the discriminator module was added to the original model,and the encoder part was used as the generator.The distribution of the hidden space of the data generated by the encoder matched with the distribution of the original data.The generalization of the model to the invalid features was also reduced to improve the detection accuracy.At the same time,the denoising autoencoder and integrated operation was introduced to prevent overfitting in the adversarial learning process.Experiments on the CICIDS2018 traffic dataset showed that the proposed intrusion detection model achieves an Accuracy of 95.23%,which out performs traditional self-encoders and other existing intrusion detection models methods in terms of overall performance. 展开更多
关键词 Intrusion detection Noise-Reducing autoencoder Generative adversarial networks Integrated learning
在线阅读 下载PDF
Unsupervised anomaly detection in shearers via autoencoder networks and multi-scale correlation matrix reconstruction 被引量:1
18
作者 Yang Song Weidong Wang +2 位作者 Yuxin Wu Yuhan Fan Xuan Zhao 《International Journal of Coal Science & Technology》 CSCD 2024年第6期54-64,共11页
As the main equipment of coal mining production,the anomaly detection of shearer is important to ensure production efficiency and coal mine safety.One key challenge lies in the limited or even absence of labeled monit... As the main equipment of coal mining production,the anomaly detection of shearer is important to ensure production efficiency and coal mine safety.One key challenge lies in the limited or even absence of labeled monitoring data for the equipment,coupled with the high costs associated with manual annotation.Another challenge stems from the complex structure of the mining machines,making it difficult to reflect the overall operational state through local anomaly detection.Consequently,the application of decoupled local anomaly detection for mining machines in practical production remains challenging.This paper presents an unsupervised learning-based method for detecting anomalies in shearer.The method includes a module for constructing a Multi-scale Correlation Matrix(MSCM)of mining machine operating conditions,as well as the CNN-ConvLSTM Autoencoder(C-CLA)network.The module for constructing an MSCM enhances the representation of interrelationships between various features of the equipment from different perspectives using multiple correlation analysis methods.The C-CLA network integrates convolutional and convolutional recurrent neural networks,with the convolutional structure extracting local spatial features and the ConvLSTM structure further capturing information from different time scales and feature scales,thereby enhancing the model’s perceptual capabilities towards changes in equipment status.Finally,shearer anomaly detection is achieved through the analysis of reconstructed residual matrices.The rationality and practicality of the proposed method have been validated on our dataset,and the model’s generalization capability has been verified through repeated experiments in similar scenarios.However,due to variations in the working environment of different mining faces and differences in equipment models,implementing detection on other mining faces often requires retraining the model with new data.Furthermore,we compared our method with other anomaly detection techniques,and our detection efficiency was superior by approximately 3%.This method effectively detects anomalies in the shearer. 展开更多
关键词 SHEARER Unsupervised learning autoencoder networks Anomaly detection
在线阅读 下载PDF
A Trust Evaluation Mechanism Based on Autoencoder Clustering Algorithm for Edge Device Access of IoT
19
作者 Xiao Feng Zheng Yuan 《Computers, Materials & Continua》 SCIE EI 2024年第2期1881-1895,共15页
First,we propose a cross-domain authentication architecture based on trust evaluation mechanism,including registration,certificate issuance,and cross-domain authentication processes.A direct trust evaluation mechanism... First,we propose a cross-domain authentication architecture based on trust evaluation mechanism,including registration,certificate issuance,and cross-domain authentication processes.A direct trust evaluation mechanism based on the time decay factor is proposed,taking into account the influence of historical interaction records.We weight the time attenuation factor to each historical interaction record for updating and got the new historical record data.We refer to the beta distribution to enhance the flexibility and adaptability of the direct trust assessment model to better capture time trends in the historical record.Then we propose an autoencoder-based trust clustering algorithm.We perform feature extraction based on autoencoders.Kullback leibler(KL)divergence is used to calculate the reconstruction error.When constructing a convolutional autoencoder,we introduce convolutional neural networks to improve training efficiency and introduce sparse constraints into the hidden layer of the autoencoder.The sparse penalty term in the loss function measures the difference through the KL divergence.Trust clustering is performed based on the density based spatial clustering of applications with noise(DBSCAN)clustering algorithm.During the clustering process,edge nodes have a variety of trustworthy attribute characteristics.We assign different attribute weights according to the relative importance of each attribute in the clustering process,and a larger weight means that the attribute occupies a greater weight in the calculation of distance.Finally,we introduced adaptive weights to calculate comprehensive trust evaluation.Simulation experiments prove that our trust evaluation mechanism has excellent reliability and accuracy. 展开更多
关键词 Cross-domain authentication trust evaluation autoencoder
在线阅读 下载PDF
Contribution Tracking Feature Selection (CTFS) Based on the Fusion of Sparse Autoencoder and Mutual Information
20
作者 Yifan Yu Dazhi Wang +2 位作者 Yanhua Chen Hongfeng Wang Min Huang 《Computers, Materials & Continua》 SCIE EI 2024年第12期3761-3780,共20页
For data mining tasks on large-scale data,feature selection is a pivotal stage that plays an important role in removing redundant or irrelevant features while improving classifier performance.Traditional wrapper featu... For data mining tasks on large-scale data,feature selection is a pivotal stage that plays an important role in removing redundant or irrelevant features while improving classifier performance.Traditional wrapper feature selection methodologies typically require extensive model training and evaluation,which cannot deliver desired outcomes within a reasonable computing time.In this paper,an innovative wrapper approach termed Contribution Tracking Feature Selection(CTFS)is proposed for feature selection of large-scale data,which can locate informative features without population-level evolution.In other words,fewer evaluations are needed for CTFS compared to other evolutionary methods.We initially introduce a refined sparse autoencoder to assess the prominence of each feature in the subsequent wrapper method.Subsequently,we utilize an enhanced wrapper feature selection technique that merges Mutual Information(MI)with individual feature contributions.Finally,a fine-tuning contribution tracking mechanism discerns informative features within the optimal feature subset,operating via a dominance accumulation mechanism.Experimental results for multiple classification performance metrics demonstrate that the proposed method effectively yields smaller feature subsets without degrading classification performance in an acceptable runtime compared to state-of-the-art algorithms across most large-scale benchmark datasets. 展开更多
关键词 Feature selection contribution tracking sparse autoencoders mutual information
在线阅读 下载PDF
上一页 1 2 109 下一页 到第
使用帮助 返回顶部