Neuronal soma segmentation plays a crucial role in neuroscience applications.However,the fine structure,such as boundaries,small-volume neuronal somata and fibers,are commonly present in cell images,which pose a chall...Neuronal soma segmentation plays a crucial role in neuroscience applications.However,the fine structure,such as boundaries,small-volume neuronal somata and fibers,are commonly present in cell images,which pose a challenge for accurate segmentation.In this paper,we propose a 3D semantic segmentation network for neuronal soma segmentation to address this issue.Using an encoding-decoding structure,we introduce a Multi-Scale feature extraction and Adaptive Weighting fusion module(MSAW)after each encoding block.The MSAW module can not only emphasize the fine structures via an upsampling strategy,but also provide pixel-wise weights to measure the importance of the multi-scale features.Additionally,a dynamic convolution instead of normal convolution is employed to better adapt the network to input data with different distributions.The proposed MSAW-based semantic segmentation network(MSAW-Net)was evaluated on three neuronal soma images from mouse brain and one neuronal soma image from macaque brain,demonstrating the efficiency of the proposed method.It achieved an F1 score of 91.8%on Fezf2-2A-CreER dataset,97.1%on LSL-H2B-GFP dataset,82.8%on Thy1-EGFP-Mline dataset,and 86.9%on macaque dataset,achieving improvements over the 3D U-Net model by 3.1%,3.3%,3.9%,and 2.3%,respectively.展开更多
基金supported by the STI2030-Major-Projects(No.2021ZD0200104)the National Natural Science Foundations of China under Grant 61771437.
文摘Neuronal soma segmentation plays a crucial role in neuroscience applications.However,the fine structure,such as boundaries,small-volume neuronal somata and fibers,are commonly present in cell images,which pose a challenge for accurate segmentation.In this paper,we propose a 3D semantic segmentation network for neuronal soma segmentation to address this issue.Using an encoding-decoding structure,we introduce a Multi-Scale feature extraction and Adaptive Weighting fusion module(MSAW)after each encoding block.The MSAW module can not only emphasize the fine structures via an upsampling strategy,but also provide pixel-wise weights to measure the importance of the multi-scale features.Additionally,a dynamic convolution instead of normal convolution is employed to better adapt the network to input data with different distributions.The proposed MSAW-based semantic segmentation network(MSAW-Net)was evaluated on three neuronal soma images from mouse brain and one neuronal soma image from macaque brain,demonstrating the efficiency of the proposed method.It achieved an F1 score of 91.8%on Fezf2-2A-CreER dataset,97.1%on LSL-H2B-GFP dataset,82.8%on Thy1-EGFP-Mline dataset,and 86.9%on macaque dataset,achieving improvements over the 3D U-Net model by 3.1%,3.3%,3.9%,and 2.3%,respectively.