Mn^(2+)doping has been adopted as an efficient approach to regulating the luminescence properties of halide perovskite nano-crystals(NCs).However,it is still difficult to understand the interplay of Mn^(2+)luminescenc...Mn^(2+)doping has been adopted as an efficient approach to regulating the luminescence properties of halide perovskite nano-crystals(NCs).However,it is still difficult to understand the interplay of Mn^(2+)luminescence and the matrix self-trapped exciton(STE)emission therein.In this study,Mn^(2+)-doped CsCdCl_(3) NCs are prepared by hot injection,in which CsCdCl_(3) is selected because of its unique crystal structure suitable for STE emission.The blue emission at 441 nm of undoped CsCdCl_(3) NCs originates from the defect states in the NCs.Mn^(2+)doping promotes lattice distortion of CsCdCl_(3) and generates bright orange-red light emission at 656 nm.The en-ergy transfer from the STEs of CsCdCl_(3) to the excited levels of the Mn^(2+)ion is confirmed to be a significant factor in achieving efficient luminescence in CsCdCl_(3):Mn^(2+)NCs.This work highlights the crucial role of energy transfer from STEs to Mn^(2+)dopants in Mn^(2+)-doped halide NCs and lays the groundwork for modifying the luminescence of other metal halide perovskite NCs.展开更多
Ternary metal halides based on Cu(I)and Ag(I)have attracted intensive attention in optoelectronic applications due to their excellent luminescent properties,low toxicity,and robust stability.While the self-trapped exc...Ternary metal halides based on Cu(I)and Ag(I)have attracted intensive attention in optoelectronic applications due to their excellent luminescent properties,low toxicity,and robust stability.While the self-trapped excitons(STEs)emission mechanisms of Cu(I)halides are well understood,the STEs in Ag(I)halides remain less thoroughly explored.This study explores the STE emission efficiency within the A_(2)AgX_(3)(A=Rb,Cs;X=Cl,Br,I)system by identifying three distinct STE states in each material and calculating their configuration coordinate diagrams.We find that the STE emission efficiency in this system is mainly determined by STE stability and influenced by self-trapping and quenching barriers.Moreover,we investigate the impact of structural compactness on emission efficiency and find that the excessive electron–phonon coupling in this system can be reduced by increasing the structural compactness.The atomic packing factor is identified as a low-cost and effective descriptor for predicting STE emission efficiency in both Cs_(2)AgX_(3) and Rb_(2)AgX_(3) systems.These findings can deepen our understanding of STE behavior in metal halide materials and offer valuable insights for the design of efficient STE luminescent materials.The datasets presented in this paper are openly available in Science Data Bank at https://doi.org/10.57760/sciencedb.12094.展开更多
Light-emitting diodes based on lead halide perovskite have attracted great attention due to their outstanding performance.However,their application is plagued by the toxicity of Pb and the poor stability.Herein novel ...Light-emitting diodes based on lead halide perovskite have attracted great attention due to their outstanding performance.However,their application is plagued by the toxicity of Pb and the poor stability.Herein novel copper-based all inorganic perovskite CsCu2I3 with much enhanced stability has been reported with a potential photoluminescence quantum yield(PLQY)over 20%and self-trapped excitons(STE).By taking advantage of its extraordinary thermal stability,we successfully fabricate high-quality CsCu2I3 film through direct vacuum-based deposition(VBD)of CsCu2I3 powder.The resulting film shows almost the same PLQY with the synthesized powder,as well as excellent uniformity and stability.The perovskite light-emitting diodes(Pe-LED)based on the evaporated CsCu2I3 emitting layer achieve a luminescence of 10 cd/m2 and an external quantum efficiency(EQE)of 0.02%.To the best of our knowledge,this is the first CsCu2I3 Pe-LED fabricated by VBD with STE property,which offers a new avenue for lead-free Pe-LED.展开更多
Zero-dimensional perovskite materials,characterized by broadband emission caused by self-trapped excitons,are promising materials for stimuli-responsive and photo-writeable encryption.However,existing research is focu...Zero-dimensional perovskite materials,characterized by broadband emission caused by self-trapped excitons,are promising materials for stimuli-responsive and photo-writeable encryption.However,existing research is focused on the effects of structural phase transitions on photophysical properties,and lacks in-depth understanding of the mechanisms of self-trapped excitons emission.Here,we demonstrate that the dehydration reaction in zero-dimensional antimony halide clusters significantly enhances the self-trapped excitons emission without inducing structural phase transition,resulting in a substantial increase in photoluminescence(PL)quantum yield from 3.5%to 91.4%.In-situ X-ray diffraction and PL techniques were employed to shed light on the relationship between the crystal structure and radiative recombination,demonstrating the introduction of rich lattice distortion during the dehydration process.Temperature-dependent PL spectra and transient absorption spectra suggest that the lattice distortion causes the moderate electron-phonon coupling strength and high exciton binding energy,facilitating self-trapped excitons to relax from the non-radiative recombination singlet state to the radiative recombination triplet state,corresponding to the enhanced emission intensity.As a proof of concept,several switchable PL applications have been established in scenarios such as anti-counterfeiting,rewritable luminescent paper,and humidity sensing.This finding elucidates the emission mechanism of self-trapped excitons and provides a novel avenue for designing switchable luminescent materials.展开更多
Zero-dimensional metal halides are of unique structures and tunable photoluminescence properties,showing great potential applications such as light-emitting diodes(LEDs)and sensing.Herein,we successfully synthesized C...Zero-dimensional metal halides are of unique structures and tunable photoluminescence properties,showing great potential applications such as light-emitting diodes(LEDs)and sensing.Herein,we successfully synthesized Cu^(+)doped(MA)_(2)ZnCl_(4)metal halides by a slow evaporation solvent method.The introduction of Cu^(+)results in sky-blue self-trapped exciton emission in(MA)_(2)ZnCl_(4) at 486 nm at room temperature,and a photoluminescence quantum yield is as high as 54.9%.Interestingly,at low temperatures,Cu^(+)-doped(MA)_(2)ZnCl_(4) exhibits two emission peaks located at 482 and 605 nm,respectively.This temperaturedependent dual emission indicates two excited state structures that exist on the triplet excited-state potential energy surface.In addition,the temperature sensor we fitted has good performance(Sr=1.65%·K^(−1)),which is the first attempt in Cu^(+) doped Znbased metal halides.Our work enriches the family of sky-blue metal halides and provides a promising strategy for building skyblue LEDs.展开更多
The vacancy-ordered quadruple perovskite Cs_(4)CdBi_(2)Cl_(12),as a newly-emerging lead-free perovskite system,has attracted great research interest due to its excellent stability and direct band gap.However,the poor ...The vacancy-ordered quadruple perovskite Cs_(4)CdBi_(2)Cl_(12),as a newly-emerging lead-free perovskite system,has attracted great research interest due to its excellent stability and direct band gap.However,the poor luminescence performance limits its application in light-emitting diodes(LEDs)and other fields.Herein,for the first time,an Ag^(+)ion doping strategy was proposed to greatly improve the emission performance of Cs_(4)CdBi_(2)Cl_(12) synthesized by hydrothermal method.Density functional theory calculations combined with experimental results evidence that the weak orange emission from Cs_(4)CdBi_(2)Cl_(12) is attributed to the phonon scattering and energy level crossing due to the large lattice distortion under excited states.Fortunately,Ag^(+)ion doping breaks the intrinsic crystal field environment of Cs_(4)CdBi_(2)Cl_(12),suppresses the crossover between ground and excited states,and reduces the energy loss in the form of nonradiative recombination.At a critical doping amount of 0.8%,the emission intensity of Cs_(4)CdBi_(2)Cl_(12):Ag^(+)reaches the maximum,about eight times that of the pristine sample.Moreover,the doped Cs_(4)CdBi_(2)Cl_(12) still maintains excellent stability against heat,ultraviolet irradiation,and environmental oxygen/moisture.The above advantages make it possible for this material to be used as solid-state phosphors for white LEDs applications,and the Commission International de I’Eclairage color coordinates of(0.31,0.34)and high color rendering index of 90.6 were achieved.More importantly,the white LED demonstrates remarkable operation stability in air ambient,showing almost no emission decay after a long working time for 48 h.We believe that this study puts forward an effective ion-doping strategy for emission enhancement of vacancy-ordered quadruple perovskite Cs_(4)CdBi_(2)Cl_(12),highlighting its great potential as efficient emitter compatible for practical applications.展开更多
With strong electron-phonon coupling,the self-trapped excitons are usually formed in materials,which leads to the local lattice distortion and localized excitons.The self-trapping strongly depends on the dimensionalit...With strong electron-phonon coupling,the self-trapped excitons are usually formed in materials,which leads to the local lattice distortion and localized excitons.The self-trapping strongly depends on the dimensionality of the materials.In the three dimensional case,there is a potential barrier for self-trapping,whereas no such barrier is present for quasi-one-dimensional systems.Two-dimensional(2D)systems are marginal cases with a much lower potential barrier or nonex istent potential barrier for the self-trapping,leading to the easier formation of self-trapped states.Self-trapped excitons emission exhibits a broadband emission with a large Stokes shift below the bandgap.2D perovskites are a class of layered structure material with unique optical properties and would find potential promising optoelectronic.In particular,self-trapped excitons are present in 2D per-ovskites and can significantly influence the optical and electrical properties of 2D perovskites due to the soft characteristic and strong electron-phonon interaction.Here,we summarized the luminescence characteristics,origins,and characterizations of self-trapped excitons in 2D perovskites and finally gave an introduction to their applications in optoelectronics.展开更多
Perovskite variants have attracted wide interest because of the lead-free nature and strong self-trapped exciton (STE) emission. Divalent Sn(II) in CsSnX3 perovskites is easily oxidized to tetravalent Sn(IV), and the ...Perovskite variants have attracted wide interest because of the lead-free nature and strong self-trapped exciton (STE) emission. Divalent Sn(II) in CsSnX3 perovskites is easily oxidized to tetravalent Sn(IV), and the resulted Cs2SnCl6 vacancy-ordered perovskite variant exhibits poor photoluminescence property although it has a direct band gap. Controllable doping is an effective strategy to regulate the optical properties of Cs2SnX6. Herein, combining the first principles calculation and spectral analysis, we attempted to understand the luminescence mechanism of Te4+-doped Cs2SnCl6 lead-free perovskite variants. The chemical potential and defect formation energy are calculated to confirm theoretically the feasible substitutability of tetravalent Te4+ ions in Cs2SnCl6 lattices for the Sn-site. Through analysis of the absorption, emission/excitation, and time-resolved photoluminescence (PL) spectroscopy, the intense green-yellow emission in Te4+:Cs2SnCl6 was considered to originate from the triplet Te(IV) ion 3P1→1S0 STE recombination. Temperature-dependent PL spectra demonstrated the strong electron-phonon coupling that inducing an evident lattice distortion to produce STEs. We further calculated the electronic band structure and molecular orbital levels to reveal the underlying photophysical process. These results will shed light on the doping modulated luminescence properties in stable lead-free Cs2MX6 vacancy-ordered perovskite variants and be helpful to understand the optical properties and physical processes of doped perovskite variants.展开更多
Two-dimensional(2D)perovskites exhibit broadband emission due to strong exciton–phonon coupling-induced self-trapped excitons and thus would find important applications in the field of white-light emitting devices.Ho...Two-dimensional(2D)perovskites exhibit broadband emission due to strong exciton–phonon coupling-induced self-trapped excitons and thus would find important applications in the field of white-light emitting devices.However,the available identifying methods for self-trapped excitons are currently rather limited and complex.Here,we identify the existence of self-trapped excitons by Raman spectroscopy in both excited and non-excited states.Under excited states,the shifting of the Raman peak indicates the presence of the lattice distortion,which together with the extra Raman scattering peak reveals the presence of self-trapped excitons.Our work provides an alternative simple method to study self-trapped excitons in 2 D perovskites.展开更多
Sb-based organic–inorganic hybrid metal halides(OIHMHs)with[SbCl5]2−units have been widely reported due to high photoluminescence quantum yield(PLQY)and occasional multiple self-trapped exciton(STE)emission bands mai...Sb-based organic–inorganic hybrid metal halides(OIHMHs)with[SbCl5]2−units have been widely reported due to high photoluminescence quantum yield(PLQY)and occasional multiple self-trapped exciton(STE)emission bands mainly out of singlet and triplet states,and their multi-band emission is important in white light-emitting diode(WLED).However,not all these OIHMH compounds can produce both emissions out of singlet STE and triplet STE at room temperature simultaneously.It is crucial to consider how the singlet STE generates and retains to emit light at room temperature for this material’s design and application.Herein,a strategy is proposed that can significantly lift Sb halide PLQY by synthesizing two Sb-based OIHMHs using organic amine cations of different-sized and-quantity,which modulate the distance of neighboring emission centers.Therein,the occurrence of singlet STE emission is found to be closely related to the distance of[SbCl_(5)]^(2)−units and local unit distortion in the lattice.The larger distance can produce smaller local distortions,favoring the formation of the singlet STE emission band at higher energy.This is the first work to reveal the relationship between the local structure and the origin of the singlet STE emission band,providing new insights into the modulation of the Sb-based OIHMH’s emission.展开更多
The broad emission and high photoluminescence quantum yield of self-trapped exciton(STE)radiative recombination emitters make them an ideal solution for single-substrate,white,solid-state lighting sources.Unlike impur...The broad emission and high photoluminescence quantum yield of self-trapped exciton(STE)radiative recombination emitters make them an ideal solution for single-substrate,white,solid-state lighting sources.Unlike impurities and defects in semiconductors,the formation of STEs requires a lattice distortion,along with strong electron–phonon coupling,in low electrondimensional materials.The photoluminescence of inorganic copper(Ⅰ)metal halides with low electron-dimensionality has been found to be the result of STEs.These materials were of significant interest because of their leadfree,all-inorganic structures,and high luminous efficiencies.In this paper,we summarize the luminescence characteristics of zero-and one-dimensional inorganic copper(I)metal halides with STEs to provide an overview of future research opportunities.展开更多
Self-trapped excitons(STEs)emission from halide perovskites with strong exciton-phonon coupling has attracted considerable attention due to the widespread application in optoelectronic devices.Nevertheless,the in-dept...Self-trapped excitons(STEs)emission from halide perovskites with strong exciton-phonon coupling has attracted considerable attention due to the widespread application in optoelectronic devices.Nevertheless,the in-depth understanding of the relationship between exciton-phonon coupling and luminescence intensity remains incomplete.Herein,a doping-enhanced exciton-phonon coupling effect is observed in Cs_(3)Cu_(2)I_(5)nanocrystals(NCs),which leads to a remarkable increasement of their STEs emission efficiency.Mechanism study shows that the hetero-valent substitution of Cu+with alkaline-earth metal ions(AE^(2+))causes a greater degree of Jahn-Teller distortion between the ground state and excited state structures of[Cu_(2)I_(5)]_(3)-clusters as evidenced by our spectral analysis and first-principles calculations.As a consequence,an X-ray detector based on these Cs_(3)Cu_(2)I_(5):AE NCs delivers an X-ray imaging resolution of up to 10 lp·mm^(-1) and a low detection limit of 0.37μGyair·s^(-1),disclosing the potential of doping-enhanced exciton-phonon coupling effect in improving STEs-emission and practical application for X-ray imaging.展开更多
Highly luminescent zero-dimensional(0D)metal halide clusters attract widespread attention owing to strong exciton confinement and populated self-trapped states but often exhibit narrow emission and are susceptible to ...Highly luminescent zero-dimensional(0D)metal halide clusters attract widespread attention owing to strong exciton confinement and populated self-trapped states but often exhibit narrow emission and are susceptible to hydrolysis.Herein,we demonstrate a moisture-resistant metal–organic framework(MOF)consisting of cationic 0D[Pb_(4)Cl_(5)]^(3+)nodes bridged by adamantanetetracarboxylate.Upon near-UV excitation,the material emits intrinsic broadband bluish white-light emission with high external quantum efficiency of 35%and a color rendering index of 76.Unlike organoammonium cations in lead perovskites,the Pb-carboxylate coordination affords the MOF to be chemically stable and photostable in high humidity.The photoemitter exhibits undiminished photoemissions under ambient conditions[∼60%relative humidity(RH)]upon continuous UV irradiation(143 mW/cm^(2),365 nm)for 7 days.The insertion of[Na_(4)Cl]^(3+)moieties will connect 0D units into two-dimensional(2D)metal halide layers to limit structural strain and decrease the quantum efficiency from 35%to 15%,confirming the key importance of 0D units for efficient emission.展开更多
Two-dimensional(2D)chiral halide perovskites(CHPs)have attracted broad interest due to their distinct spin-dependent properties and promising applications in chiroptics and spintronics.Here,we report a new type of 2D ...Two-dimensional(2D)chiral halide perovskites(CHPs)have attracted broad interest due to their distinct spin-dependent properties and promising applications in chiroptics and spintronics.Here,we report a new type of 2D CHP single crystals,namely R/S-3BrMBA_(2)PbBr_(4).The chirality of the as-prepared samples is confirmed by exploiting circular dichroism spectroscopy,indicating a successful chirality transfer from chiral organic cations to their inorganic perovskite sublattices.Furthermore,we observed bright photoluminescence spanning from 380 to 750 nm in R/S-3BrMBA_(2)PbBr_(4)crystals at room temperature.Such broad photoluminescence originates from free excitons and self-trapped excitons.In addition,efficient second-harmonic generation(SHG)performance was observed in chiral perovskite single crystals with high circular polarization ratios and non-linear optical circular dichroism.This demonstrates that R/S-3BrMBA_(2)PbBr_(4)crystals can be used to detect and generate left-and righthanded circularly polarized light.Our study provides a new platform to develop high-performance chiroptical and spintronic devices.展开更多
Self-trapping excitons(STEs) emission in metal halides has been a matter of interest, correlating with the strength of electron-phonon coupling in the lattice, which are usually caused by ions with ns~2 electronic str...Self-trapping excitons(STEs) emission in metal halides has been a matter of interest, correlating with the strength of electron-phonon coupling in the lattice, which are usually caused by ions with ns~2 electronic structure. In this work, Sb^(3+)/Te^(4+)ions doped Zn-based halide single crystals(SCs) with two STEs emissions have been synthesized and the possibility of its anti-counterfeiting application was explored.Further, the relationship between the strength of electron-phonon coupling and photoluminescence quantum yields(PLQYs) for STEs in a series of metal halides has been studied. And the semi-empirical range of the Huang-Rhys factors(S) for metal halides with excellent photoluminescence(PL) property has been summarized. This work provides ideas for further research into the relationship between luminescence performance and electron-phonon coupling of metal halides, and also provides a reference for designing the metal halides with high PLQYs.展开更多
Low-dimensional hybrid halide perovskites represent a promising class of materials in optoelectronic applications because of strong broad self-trapped exciton(STE)emissions.However,there exists a limitation in designi...Low-dimensional hybrid halide perovskites represent a promising class of materials in optoelectronic applications because of strong broad self-trapped exciton(STE)emissions.However,there exists a limitation in designing the ideal A-site cation that makes the material satisfy the structure tolerance and exhibit STE emission raised by the appropriate electron–phonon coupling effect.To overcome this dilemma,we developed an inorganic metal-organic dimethyl sulfoxide(DMSO)coordinating strategy to synthesize a series of zero-dimensional(0D)Sb-based halide perovskites including Na_(3)SbBr_(6)·DMSO_(6)(1),AlSbBr_(6)·DMSO_(6)(2),AlSbCl_(6)·DMSO_(6)(3),GaSbCl_(6)·DMSO_(6)(4),Mn_(2)Sb_(2)Br10·DMSO_(13)(5)and MgSbBr_(5)·DMSO_(7)(6),in which the distinctive coordinating A-site cation[Am-DMSO_(6)]n+efficiently separate the[SbXz]polyhedrons.Advantageously,these materials all exhibit broadband-emissions with full widths at half maxima(FWHM)of 95–184 nm,and the highest photoluminescent quantum yield(PLQY)of 3 reaches 92%.Notably,compounds 2–4 are able to remain stable after storage of more than 120 d.First-principles calculations indicate that the origin of the efficient STE emission can be attribted to the localized distortion in[SbXz]polyhedron upon optical excitation.Experimental and calculational results demonstrate that the proposed coordinating strategy provides a way to efficiently expand the variety of novel high-performance STE emitters and continuously regulate their emission behaviors.展开更多
We study the tunnelling dynamics of superfluid Fermi gases trapped in multi-well system along the BEC-BCS crossover. Within the hydrodynamical model and by using the multi-mode approximation, the self-trapping dynamic...We study the tunnelling dynamics of superfluid Fermi gases trapped in multi-well system along the BEC-BCS crossover. Within the hydrodynamical model and by using the multi-mode approximation, the self-trapping dynamics of superfluid Fermi gases in multi-well system are obtained numerically. We find that the self-trapping to diffusion transition strongly depends on the well number. When the well number is less than three, the self-trapped state takes place easier on the BEC side than that on the BCS side. However, when the well number is larger than three, the self-trapped state takes place easier on the BCS side instead of the BEC side. Furthermore, by considering a superfluid of 40K atoms, we obtain the zero-mode and π-mode Josephson frequencies of coherent atomic oscillations in double-well system. It is noteworthy that the Josephson mode, especially, the existence of π-mode frequency strongly depends on the atoms number on the BCS side.展开更多
The temperature and the size dependences of the self-trapping energy of a polaron in a GaAs parabolic quantum dot are investigated by the second order Rayleigh-Schrodinger perturbation method using the framework of th...The temperature and the size dependences of the self-trapping energy of a polaron in a GaAs parabolic quantum dot are investigated by the second order Rayleigh-Schrodinger perturbation method using the framework of the effective mass approximation. The numerical results show that the self-trapping energies of polaron in GaAs parabolic quantum dots shrink with the enhancement of temperature and the size of the quantum dot. The results also indicate that the temperature effect becomes obvious in small quantum dots展开更多
We investigate the self-trapping of a Bose Josephson junction, which is dispersively coupled to a driven optical cavity. The cavity-induced nonlinearity is presented analytically, and its effect results in the appeara...We investigate the self-trapping of a Bose Josephson junction, which is dispersively coupled to a driven optical cavity. The cavity-induced nonlinearity is presented analytically, and its effect results in the appearance of the self-trapping for the Bose-Einstein condensates in the Josephson oscillation regime. In addition, there exists competition between the nonlinearities induced by the interatomic interaction and by the driven cavity for the emergences of self-trapping. Our results show that the driven cavity can be utilized as a possible tool to produce the self-trapping for the condensates with weak interatomic interaction.展开更多
We investigate the properties of the excess charge(electron, hole) introduced into a two-strand biomolecule. We consider the possibility that the stable soliton excitation can be formed due to interaction of excess ch...We investigate the properties of the excess charge(electron, hole) introduced into a two-strand biomolecule. We consider the possibility that the stable soliton excitation can be formed due to interaction of excess charge with the phonon subsystem. The influence of overlap of the molecular orbitals between adjacent structure elements of the macromolecular chain on the soliton properties is discussed. Special attention is paid to the influence of the overlapping of the molecular orbitals between structure elements placed on the different chains. Using the literature values of the basic energy parameters of the two-chain biomolecular structures, possible types of soliton solutions are discussed.展开更多
基金supported by the Guangdong Provincial Science&Technology Project(No.2023A0505050084)the National Natural Science Foundation of China(No.22361132525)+1 种基金the Fundamental Research Funds for the Central Universities(No.2023ZYGXZR002)the Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program(No.2017BT01X137).
文摘Mn^(2+)doping has been adopted as an efficient approach to regulating the luminescence properties of halide perovskite nano-crystals(NCs).However,it is still difficult to understand the interplay of Mn^(2+)luminescence and the matrix self-trapped exciton(STE)emission therein.In this study,Mn^(2+)-doped CsCdCl_(3) NCs are prepared by hot injection,in which CsCdCl_(3) is selected because of its unique crystal structure suitable for STE emission.The blue emission at 441 nm of undoped CsCdCl_(3) NCs originates from the defect states in the NCs.Mn^(2+)doping promotes lattice distortion of CsCdCl_(3) and generates bright orange-red light emission at 656 nm.The en-ergy transfer from the STEs of CsCdCl_(3) to the excited levels of the Mn^(2+)ion is confirmed to be a significant factor in achieving efficient luminescence in CsCdCl_(3):Mn^(2+)NCs.This work highlights the crucial role of energy transfer from STEs to Mn^(2+)dopants in Mn^(2+)-doped halide NCs and lays the groundwork for modifying the luminescence of other metal halide perovskite NCs.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.62125402 and 62321166653).
文摘Ternary metal halides based on Cu(I)and Ag(I)have attracted intensive attention in optoelectronic applications due to their excellent luminescent properties,low toxicity,and robust stability.While the self-trapped excitons(STEs)emission mechanisms of Cu(I)halides are well understood,the STEs in Ag(I)halides remain less thoroughly explored.This study explores the STE emission efficiency within the A_(2)AgX_(3)(A=Rb,Cs;X=Cl,Br,I)system by identifying three distinct STE states in each material and calculating their configuration coordinate diagrams.We find that the STE emission efficiency in this system is mainly determined by STE stability and influenced by self-trapping and quenching barriers.Moreover,we investigate the impact of structural compactness on emission efficiency and find that the excessive electron–phonon coupling in this system can be reduced by increasing the structural compactness.The atomic packing factor is identified as a low-cost and effective descriptor for predicting STE emission efficiency in both Cs_(2)AgX_(3) and Rb_(2)AgX_(3) systems.These findings can deepen our understanding of STE behavior in metal halide materials and offer valuable insights for the design of efficient STE luminescent materials.The datasets presented in this paper are openly available in Science Data Bank at https://doi.org/10.57760/sciencedb.12094.
基金supported by the National Key R&D Program of China(2016YFB070700702)the National Natural Science Foundation of China(51761145048)+1 种基金the Fundamental Research Funds for the Central Universities(HUST:2019421JYCXJJ004)the China Postdoctoral Science Foundation Grant(2019M662624).
文摘Light-emitting diodes based on lead halide perovskite have attracted great attention due to their outstanding performance.However,their application is plagued by the toxicity of Pb and the poor stability.Herein novel copper-based all inorganic perovskite CsCu2I3 with much enhanced stability has been reported with a potential photoluminescence quantum yield(PLQY)over 20%and self-trapped excitons(STE).By taking advantage of its extraordinary thermal stability,we successfully fabricate high-quality CsCu2I3 film through direct vacuum-based deposition(VBD)of CsCu2I3 powder.The resulting film shows almost the same PLQY with the synthesized powder,as well as excellent uniformity and stability.The perovskite light-emitting diodes(Pe-LED)based on the evaporated CsCu2I3 emitting layer achieve a luminescence of 10 cd/m2 and an external quantum efficiency(EQE)of 0.02%.To the best of our knowledge,this is the first CsCu2I3 Pe-LED fabricated by VBD with STE property,which offers a new avenue for lead-free Pe-LED.
基金financially supported by the National Ten Thousand Talent Program for Young Top-notch TalentNational Natural Science Foundation of China (22379044 and 52203330)+8 种基金Shanghai Pilot Program for Basic Research (22TQ1400100-5)“Dawn”Program of Shanghai Education Commission (22SG28)Shanghai Municipal Natural Science Foundation (22ZR1418000)Shanghai Sailing Program(22YF1410000)Postdoctoral Research Foundation of China(2021M701190)Fundamental Research Funds for the Central Universities (JKD01241607 and JKVD1241041)Major Science and Technology Projects of Inner Mongolia Autonomous Region (2021ZD0042)Shanghai Engineering Research Center of Hierarchical Nanomaterials(18DZ2252400)Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism。
文摘Zero-dimensional perovskite materials,characterized by broadband emission caused by self-trapped excitons,are promising materials for stimuli-responsive and photo-writeable encryption.However,existing research is focused on the effects of structural phase transitions on photophysical properties,and lacks in-depth understanding of the mechanisms of self-trapped excitons emission.Here,we demonstrate that the dehydration reaction in zero-dimensional antimony halide clusters significantly enhances the self-trapped excitons emission without inducing structural phase transition,resulting in a substantial increase in photoluminescence(PL)quantum yield from 3.5%to 91.4%.In-situ X-ray diffraction and PL techniques were employed to shed light on the relationship between the crystal structure and radiative recombination,demonstrating the introduction of rich lattice distortion during the dehydration process.Temperature-dependent PL spectra and transient absorption spectra suggest that the lattice distortion causes the moderate electron-phonon coupling strength and high exciton binding energy,facilitating self-trapped excitons to relax from the non-radiative recombination singlet state to the radiative recombination triplet state,corresponding to the enhanced emission intensity.As a proof of concept,several switchable PL applications have been established in scenarios such as anti-counterfeiting,rewritable luminescent paper,and humidity sensing.This finding elucidates the emission mechanism of self-trapped excitons and provides a novel avenue for designing switchable luminescent materials.
基金supported by the National Natural Science Foundation of China(Nos.22175043 and 52162021)Guangxi Science and Technology Plan Project(No.Guike AA23073018)supported by the high-performance computing platform of Guangxi University。
文摘Zero-dimensional metal halides are of unique structures and tunable photoluminescence properties,showing great potential applications such as light-emitting diodes(LEDs)and sensing.Herein,we successfully synthesized Cu^(+)doped(MA)_(2)ZnCl_(4)metal halides by a slow evaporation solvent method.The introduction of Cu^(+)results in sky-blue self-trapped exciton emission in(MA)_(2)ZnCl_(4) at 486 nm at room temperature,and a photoluminescence quantum yield is as high as 54.9%.Interestingly,at low temperatures,Cu^(+)-doped(MA)_(2)ZnCl_(4) exhibits two emission peaks located at 482 and 605 nm,respectively.This temperaturedependent dual emission indicates two excited state structures that exist on the triplet excited-state potential energy surface.In addition,the temperature sensor we fitted has good performance(Sr=1.65%·K^(−1)),which is the first attempt in Cu^(+) doped Znbased metal halides.Our work enriches the family of sky-blue metal halides and provides a promising strategy for building skyblue LEDs.
基金support from the National Key R&D Program of China(No.2022YFB2803900)the National Natural Science Foundation of China(Nos.12074347,12004346,12204426,and 61935009)+1 种基金Science Foundation for Distinguished Young Scholars of Henan Province(No.212300410019)the Support Program for Scientific and Technological Innovation Teams of Higher Education in Henan Province(No.231RTSTHN012).
文摘The vacancy-ordered quadruple perovskite Cs_(4)CdBi_(2)Cl_(12),as a newly-emerging lead-free perovskite system,has attracted great research interest due to its excellent stability and direct band gap.However,the poor luminescence performance limits its application in light-emitting diodes(LEDs)and other fields.Herein,for the first time,an Ag^(+)ion doping strategy was proposed to greatly improve the emission performance of Cs_(4)CdBi_(2)Cl_(12) synthesized by hydrothermal method.Density functional theory calculations combined with experimental results evidence that the weak orange emission from Cs_(4)CdBi_(2)Cl_(12) is attributed to the phonon scattering and energy level crossing due to the large lattice distortion under excited states.Fortunately,Ag^(+)ion doping breaks the intrinsic crystal field environment of Cs_(4)CdBi_(2)Cl_(12),suppresses the crossover between ground and excited states,and reduces the energy loss in the form of nonradiative recombination.At a critical doping amount of 0.8%,the emission intensity of Cs_(4)CdBi_(2)Cl_(12):Ag^(+)reaches the maximum,about eight times that of the pristine sample.Moreover,the doped Cs_(4)CdBi_(2)Cl_(12) still maintains excellent stability against heat,ultraviolet irradiation,and environmental oxygen/moisture.The above advantages make it possible for this material to be used as solid-state phosphors for white LEDs applications,and the Commission International de I’Eclairage color coordinates of(0.31,0.34)and high color rendering index of 90.6 were achieved.More importantly,the white LED demonstrates remarkable operation stability in air ambient,showing almost no emission decay after a long working time for 48 h.We believe that this study puts forward an effective ion-doping strategy for emission enhancement of vacancy-ordered quadruple perovskite Cs_(4)CdBi_(2)Cl_(12),highlighting its great potential as efficient emitter compatible for practical applications.
基金D.L.acknowledges the support from the National Basic Research Program of China(No.2018YFA0704403)the National Natural Science Foundation of China(NSFC)(Grant No.61674060)Innovation Fund of Wuhan National Laboratory for Optoelectronics(WNLO).
文摘With strong electron-phonon coupling,the self-trapped excitons are usually formed in materials,which leads to the local lattice distortion and localized excitons.The self-trapping strongly depends on the dimensionality of the materials.In the three dimensional case,there is a potential barrier for self-trapping,whereas no such barrier is present for quasi-one-dimensional systems.Two-dimensional(2D)systems are marginal cases with a much lower potential barrier or nonex istent potential barrier for the self-trapping,leading to the easier formation of self-trapped states.Self-trapped excitons emission exhibits a broadband emission with a large Stokes shift below the bandgap.2D perovskites are a class of layered structure material with unique optical properties and would find potential promising optoelectronic.In particular,self-trapped excitons are present in 2D per-ovskites and can significantly influence the optical and electrical properties of 2D perovskites due to the soft characteristic and strong electron-phonon interaction.Here,we summarized the luminescence characteristics,origins,and characterizations of self-trapped excitons in 2D perovskites and finally gave an introduction to their applications in optoelectronics.
基金This work was supported by the National Natural Science Foundation of China(Nos.21661010 and 11774134)Guangxi Natural Science Foundation(No.2017GXNSFGA198005)+1 种基金Natural Science Foundation of Hunan Province(No.2020JJ4424)Research Foundation of Education Bureau of Hunan Province(No.18A009)。
文摘Perovskite variants have attracted wide interest because of the lead-free nature and strong self-trapped exciton (STE) emission. Divalent Sn(II) in CsSnX3 perovskites is easily oxidized to tetravalent Sn(IV), and the resulted Cs2SnCl6 vacancy-ordered perovskite variant exhibits poor photoluminescence property although it has a direct band gap. Controllable doping is an effective strategy to regulate the optical properties of Cs2SnX6. Herein, combining the first principles calculation and spectral analysis, we attempted to understand the luminescence mechanism of Te4+-doped Cs2SnCl6 lead-free perovskite variants. The chemical potential and defect formation energy are calculated to confirm theoretically the feasible substitutability of tetravalent Te4+ ions in Cs2SnCl6 lattices for the Sn-site. Through analysis of the absorption, emission/excitation, and time-resolved photoluminescence (PL) spectroscopy, the intense green-yellow emission in Te4+:Cs2SnCl6 was considered to originate from the triplet Te(IV) ion 3P1→1S0 STE recombination. Temperature-dependent PL spectra demonstrated the strong electron-phonon coupling that inducing an evident lattice distortion to produce STEs. We further calculated the electronic band structure and molecular orbital levels to reveal the underlying photophysical process. These results will shed light on the doping modulated luminescence properties in stable lead-free Cs2MX6 vacancy-ordered perovskite variants and be helpful to understand the optical properties and physical processes of doped perovskite variants.
基金supported by the National Key Research and Development Program of China(No.2018YFA0704403)National Natural Science Foundation of China(NSFC)(No.62074064)+2 种基金Innovation Fund of WNLO,Key Laboratory of Nanodevices and Applications,Suzhou Institute of NanoTech and Nano-Bionics,Chinese Academy of Sciences(No.19ZS03)China Postdoctoral Science Foundation(No.2020M682399)Postdoctoral Innovation Fund of Hubei Province。
文摘Two-dimensional(2D)perovskites exhibit broadband emission due to strong exciton–phonon coupling-induced self-trapped excitons and thus would find important applications in the field of white-light emitting devices.However,the available identifying methods for self-trapped excitons are currently rather limited and complex.Here,we identify the existence of self-trapped excitons by Raman spectroscopy in both excited and non-excited states.Under excited states,the shifting of the Raman peak indicates the presence of the lattice distortion,which together with the extra Raman scattering peak reveals the presence of self-trapped excitons.Our work provides an alternative simple method to study self-trapped excitons in 2 D perovskites.
基金supported by the Guangxi NSF(No.2020GXNSFDA238004)the Bagui Scholar project of Guangxi provincethe Scientific and Technological Bases and Talents of Guangxi(No.Guike AD21238027).
文摘Sb-based organic–inorganic hybrid metal halides(OIHMHs)with[SbCl5]2−units have been widely reported due to high photoluminescence quantum yield(PLQY)and occasional multiple self-trapped exciton(STE)emission bands mainly out of singlet and triplet states,and their multi-band emission is important in white light-emitting diode(WLED).However,not all these OIHMH compounds can produce both emissions out of singlet STE and triplet STE at room temperature simultaneously.It is crucial to consider how the singlet STE generates and retains to emit light at room temperature for this material’s design and application.Herein,a strategy is proposed that can significantly lift Sb halide PLQY by synthesizing two Sb-based OIHMHs using organic amine cations of different-sized and-quantity,which modulate the distance of neighboring emission centers.Therein,the occurrence of singlet STE emission is found to be closely related to the distance of[SbCl_(5)]^(2)−units and local unit distortion in the lattice.The larger distance can produce smaller local distortions,favoring the formation of the singlet STE emission band at higher energy.This is the first work to reveal the relationship between the local structure and the origin of the singlet STE emission band,providing new insights into the modulation of the Sb-based OIHMH’s emission.
基金the National Key Research and Development Plan of China(No.2019YFE0107200)the National Natural Science Foundation of China(Grant No.11705277),the Natural Science Foundation of Hubei Province(No.2020CFB700)+1 种基金the Doctoral Research Foundation Project of Hubei University of Arts and Science(No.kyqdf2020023)Innovation Research Team Project of Hubei University of Arts and Science(No.2020kypytd001).
文摘The broad emission and high photoluminescence quantum yield of self-trapped exciton(STE)radiative recombination emitters make them an ideal solution for single-substrate,white,solid-state lighting sources.Unlike impurities and defects in semiconductors,the formation of STEs requires a lattice distortion,along with strong electron–phonon coupling,in low electrondimensional materials.The photoluminescence of inorganic copper(Ⅰ)metal halides with low electron-dimensionality has been found to be the result of STEs.These materials were of significant interest because of their leadfree,all-inorganic structures,and high luminous efficiencies.In this paper,we summarize the luminescence characteristics of zero-and one-dimensional inorganic copper(I)metal halides with STEs to provide an overview of future research opportunities.
基金This work is supported by the Fund of Fujian Science&Technology Innovation Laboratory for Optoelectronic Information(Nos.2020ZZ114 and 2022ZZ204)the Key Research Program of Frontier Science CAS(No.QYZDY-SSW-SLH025)+1 种基金the National Natural Science Foundation of China(Nos.21731006 and 21871256)the Fund of Advanced Energy Science and Technology Guangdong Laboratory(No.DJLTN0200/DJLTN0240).
文摘Self-trapped excitons(STEs)emission from halide perovskites with strong exciton-phonon coupling has attracted considerable attention due to the widespread application in optoelectronic devices.Nevertheless,the in-depth understanding of the relationship between exciton-phonon coupling and luminescence intensity remains incomplete.Herein,a doping-enhanced exciton-phonon coupling effect is observed in Cs_(3)Cu_(2)I_(5)nanocrystals(NCs),which leads to a remarkable increasement of their STEs emission efficiency.Mechanism study shows that the hetero-valent substitution of Cu+with alkaline-earth metal ions(AE^(2+))causes a greater degree of Jahn-Teller distortion between the ground state and excited state structures of[Cu_(2)I_(5)]_(3)-clusters as evidenced by our spectral analysis and first-principles calculations.As a consequence,an X-ray detector based on these Cs_(3)Cu_(2)I_(5):AE NCs delivers an X-ray imaging resolution of up to 10 lp·mm^(-1) and a low detection limit of 0.37μGyair·s^(-1),disclosing the potential of doping-enhanced exciton-phonon coupling effect in improving STEs-emission and practical application for X-ray imaging.
基金supported by grants from the National Natural Science Foundation of China(nos.21971197 and 51772217)the Shanghai Rising-Star Program(no.20QA1409500)the Recruitment of Global Youth Experts by China,the Fundamental Research Funds for the Central Universities,and the Science&Technology Commission of Shanghai Municipality(no.19DZ2271500).
文摘Highly luminescent zero-dimensional(0D)metal halide clusters attract widespread attention owing to strong exciton confinement and populated self-trapped states but often exhibit narrow emission and are susceptible to hydrolysis.Herein,we demonstrate a moisture-resistant metal–organic framework(MOF)consisting of cationic 0D[Pb_(4)Cl_(5)]^(3+)nodes bridged by adamantanetetracarboxylate.Upon near-UV excitation,the material emits intrinsic broadband bluish white-light emission with high external quantum efficiency of 35%and a color rendering index of 76.Unlike organoammonium cations in lead perovskites,the Pb-carboxylate coordination affords the MOF to be chemically stable and photostable in high humidity.The photoemitter exhibits undiminished photoemissions under ambient conditions[∼60%relative humidity(RH)]upon continuous UV irradiation(143 mW/cm^(2),365 nm)for 7 days.The insertion of[Na_(4)Cl]^(3+)moieties will connect 0D units into two-dimensional(2D)metal halide layers to limit structural strain and decrease the quantum efficiency from 35%to 15%,confirming the key importance of 0D units for efficient emission.
基金supported by Natural Science Foundation of Jiangsu Province,Major Project(BK20222007).
文摘Two-dimensional(2D)chiral halide perovskites(CHPs)have attracted broad interest due to their distinct spin-dependent properties and promising applications in chiroptics and spintronics.Here,we report a new type of 2D CHP single crystals,namely R/S-3BrMBA_(2)PbBr_(4).The chirality of the as-prepared samples is confirmed by exploiting circular dichroism spectroscopy,indicating a successful chirality transfer from chiral organic cations to their inorganic perovskite sublattices.Furthermore,we observed bright photoluminescence spanning from 380 to 750 nm in R/S-3BrMBA_(2)PbBr_(4)crystals at room temperature.Such broad photoluminescence originates from free excitons and self-trapped excitons.In addition,efficient second-harmonic generation(SHG)performance was observed in chiral perovskite single crystals with high circular polarization ratios and non-linear optical circular dichroism.This demonstrates that R/S-3BrMBA_(2)PbBr_(4)crystals can be used to detect and generate left-and righthanded circularly polarized light.Our study provides a new platform to develop high-performance chiroptical and spintronic devices.
基金supported by the financial aid from the National Natural Science Foundation of China (No. 22271273)International Partnership Program of Chinese Academy of Sciences (No. 121522KYSB20190022)。
文摘Self-trapping excitons(STEs) emission in metal halides has been a matter of interest, correlating with the strength of electron-phonon coupling in the lattice, which are usually caused by ions with ns~2 electronic structure. In this work, Sb^(3+)/Te^(4+)ions doped Zn-based halide single crystals(SCs) with two STEs emissions have been synthesized and the possibility of its anti-counterfeiting application was explored.Further, the relationship between the strength of electron-phonon coupling and photoluminescence quantum yields(PLQYs) for STEs in a series of metal halides has been studied. And the semi-empirical range of the Huang-Rhys factors(S) for metal halides with excellent photoluminescence(PL) property has been summarized. This work provides ideas for further research into the relationship between luminescence performance and electron-phonon coupling of metal halides, and also provides a reference for designing the metal halides with high PLQYs.
基金supported by the National Natural Science Foundation of China(Nos.21821004 and U21A2082).
文摘Low-dimensional hybrid halide perovskites represent a promising class of materials in optoelectronic applications because of strong broad self-trapped exciton(STE)emissions.However,there exists a limitation in designing the ideal A-site cation that makes the material satisfy the structure tolerance and exhibit STE emission raised by the appropriate electron–phonon coupling effect.To overcome this dilemma,we developed an inorganic metal-organic dimethyl sulfoxide(DMSO)coordinating strategy to synthesize a series of zero-dimensional(0D)Sb-based halide perovskites including Na_(3)SbBr_(6)·DMSO_(6)(1),AlSbBr_(6)·DMSO_(6)(2),AlSbCl_(6)·DMSO_(6)(3),GaSbCl_(6)·DMSO_(6)(4),Mn_(2)Sb_(2)Br10·DMSO_(13)(5)and MgSbBr_(5)·DMSO_(7)(6),in which the distinctive coordinating A-site cation[Am-DMSO_(6)]n+efficiently separate the[SbXz]polyhedrons.Advantageously,these materials all exhibit broadband-emissions with full widths at half maxima(FWHM)of 95–184 nm,and the highest photoluminescent quantum yield(PLQY)of 3 reaches 92%.Notably,compounds 2–4 are able to remain stable after storage of more than 120 d.First-principles calculations indicate that the origin of the efficient STE emission can be attribted to the localized distortion in[SbXz]polyhedron upon optical excitation.Experimental and calculational results demonstrate that the proposed coordinating strategy provides a way to efficiently expand the variety of novel high-performance STE emitters and continuously regulate their emission behaviors.
基金Supported by the National Natural Science Foundation of China under Grant Nos. 10975114 and 10774120the Natural Science Foundation of Gansu Province of China under Grant No. 1010RJZA012+1 种基金the Natural Science Foundation of Northwest Normal University of China under Grant No. NWNU-KJCXGC-03-48the Youthy Teacher Scientific Research Foundation of Northwest Normal University of China under Grant No. NWNU-LKQN-09-10
文摘We study the tunnelling dynamics of superfluid Fermi gases trapped in multi-well system along the BEC-BCS crossover. Within the hydrodynamical model and by using the multi-mode approximation, the self-trapping dynamics of superfluid Fermi gases in multi-well system are obtained numerically. We find that the self-trapping to diffusion transition strongly depends on the well number. When the well number is less than three, the self-trapped state takes place easier on the BEC side than that on the BCS side. However, when the well number is larger than three, the self-trapped state takes place easier on the BCS side instead of the BEC side. Furthermore, by considering a superfluid of 40K atoms, we obtain the zero-mode and π-mode Josephson frequencies of coherent atomic oscillations in double-well system. It is noteworthy that the Josephson mode, especially, the existence of π-mode frequency strongly depends on the atoms number on the BCS side.
文摘The temperature and the size dependences of the self-trapping energy of a polaron in a GaAs parabolic quantum dot are investigated by the second order Rayleigh-Schrodinger perturbation method using the framework of the effective mass approximation. The numerical results show that the self-trapping energies of polaron in GaAs parabolic quantum dots shrink with the enhancement of temperature and the size of the quantum dot. The results also indicate that the temperature effect becomes obvious in small quantum dots
基金Supported by the National Natural Science Foundation of China under Grant Nos.10847006 and 10874142
文摘We investigate the self-trapping of a Bose Josephson junction, which is dispersively coupled to a driven optical cavity. The cavity-induced nonlinearity is presented analytically, and its effect results in the appearance of the self-trapping for the Bose-Einstein condensates in the Josephson oscillation regime. In addition, there exists competition between the nonlinearities induced by the interatomic interaction and by the driven cavity for the emergences of self-trapping. Our results show that the driven cavity can be utilized as a possible tool to produce the self-trapping for the condensates with weak interatomic interaction.
基金Project supported by the Ministry of Education,Science and Technological Development of the Republic of Serbiathe Ministry of Science and Higher Education of the Russian Federation in the framework of Increase Competitiveness Program of NUST “MISiS” (Grant No.K2-2019-010)the Project within the Cooperation Agreement between the JINR,Dubna,Russian Federation and Ministry of Education and Science of the Republic of Serbia。
文摘We investigate the properties of the excess charge(electron, hole) introduced into a two-strand biomolecule. We consider the possibility that the stable soliton excitation can be formed due to interaction of excess charge with the phonon subsystem. The influence of overlap of the molecular orbitals between adjacent structure elements of the macromolecular chain on the soliton properties is discussed. Special attention is paid to the influence of the overlapping of the molecular orbitals between structure elements placed on the different chains. Using the literature values of the basic energy parameters of the two-chain biomolecular structures, possible types of soliton solutions are discussed.