Self-vibrating systems comprised of active materials have great potential for application in the fields of energy harvesting,actuation,bionic instrumentation,and autonomous robotics.However,it is challenging to obtain...Self-vibrating systems comprised of active materials have great potential for application in the fields of energy harvesting,actuation,bionic instrumentation,and autonomous robotics.However,it is challenging to obtain analytical solutions describing these systems,which hinders analysis and design.In this work,we propose a self-vibrating liquid crystal elastomer(LCE)fiber-spring system exposed to spatially-constant gradient light,and determine analytical solutions for its amplitude and period.First,using a dynamic model of LCE,we obtain the equations governing the self-vibration.Then,we analyze two different motion states and elucidate the mechanism of self-vibration.Subsequently,we derive analytical solutions for the amplitude and frequency using the multi-scale method,and compare the solutions with numerical results.The analytical outcomes are shown to be consistent with the numerical calculations,while taking far less computational time.Our findings reveal the utility of the multi-scale method in describing self-vibration,which may contribute to more efficient and accurate analyses of self-vibrating systems.展开更多
According to the theory of similarity, a three-dimensional simulation study on the self-vibrational characteristics of the 2050mm hot-strip finishing mill housing at Baoshan Iron and Steel Complex has been carried out...According to the theory of similarity, a three-dimensional simulation study on the self-vibrational characteristics of the 2050mm hot-strip finishing mill housing at Baoshan Iron and Steel Complex has been carried out. The analysis of the main vibrational modes of the first three orders has also been done by means of holographic interferometry. In addition, the authors have carried out the numerical analysis of finite elements in three dimensions. The comparison of the results of both analyses (simulation analysis and numerical analysis of finite element) shows that they are consistent.展开更多
基金supported by the National Natural Science Foundation of China(No.12172001)the University Natural Science Research Project of Anhui Province(No.2022AH020029)+1 种基金the Anhui Provincial Natural Science Foundation(Nos.2208085Y01 and 2008085QA23)the Housing and Urban-Rural Development Science and Technology Project of Anhui Province(No.2023-YF129),China.
文摘Self-vibrating systems comprised of active materials have great potential for application in the fields of energy harvesting,actuation,bionic instrumentation,and autonomous robotics.However,it is challenging to obtain analytical solutions describing these systems,which hinders analysis and design.In this work,we propose a self-vibrating liquid crystal elastomer(LCE)fiber-spring system exposed to spatially-constant gradient light,and determine analytical solutions for its amplitude and period.First,using a dynamic model of LCE,we obtain the equations governing the self-vibration.Then,we analyze two different motion states and elucidate the mechanism of self-vibration.Subsequently,we derive analytical solutions for the amplitude and frequency using the multi-scale method,and compare the solutions with numerical results.The analytical outcomes are shown to be consistent with the numerical calculations,while taking far less computational time.Our findings reveal the utility of the multi-scale method in describing self-vibration,which may contribute to more efficient and accurate analyses of self-vibrating systems.
文摘According to the theory of similarity, a three-dimensional simulation study on the self-vibrational characteristics of the 2050mm hot-strip finishing mill housing at Baoshan Iron and Steel Complex has been carried out. The analysis of the main vibrational modes of the first three orders has also been done by means of holographic interferometry. In addition, the authors have carried out the numerical analysis of finite elements in three dimensions. The comparison of the results of both analyses (simulation analysis and numerical analysis of finite element) shows that they are consistent.