The problem of secure consensus for multi-agent systems(MASs)is tackled in this study.The self-triggering strategy is designed to enable each healthy agent to estimate its next triggering step at the current triggerin...The problem of secure consensus for multi-agent systems(MASs)is tackled in this study.The self-triggering strategy is designed to enable each healthy agent to estimate its next triggering step at the current triggering step.Thus,each healthy agent only needs to sense and broadcast at its triggering steps,and to monitor the latest broadcast states of their neighbors at their triggering steps.The frequent monitoring is thereby mitigated.Subsequently,a self-triggering secure consensus algorithm is developed to guarantee that the state variables of healthy agents reach consensus despite the influence of faulty agents in the network.The convergence analysis of the proposed method is conducted with graph tools and Lyapunov theory.Numerical examples are given to illustrate the superior performance of the proposed self-triggering secure consensus algorithm compared with the existing methods based on the static and dynamic event-triggering mechanisms.展开更多
Given the rapid development of advanced information systems,microgrids(MGs)suffer from more potential attacks that affect their operational performance.Conventional distributed secondary control with a small,fixed sam...Given the rapid development of advanced information systems,microgrids(MGs)suffer from more potential attacks that affect their operational performance.Conventional distributed secondary control with a small,fixed sampling time period inevitably causes the wasteful use of communication resources.This paper proposes a self-triggered secondary control scheme under perturbations from false data injection(FDI)attacks.We designed a linear clock for each DG to trigger its controller at aperiodic and intermittent instants.Sub-sequently,a hash-based defense mechanism(HDM)is designed for detecting and eliminating malicious data infiltrated in the MGs.With the aid of HDM,a self-triggered control scheme achieves the secondary control objectives even in the presence of FDI attacks.Rigorous theoretical analyses and simulation results indicate that the introduced secondary control scheme significantly reduces communication costs and enhances the resilience of MGs under FDI attacks.展开更多
Set stabilization is one of the essential problems in engineering systems, and self-triggered control(STC) can save the storage space for interactive information, and can be successfully applied in networked control s...Set stabilization is one of the essential problems in engineering systems, and self-triggered control(STC) can save the storage space for interactive information, and can be successfully applied in networked control systems with limited communication resources. In this study, the set stabilization problem and STC design of Boolean control networks are investigated via the semi-tensor product technique. On the one hand, the largest control invariant subset is calculated in terms of the strongly connected components of the state transition graph, by which a graph-theoretical condition for set stabilization is derived. On the other hand, a characteristic function is exploited to determine the triggering mechanism and feasible controls. Based on this, the minimum-time and minimum-triggering open-loop, state-feedback and output-feedback STCs for set stabilization are designed,respectively. As classic applications of self-triggered set stabilization, self-triggered synchronization, self-triggered output tracking and self-triggered output regulation are discussed as well. Additionally, several practical examples are given to illustrate the effectiveness of theoretical results.展开更多
Traditional active power sharing in microgrids,achieved by the distributed average consensus,requires each controller to continuously trigger and communicate with each other,which is a wasteful use of the limited comp...Traditional active power sharing in microgrids,achieved by the distributed average consensus,requires each controller to continuously trigger and communicate with each other,which is a wasteful use of the limited computation and communication resources of the secondary controller.To enhance the efficiency of secondary control,we developed a novel distributed self-triggered active power-sharing control strategy by introducing the signum function and a flexible linear clock.Unlike continuous communication–based controllers,the proposed self-triggered distributed controller prompts distributed generators to perform control actions and share information with their neighbors only at specific time instants monitored by the linear clock.Therefore,this approach results in a significant reduction in both the computation and communication requirements.Moreover,this design naturally avoids Zeno behavior.Furthermore,a modified triggering condition was established to achieve further reductions in computation and communication.The simulation results confirmed that the proposed control scheme achieves distributed active power sharing with very few controller triggers,thereby substantially enhancing the efficacy of secondary control in MGs.展开更多
MV pulsed switch plays a key role as the transfer switch in large electromagnetic pulse simulators. To broaden the range of self-triggering time, a novel spark-discharge pre-ionization switch, in which the main gap el...MV pulsed switch plays a key role as the transfer switch in large electromagnetic pulse simulators. To broaden the range of self-triggering time, a novel spark-discharge pre-ionization switch, in which the main gap electric field is superposed at the trigger gap to let the electrons in its spark channel also become initial electrons, is proposed and tested. The design idea is: as electrons in the spark channel of the trigger gap always exist after its breakdown, the injection time of pre-ionization should have a more negligible effect on reducing the switch jitter. The experiment results under pulses with a rise time of ~100 ns support the above assumptions.When the operating voltage is from ~300 to ~800 kV and the self-triggering time is ~45% to~75% of the peak time, the breakdown time delay jitter is less than 2 ns, and the breakdown voltage jitter is smaller than 1.25%. Under specific self-triggering time, the breakdown time delay jitter is less than 1.5 ns, and the breakdown voltage jitter is smaller than 0.8%.展开更多
In this paper, we study the consensus problem for a class of linear multi-agent systems(MASs) with consideration of input saturation under the self-triggered mechanism. In the context of discrete-time systems, a self-...In this paper, we study the consensus problem for a class of linear multi-agent systems(MASs) with consideration of input saturation under the self-triggered mechanism. In the context of discrete-time systems, a self-triggered strategy is developed to determine the time interval between the adjacent triggers. The triggering condition is designed by using the current sampled consensus error. Furthermore, the consensus control protocol is designed by means of a state feedback approach. It is shown that the considered multi-agent systems can reach consensus with the presented algorithm. Some sufficient conditions are proposed in the form of linear matrix inequalities(LMIs) to show the positively invariant property of the domain of attraction(DOA). Moreover, some sufficient conditions of controller synthesis are provided to enlarge the volume of the DOA and obtain the control gain matrix. A numerical example is simulated to demonstrate the effectiveness of the theoretical analysis results.展开更多
In this paper,a self-triggered consensus filtering is developed for a class of discrete-time distributed filtering systems.Different from existing event-triggered filtering,the self-triggered one does not require to c...In this paper,a self-triggered consensus filtering is developed for a class of discrete-time distributed filtering systems.Different from existing event-triggered filtering,the self-triggered one does not require to continuously judge the trigger condition at each sampling instant and can save computational burden while achieving good state estimation.The triggering policy is presented for pre-computing the next execution time for measurements according to the filter’s own data and the latest released data of its neighbors at the current time.However,a challenging problem is that data will be asynchronously transmitted within the filtering network because each node self-triggers independently.Therefore,a co-design of the self-triggered policy and asynchronous distributed filter is developed to ensure consensus of the state estimates.Finally,a numerical example is given to illustrate the effectiveness of the consensus filtering approach.展开更多
This paper examines the bipartite bounded consensus of multiagent systems(MASs)connected by signed graphs.The considered MAS includes a virtual leader and multiple followers with nonlinear dynamics,where communication...This paper examines the bipartite bounded consensus of multiagent systems(MASs)connected by signed graphs.The considered MAS includes a virtual leader and multiple followers with nonlinear dynamics,where communication link weights between neighboring agents can be negative.To achieve consensus,impulsive control depending on neighbor information is utilized.However,this control may be subjected to deception attacks.To optimize control efficiency by reducing frequency and shortening consensus time,a self-triggered mechanism that determines impulsive instants with variable intervals is proposed.Utilizing graph theory,linear matrix inequality(LMI),and the Lyapunov functional method,conditions for achieving bipartite bounded consensus and the consensus error bound are provided.This study reveals that the graph topology,attack probability,and the maximum value of impulsive intervals are key factors affecting the consensus.Numerical simulations validate the theoretical findings.A comparison of strategies with fixed and self-triggered impulsive intervals highlights the effectiveness of the selftriggered scheme.展开更多
In this study,we investigate the self-triggered impulsive control for stochastic delayed multiagent systems with input saturation.We present a novel self-triggered mechanism using a comparison system method.The next t...In this study,we investigate the self-triggered impulsive control for stochastic delayed multiagent systems with input saturation.We present a novel self-triggered mechanism using a comparison system method.The next triggering instant is predicted on the basis of agent dynamics knowledge and data obtained from the last triggering instant without real-time monitoring;thus,Zeno behavior is naturally avoided.By applying this new self-triggering mechanism,we provide some sufficient conditions for the mean-square consensus based on the stochastic differential theory,Lyapunov function theory,and linear matrix inequalities.Finally,we demonstrate the feasibility of our method by presenting numerical simulation results.展开更多
HFRS(HIAF FRagment Separator) will be the radioactive secondary beam separation line on High-Intensity heavy-ion Accelerator Facility(HIAF) in China. Several TPC detectors, with high count rates, are planned for parti...HFRS(HIAF FRagment Separator) will be the radioactive secondary beam separation line on High-Intensity heavy-ion Accelerator Facility(HIAF) in China. Several TPC detectors, with high count rates, are planned for particle identification and beam monitoring at HFRS. This paper presents an event-driven internal memory and synchronous readout(EDIMS)prototype ASIC chip. The aim is to provide HFRS-TPC with high-precision time and charge measurements with high count rates and a large dynamic range. The first prototype EDIMS chip integrated 16 channels and is fabricated using a 0.18-μm CMOS process. Each channel consists of a charge-sensitive amplifier, fast shaper, slow shaper, peak detect-and-hold circuit, discriminator with time-walk compensation, analog memory, and FIFO. The token ring is used for clock-synchronous readout. The chip is taped and tested.展开更多
This study investigates the consensus problem of a nonlinear discrete-time multi-agent system(MAS)under bounded additive disturbances.We propose a self-triggered robust distributed model predictive control consensus a...This study investigates the consensus problem of a nonlinear discrete-time multi-agent system(MAS)under bounded additive disturbances.We propose a self-triggered robust distributed model predictive control consensus algorithm.A new cost function is constructed and MAS is coupled through this function.Based on the proposed cost function,a self-triggered mechanism is adopted to reduce the communication load.Furthermore,to overcome additive disturbances,a local minimum-maximum optimization problem under the worst-case scenario is solved iteratively by the model predictive controller of each agent.Sufficient conditions are provided to guarantee the iterative feasibility of the algorithm and the consensus of the closed-loop MAS.For each agent,we provide a concrete form of compatibility constraint and a consensus error terminal region.Numerical examples are provided to illustrate the effectiveness and correctness of the proposed algorithm.展开更多
Demand response has been recognized as a valuable functionality of power systems for mitigating power imbalances.This paper proposes a hierarchical control strategy among the distribution system operator(DSO),load agg...Demand response has been recognized as a valuable functionality of power systems for mitigating power imbalances.This paper proposes a hierarchical control strategy among the distribution system operator(DSO),load aggregators(LAs),and thermostatically controlled loads(TCLs);the strategy includes a scheduling layer and an executive layer to provide load regulation.In the scheduling layer,the DSO(leader)offers compensation price(CP)strategies,and the LAs(followers)respond to CP strategies with available regulation power(ARP)strategies.Profits of the DSO and LAs are modeled according to their behaviors during the load regulation process.Stackelberg game is adopted to capture interactions among the players and leader and to obtain the optimal strategy for each participant to achieve utility.Moreover,considering inevitable random factors in practice,e.g.,renewable generation and behavior of users,two different stochastic models based on sample average approximation(SAA)and parameter modification are formulated with improved scheduling accuracy.In the executive layer,distributed TCLs are triggered based on strategies determined in the scheduling layer.A self-triggering method that does not violate user privacy is presented,where TCLs receive external signals from the LA and independently determine whether to alter their operation statuses.Numerical simulations are performed on the modified IEEE-24 bus system to verify effectiveness of the proposed strategy.展开更多
This paper reports latest developments in event-triggered and self-triggered control of uncertain nonholonomic systems in the perturbed chained form.In order to tackle the effects of drift uncertain nonlinearities,non...This paper reports latest developments in event-triggered and self-triggered control of uncertain nonholonomic systems in the perturbed chained form.In order to tackle the effects of drift uncertain nonlinearities,nonholonomic constraints and nonsmooth aperiodic sampling in eventbased control,a novel systematic design scheme is proposed by integrating set-valued maps with stateseparation and state-scaling techniques.The stability analysis of the closed-loop event-triggered control system is based on the cyclic-small-gain techniques that overcome the limitation of Lyapunov theory in the construction of Lyapunov functions for nonsmooth dynamical systems and enjoy inherent robustness properties due to the use of gain-based characterization of robust stability.More specifically,the closed-loop event-triggered control system is transformed into an interconnection of multiple input-tostate stable systems,to which the cyclic-small-gain theorem is applied for robust stability analysis.New self-triggered mechanisms are also developed as natural extensions of the event-triggered control result.The proposed event-based control design approach is new and original even when the system model is reduced to the ideal unperturbed chained form.Interestingly,the proposed methodology is also applicable to a broader class of nonholonomic systems subject to state and input-dependent uncertainties.The efficacy of the obtained event-triggered controllers is validated by a benchmark example of mobile robots subject to parametric uncertainties and a measurement noise such as bias in the orientation.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.62173147,62303030,62403028 and U2233212)Beijing Municipal Natural Science Foundation(Grant No.L221008)+1 种基金Open Fund of Science and Technology on Thermal Energy and Power Laboratory(Grant No.TPL2022C02)Postdoctoral Fellowship Program of CPSF(Grant No.GZC20233377)
文摘The problem of secure consensus for multi-agent systems(MASs)is tackled in this study.The self-triggering strategy is designed to enable each healthy agent to estimate its next triggering step at the current triggering step.Thus,each healthy agent only needs to sense and broadcast at its triggering steps,and to monitor the latest broadcast states of their neighbors at their triggering steps.The frequent monitoring is thereby mitigated.Subsequently,a self-triggering secure consensus algorithm is developed to guarantee that the state variables of healthy agents reach consensus despite the influence of faulty agents in the network.The convergence analysis of the proposed method is conducted with graph tools and Lyapunov theory.Numerical examples are given to illustrate the superior performance of the proposed self-triggering secure consensus algorithm compared with the existing methods based on the static and dynamic event-triggering mechanisms.
基金supported by Hainan Provincial Natural Science Foundation of China(No.524RC532)Research Startup Funding from Hainan Institute of Zhejiang University(No.0210-6602-A12202)Project of Sanya Yazhou Bay Science and Technology City(No.SKJC-2022-PTDX-009/010/011).
文摘Given the rapid development of advanced information systems,microgrids(MGs)suffer from more potential attacks that affect their operational performance.Conventional distributed secondary control with a small,fixed sampling time period inevitably causes the wasteful use of communication resources.This paper proposes a self-triggered secondary control scheme under perturbations from false data injection(FDI)attacks.We designed a linear clock for each DG to trigger its controller at aperiodic and intermittent instants.Sub-sequently,a hash-based defense mechanism(HDM)is designed for detecting and eliminating malicious data infiltrated in the MGs.With the aid of HDM,a self-triggered control scheme achieves the secondary control objectives even in the presence of FDI attacks.Rigorous theoretical analyses and simulation results indicate that the introduced secondary control scheme significantly reduces communication costs and enhances the resilience of MGs under FDI attacks.
基金supported by the National Natural Science Foundation of China (62273201,62173209,72134004,62303170)the Research Fund for the Taishan Scholar Project of Shandong Province of China (TSTP20221103)。
文摘Set stabilization is one of the essential problems in engineering systems, and self-triggered control(STC) can save the storage space for interactive information, and can be successfully applied in networked control systems with limited communication resources. In this study, the set stabilization problem and STC design of Boolean control networks are investigated via the semi-tensor product technique. On the one hand, the largest control invariant subset is calculated in terms of the strongly connected components of the state transition graph, by which a graph-theoretical condition for set stabilization is derived. On the other hand, a characteristic function is exploited to determine the triggering mechanism and feasible controls. Based on this, the minimum-time and minimum-triggering open-loop, state-feedback and output-feedback STCs for set stabilization are designed,respectively. As classic applications of self-triggered set stabilization, self-triggered synchronization, self-triggered output tracking and self-triggered output regulation are discussed as well. Additionally, several practical examples are given to illustrate the effectiveness of theoretical results.
基金Key Laboratory of Modern Power System Simulation and Control&Renewable Energy Technology(Northeast Electric Power University)Open Fund(MPSS2023⁃01)National Natural Science Foundation of China(No.52477133)+2 种基金Hainan Provincial Natural Science Foundation of China(No.524RC532)Research Startup Funding from Hainan Institute of Zhejiang University(No.0210-6602-A12202)Project of Sanya Yazhou Bay Science and Technology City(No.SKJC-2022-PTDX-009/010/011).
文摘Traditional active power sharing in microgrids,achieved by the distributed average consensus,requires each controller to continuously trigger and communicate with each other,which is a wasteful use of the limited computation and communication resources of the secondary controller.To enhance the efficiency of secondary control,we developed a novel distributed self-triggered active power-sharing control strategy by introducing the signum function and a flexible linear clock.Unlike continuous communication–based controllers,the proposed self-triggered distributed controller prompts distributed generators to perform control actions and share information with their neighbors only at specific time instants monitored by the linear clock.Therefore,this approach results in a significant reduction in both the computation and communication requirements.Moreover,this design naturally avoids Zeno behavior.Furthermore,a modified triggering condition was established to achieve further reductions in computation and communication.The simulation results confirmed that the proposed control scheme achieves distributed active power sharing with very few controller triggers,thereby substantially enhancing the efficacy of secondary control in MGs.
文摘MV pulsed switch plays a key role as the transfer switch in large electromagnetic pulse simulators. To broaden the range of self-triggering time, a novel spark-discharge pre-ionization switch, in which the main gap electric field is superposed at the trigger gap to let the electrons in its spark channel also become initial electrons, is proposed and tested. The design idea is: as electrons in the spark channel of the trigger gap always exist after its breakdown, the injection time of pre-ionization should have a more negligible effect on reducing the switch jitter. The experiment results under pulses with a rise time of ~100 ns support the above assumptions.When the operating voltage is from ~300 to ~800 kV and the self-triggering time is ~45% to~75% of the peak time, the breakdown time delay jitter is less than 2 ns, and the breakdown voltage jitter is smaller than 1.25%. Under specific self-triggering time, the breakdown time delay jitter is less than 1.5 ns, and the breakdown voltage jitter is smaller than 0.8%.
基金supported by the National Natural Science Foundation of China(61921004,61520106009,U1713209,61973074)the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘In this paper, we study the consensus problem for a class of linear multi-agent systems(MASs) with consideration of input saturation under the self-triggered mechanism. In the context of discrete-time systems, a self-triggered strategy is developed to determine the time interval between the adjacent triggers. The triggering condition is designed by using the current sampled consensus error. Furthermore, the consensus control protocol is designed by means of a state feedback approach. It is shown that the considered multi-agent systems can reach consensus with the presented algorithm. Some sufficient conditions are proposed in the form of linear matrix inequalities(LMIs) to show the positively invariant property of the domain of attraction(DOA). Moreover, some sufficient conditions of controller synthesis are provided to enlarge the volume of the DOA and obtain the control gain matrix. A numerical example is simulated to demonstrate the effectiveness of the theoretical analysis results.
基金supported by the National Natural Science Foundation of China(Nos.61991402,62073154)the 111 Project(B12018)the Scientific Research Cooperation and High-Level Personnel Training Programs with New Zealand(1252011004200040).
文摘In this paper,a self-triggered consensus filtering is developed for a class of discrete-time distributed filtering systems.Different from existing event-triggered filtering,the self-triggered one does not require to continuously judge the trigger condition at each sampling instant and can save computational burden while achieving good state estimation.The triggering policy is presented for pre-computing the next execution time for measurements according to the filter’s own data and the latest released data of its neighbors at the current time.However,a challenging problem is that data will be asynchronously transmitted within the filtering network because each node self-triggers independently.Therefore,a co-design of the self-triggered policy and asynchronous distributed filter is developed to ensure consensus of the state estimates.Finally,a numerical example is given to illustrate the effectiveness of the consensus filtering approach.
基金supported by the National Natural Science Foundation of China(Grant No.62373165)the Natural Science Foundation of Jiangsu Province(Grant No.BK20181342)。
文摘This paper examines the bipartite bounded consensus of multiagent systems(MASs)connected by signed graphs.The considered MAS includes a virtual leader and multiple followers with nonlinear dynamics,where communication link weights between neighboring agents can be negative.To achieve consensus,impulsive control depending on neighbor information is utilized.However,this control may be subjected to deception attacks.To optimize control efficiency by reducing frequency and shortening consensus time,a self-triggered mechanism that determines impulsive instants with variable intervals is proposed.Utilizing graph theory,linear matrix inequality(LMI),and the Lyapunov functional method,conditions for achieving bipartite bounded consensus and the consensus error bound are provided.This study reveals that the graph topology,attack probability,and the maximum value of impulsive intervals are key factors affecting the consensus.Numerical simulations validate the theoretical findings.A comparison of strategies with fixed and self-triggered impulsive intervals highlights the effectiveness of the selftriggered scheme.
基金supported by the National Natural Science Foundation of China(Grant Nos.62433018,62033003,62276214)。
文摘In this study,we investigate the self-triggered impulsive control for stochastic delayed multiagent systems with input saturation.We present a novel self-triggered mechanism using a comparison system method.The next triggering instant is predicted on the basis of agent dynamics knowledge and data obtained from the last triggering instant without real-time monitoring;thus,Zeno behavior is naturally avoided.By applying this new self-triggering mechanism,we provide some sufficient conditions for the mean-square consensus based on the stochastic differential theory,Lyapunov function theory,and linear matrix inequalities.Finally,we demonstrate the feasibility of our method by presenting numerical simulation results.
基金supported by the National Natural Science Foundation of China (Nos. 11975293 and 12105338)the Strategic Priority Research Program of Chinese Academy of Science (Nos. XDB 34040200 and XPB 23)the Technology Innovation Project of Instrument and Equipment Function Development of Chinese Academy of Sciences (No. 2023g102)。
文摘HFRS(HIAF FRagment Separator) will be the radioactive secondary beam separation line on High-Intensity heavy-ion Accelerator Facility(HIAF) in China. Several TPC detectors, with high count rates, are planned for particle identification and beam monitoring at HFRS. This paper presents an event-driven internal memory and synchronous readout(EDIMS)prototype ASIC chip. The aim is to provide HFRS-TPC with high-precision time and charge measurements with high count rates and a large dynamic range. The first prototype EDIMS chip integrated 16 channels and is fabricated using a 0.18-μm CMOS process. Each channel consists of a charge-sensitive amplifier, fast shaper, slow shaper, peak detect-and-hold circuit, discriminator with time-walk compensation, analog memory, and FIFO. The token ring is used for clock-synchronous readout. The chip is taped and tested.
基金Project supported by the National Natural Science Foundation of China(Nos.61973074,U1713209,61520106009,61533008,and 61921004)the National Key R&D Program of China(No.2018AAA0101400)the Science and Technology on Information System Engineering Laboratory,China(No.05201902)。
文摘This study investigates the consensus problem of a nonlinear discrete-time multi-agent system(MAS)under bounded additive disturbances.We propose a self-triggered robust distributed model predictive control consensus algorithm.A new cost function is constructed and MAS is coupled through this function.Based on the proposed cost function,a self-triggered mechanism is adopted to reduce the communication load.Furthermore,to overcome additive disturbances,a local minimum-maximum optimization problem under the worst-case scenario is solved iteratively by the model predictive controller of each agent.Sufficient conditions are provided to guarantee the iterative feasibility of the algorithm and the consensus of the closed-loop MAS.For each agent,we provide a concrete form of compatibility constraint and a consensus error terminal region.Numerical examples are provided to illustrate the effectiveness and correctness of the proposed algorithm.
基金supported by the Natural Science Foundation of Jiangsu Province(SBK2023043599)Introduction of teacher research start-up fees(423167)National Natural Science Foundation of China(51837004,U2066601)。
文摘Demand response has been recognized as a valuable functionality of power systems for mitigating power imbalances.This paper proposes a hierarchical control strategy among the distribution system operator(DSO),load aggregators(LAs),and thermostatically controlled loads(TCLs);the strategy includes a scheduling layer and an executive layer to provide load regulation.In the scheduling layer,the DSO(leader)offers compensation price(CP)strategies,and the LAs(followers)respond to CP strategies with available regulation power(ARP)strategies.Profits of the DSO and LAs are modeled according to their behaviors during the load regulation process.Stackelberg game is adopted to capture interactions among the players and leader and to obtain the optimal strategy for each participant to achieve utility.Moreover,considering inevitable random factors in practice,e.g.,renewable generation and behavior of users,two different stochastic models based on sample average approximation(SAA)and parameter modification are formulated with improved scheduling accuracy.In the executive layer,distributed TCLs are triggered based on strategies determined in the scheduling layer.A self-triggering method that does not violate user privacy is presented,where TCLs receive external signals from the LA and independently determine whether to alter their operation statuses.Numerical simulations are performed on the modified IEEE-24 bus system to verify effectiveness of the proposed strategy.
基金the National Natural Science Foundation of China Grant Nos.61633007and U1911401the National Natural Science Foundation of China under Grant No.EPCN1903781。
文摘This paper reports latest developments in event-triggered and self-triggered control of uncertain nonholonomic systems in the perturbed chained form.In order to tackle the effects of drift uncertain nonlinearities,nonholonomic constraints and nonsmooth aperiodic sampling in eventbased control,a novel systematic design scheme is proposed by integrating set-valued maps with stateseparation and state-scaling techniques.The stability analysis of the closed-loop event-triggered control system is based on the cyclic-small-gain techniques that overcome the limitation of Lyapunov theory in the construction of Lyapunov functions for nonsmooth dynamical systems and enjoy inherent robustness properties due to the use of gain-based characterization of robust stability.More specifically,the closed-loop event-triggered control system is transformed into an interconnection of multiple input-tostate stable systems,to which the cyclic-small-gain theorem is applied for robust stability analysis.New self-triggered mechanisms are also developed as natural extensions of the event-triggered control result.The proposed event-based control design approach is new and original even when the system model is reduced to the ideal unperturbed chained form.Interestingly,the proposed methodology is also applicable to a broader class of nonholonomic systems subject to state and input-dependent uncertainties.The efficacy of the obtained event-triggered controllers is validated by a benchmark example of mobile robots subject to parametric uncertainties and a measurement noise such as bias in the orientation.