期刊文献+
共找到31,749篇文章
< 1 2 250 >
每页显示 20 50 100
Self-supporting sea urchin-like Ni-Mo nano-materials as asymmetric electrodes for overall water splitting
1
作者 Jia-Ming Wang Yong-Jian Xu +7 位作者 Ya-Tao Yan Meng-Ting Shao Zhi-An Ye Qian-Hui Wu Fang Guo Chun-Sheng Li Hui Yan Ming Chen 《Rare Metals》 2025年第2期986-997,共12页
Developing efficient and stable electrocatalysts has always been the focus of electrochemical research.Here,sea urchin-like nickel-molybdenum bimetallic phosphide nickel-molybdenum alloy(Ni_(4)Mo)and(Ni-Mo-P)were succ... Developing efficient and stable electrocatalysts has always been the focus of electrochemical research.Here,sea urchin-like nickel-molybdenum bimetallic phosphide nickel-molybdenum alloy(Ni_(4)Mo)and(Ni-Mo-P)were successfully synthesized by hydrothermal,annealing and phosphating methods on nickel foam(NF).The unusual shape of the sea urchin facilitates gas release and mass transfer and increases the interaction between catalysts and electrolytes.The Ni_(4)Mo/NF and Ni-Mo-P/NF electrodes only need overpotentials of 72 and 197 mV to reach 50 mA·cm^(−2) under alkaline conditions for hydrogen evolution reaction and oxygen evolution reaction,respectively.The Ni_(4)Mo/NF and Ni-Mo-P/NF asymmetric electrodes were used as anode and cathode for the overall water splitting,respectively.In 1.0 M KOH,at a voltage of 1.485 V,the electrolytic device generated 50 mA·cm^(−2) current density,maintaining for 24 h without reduction.The labor presents a simple method to synthesize a highly active,low-cost,and strongly durable self-supporting electrode for over-water splitting. 展开更多
关键词 Ni_(4)Mo alloy Bimetallic phosphides Selfsupporting electrode Asymmetric electrode Over water splitting
原文传递
Rational design of oxygen vacancy-rich self-supporting NiCo(OH)_(2)electrode for efficient biomass upgrading
2
作者 Diexin Xie Jiabin Chen +4 位作者 Jingxin Hou Fangfang Yang Runping Feng Changsheng Cao Zailai Xie 《Journal of Energy Chemistry》 2025年第9期558-566,I0015,共10页
Transition metal-based electrocatalysts are a promising alternative to noble metal catalysts for electrochemical upgrading of biomass-derived 5-hydroxymethylfurfural(HMF)into high-value 2,5-furandicarboxylic acid(FDCA... Transition metal-based electrocatalysts are a promising alternative to noble metal catalysts for electrochemical upgrading of biomass-derived 5-hydroxymethylfurfural(HMF)into high-value 2,5-furandicarboxylic acid(FDCA).However,the rational design of efficient electrocatalysts with precisely tailored structure-activity correlations remains a critical challenge.Herein,we report a hierarchically structured self-supporting electrode(Vo-NiCo(OH)_(2)-NF)synthesized through in situ electrochemical reconstruction of NiCo-Prussian blue analogue(NiCo-PBA)precursor,in which oxygen vacancy(Vo)-rich Co-doped Ni(OH)_(2)nanosheet arrays are vertically aligned on nickel foam(NF),creating an interconnected conductive network.When evaluated for the HMF oxidation reaction(HMFOR),Vo-NiCo(OH)_(2)-NF exhibits exceptional electrochemical performance,achieving near-complete HMF conversion(99%),ultrahigh FDCA Faradaic efficiency(97.5%),and remarkable product yield(96.2%)at 1.45 V,outperforming conventional Co-doped Ni(OH)_(2)(NiCo(OH)_(2)-NF)and pristine Ni(OH)_(2)(Ni(OH)_(2)-NF)electrodes.By combining in situ spectroscopic characterization and theoretical calculations,we elucidate that the synergistic effects of Co-doping and oxygen vacancy engineering effectively modulate the electronic structure of Ni active centers,favor the formation of high-valent Ni^(3+)species,and optimize HMF adsorption,thereby improving the HMFOR performance.This work provides valuable mechanistic insights for catalyst design and may inspire the development of advanced transition metal-based electrodes for efficient biomass conversion systems. 展开更多
关键词 Biomass upgrading Hierarchical structure Oxygen vacancy Transition metal-based electrodes ELECTROLYSIS
在线阅读 下载PDF
Self-supporting NiFe LDH-MoS_(x) integrated electrode for highly efficient water splitting at the industrial electrolysis conditions 被引量:4
3
作者 Han Zhang Guoqiang Shen +3 位作者 Xinying Liu Bo Ning Chengxiang Shi Lun Pan 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2021年第10期1732-1741,共10页
Developing effective and practical electrocatalyst under industrial electrolysis conditions is critical for renewable hydrogen production.Herein,we report the self-supporting NiFe LDH-MoS_(x)integrated electrode for w... Developing effective and practical electrocatalyst under industrial electrolysis conditions is critical for renewable hydrogen production.Herein,we report the self-supporting NiFe LDH-MoS_(x)integrated electrode for water oxidation under normal alkaline test condition(1 M KOH at 25℃)and simulated industrial electrolysis conditions(5 M KOH at 65℃).Such optimized electrode exhibits excellent oxygen evolution reaction(OER)performance with overpotential of 195 and 290 mV at current density of 100 and 400 mA·cm^(-2)under normal alkaline test condition.Notably,only over-potential of 156 and 201 mV were required to achieve the current density of 100 and 400mA·cm^(-2)under simulated industrial electrolysis conditions.No significant degradations were observed after long-term durability tests for both conditions.When using in two-electrode system,the operational voltages of 1.44 and 1.72 V were required to achieve a current density of 10 and 100 mA·cm^(-2)for the overall water splitting test(NiFe LDH-MoS_(x)/INF||20%Pt/C).Additionally,the operational voltage of employing NiFe LDH-MoS_(x)/INF as both cathode and anode merely require 1.52 V at 50mA·cm^(-2)at simulated industrial electrolysis conditions.Notably,a membrane electrode assembly(MEA)for anion exchange membrane water electrolysis(AEMWEs)using NiFe LDH-MoS_(x)/INF as an anode catalyst exhibited an energy conversion efficiency of 71.8%at current density of 400 mA·cm^(-2)in 1 M KOH at 60℃.Further experimental results reveal that sulfurized substrate not only improved the conductivity of NiFe LDH,but also regulated its electronic configurations and atomic composition,leading to the excellent activity.The easy-obtained and cost-effective integrated electrodes are expected to meet the large-scale application of industrial water electrolysis. 展开更多
关键词 self-supporting integrated electrode NiFe LDH Electronic structure modulation Industrial alkaline water electrolysis Membrane-electrode assembly
在线阅读 下载PDF
Deciphering the lithium storage chemistry in flexible carbon fiber-based self-supportive electrodes 被引量:7
4
作者 Hao Yang Tuzhi Xiong +4 位作者 Zhixiao Zhu Ran Xiao Xincheng Yao Yongchao Huang M.-Sadeeq Balogun 《Carbon Energy》 SCIE CAS 2022年第5期820-832,共13页
Flexible carbon fiber cloth(CFC)is an important scaffold and/or current collector for active materials in the development of flexible self-supportive electrode materials(SSEMs),especially in lithium-ion batteries.Howe... Flexible carbon fiber cloth(CFC)is an important scaffold and/or current collector for active materials in the development of flexible self-supportive electrode materials(SSEMs),especially in lithium-ion batteries.However,during the intercalation of Li ions into the matrix of CFC(below 0.5 V vs.Li/Li+),the incompatibility in the capacity of the CFC,when used directly as an anode material or as a current collector for active materials,leads to difficulty in the estimation of its actual contribution.To address this issue,we prepared Ni_(5)P_(4)nanosheets on CFC(denoted CFC@Ni_(5)P_(4))and investigated the contribution of CFC in the CFC@Ni_(5)P_(4)by comparing to the powder Ni_(5)P_(4)nanosheets traditionally coated on a copper foil(CuF)(denoted P-Ni_(5)P_(4)).At a current density of 0.4 mA cm^(−2),the as-prepared CFC@Ni_(5)P_(4)showed an areal capacity of 7.38 mAh cm^(−2),which is significantly higher than that of the PNi_(5)P_(4)electrode.More importantly,theoretical studies revealed that the CFC has a high Li adsorption energy that contributes to the low Li-ion diffusion energy barrier of the Ni_(5)P_(4)due to the strong interaction between the CFC and Ni_(5)P_(4),leading to the superior Li-ion storage performance of the CFC@Ni_(5)P_(4)over the pristine Ni_(5)P_(4)sample.This present work unveils the underlying mechanism leading to the achievement of high performance in SSEMs. 展开更多
关键词 density functional theory flexible carbon fiber cloth lithium-ion batteries Ni5P4 self-supportive electrodes
在线阅读 下载PDF
High‑Entropy Electrode Materials:Synthesis,Properties and Outlook 被引量:1
5
作者 Dongxiao Li Chang Liu +7 位作者 Shusheng Tao Jieming Cai Biao Zhong Jie Li Wentao Deng Hongshuai Hou Guoqiang Zou Xiaobo Ji 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期472-506,共35页
High-entropy materials represent a new category of high-performance materials,first proposed in 2004 and extensively investigated by researchers over the past two decades.The definition of high-entropy materials has c... High-entropy materials represent a new category of high-performance materials,first proposed in 2004 and extensively investigated by researchers over the past two decades.The definition of high-entropy materials has continuously evolved.In the last ten years,the discovery of an increasing number of high-entropy materials has led to significant advancements in their utilization in energy storage,electrocatalysis,and related domains,accompanied by a rise in techniques for fabricating high-entropy electrode materials.Recently,the research emphasis has shifted from solely improving the performance of high-entropy materials toward exploring their reaction mechanisms and adopting cleaner preparation approaches.However,the current definition of high-entropy materials remains relatively vague,and the preparation method of high-entropy materials is based on the preparation method of single metal/low-or medium-entropy materials.It should be noted that not all methods applicable to single metal/low-or medium-entropy materials can be directly applied to high-entropy materials.In this review,the definition and development of high-entropy materials are briefly reviewed.Subsequently,the classification of high-entropy electrode materials is presented,followed by a discussion of their applications in energy storage and catalysis from the perspective of synthesis methods.Finally,an evaluation of the advantages and disadvantages of various synthesis methods in the production process of different high-entropy materials is provided,along with a proposal for potential future development directions for high-entropy materials. 展开更多
关键词 High-entropy Energy storage electrode materials
在线阅读 下载PDF
Self-supported metal(Fe, Co, Ni)-embedded nitrogen-doping carbon nanorod framework as trifunctional electrode for flexible Zn-air batteries and switchable water electrolysis 被引量:2
6
作者 Qiuyan Jin Liping Xiao +2 位作者 Weidong He Hao Cui Chengxin Wang 《Green Energy & Environment》 SCIE EI CAS CSCD 2023年第6期1644-1653,共10页
To meet the practical demand of wearable/portable electronics, developing high-efficiency and durable multifunctional catalyst and in-situ assembling catalysts into electrodes with flexible features are urgently neede... To meet the practical demand of wearable/portable electronics, developing high-efficiency and durable multifunctional catalyst and in-situ assembling catalysts into electrodes with flexible features are urgently needed but challenging. Herein, we report a simple route to fabricate bendable multifunctional electrodes by in-situ carbonization of metal ion absorbed polyaniline precursor. Alloy nanoparticles encapsulated in graphite layer are uniformly distributed in the N-doping carbon nanorod skeleton. Profiting from the favorable free-standing structure and the cooperative effect of metallic nanoparticles, graphitic layer and N doped-carbon architecture, the trifunctional electrodes exhibit prominent activities and stability toward HER, OER and ORR. Notably, due to the protection of carbon layer, the electrocatalysts show the reversible catalytic HER/OER properties. The overall water splitting device can continuously work for 12 h under frequent exchanges of cathode and anode. Importantly, the bendable metal air batteries fabricated by self-supported electrode not only displays the outstanding battery performance,achieving a decent peak power density(125 mW cm^(-2)) and exhibiting favorable charge-discharge durability of 22 h, but also holds superb flexible stability. Specially, a lightweight self-driven water splitting unit is demonstrated with stable hydrogen production. 展开更多
关键词 Trifunctional catalysts self-supported electrodes Switchable water splitting Flexible Zn-air battery Self-powered system
在线阅读 下载PDF
Recent progress of self-supported air electrodes for flexible Zn-air batteries 被引量:2
7
作者 Chen Xu Yanli Niu +5 位作者 Vonika Ka-Man Au Shuaiqi Gong Xuan Liu Jianying Wang Deli Wu Zuofeng Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期110-136,I0004,共28页
Smart wearable devices are regarded to be the next prevailing technology product after smartphones and smart homes,and thus there has recently been rapid development in flexible electronic energy storage devices.Among... Smart wearable devices are regarded to be the next prevailing technology product after smartphones and smart homes,and thus there has recently been rapid development in flexible electronic energy storage devices.Among them,flexible solid-state zinc-air batteries have received widespread attention because of their high energy density,good safety,and stability.Efficient bifunctional oxygen electrocatalysts are the primary consideration in the development of flexible solid-state zinc-air batteries,and self-supported air cathodes are strong candidates because of their advantages including simplified fabrication process,reduced interfacial resistance,accelerated electron transfer,and good flexibility.This review outlines the research progress in the design and construction of nanoarray bifunctional oxygen electrocatalysts.Starting from the configuration and basic principles of zinc-air batteries and the strategies for the design of bifunctional oxygen electrocatalysts,a detailed discussion of self-supported air cathodes on carbon and metal substrates and their uses in flexible zinc-air batteries will follow.Finally,the challenges and opportunities in the development of flexible zinc-air batteries will be discussed. 展开更多
关键词 Bifunctional electrocatalysts Oxygen reduction reaction Oxygen evolution reaction self-supported air electrodes Flexible zinc-air batteries
在线阅读 下载PDF
Advancements in chromium-tolerant air electrode for solid oxide cells:A mini-review 被引量:1
8
作者 HUANG Jiongyuan CHEN Zhiyi +3 位作者 LUO Yujie AI Na JIANG Sanping CHEN Kongfa 《燃料化学学报(中英文)》 北大核心 2025年第2期249-261,共13页
Solid oxide cells(SOCs)are emerging devices for efficient energy storage and conversion.However,during SOC operation,gaseous chromium(Cr)species released from Fe-Cr alloy interconnect can lead to Cr deposition and poi... Solid oxide cells(SOCs)are emerging devices for efficient energy storage and conversion.However,during SOC operation,gaseous chromium(Cr)species released from Fe-Cr alloy interconnect can lead to Cr deposition and poisoning of air electrodes,causing substantial degradation in electrochemical performance and compromising the longterm stability of SOCs.This mini-review examines the mechanism of Cr deposition and poisoning in air electrodes under both fuel-cell and electrolysis modes.Furthermore,emphasis is placed on the recent advancements in strategies to mitigate Cr poisoning,offering insights into the rational design and development of active and Cr-tolerant air electrodes for SOCs. 展开更多
关键词 solid oxide cells air electrodes Cr poisoning surface modification
在线阅读 下载PDF
A high entropy stabilized perovskite oxide La_(0.2)Pr_(0.2)Sm_(0.2)Gd_(0.2)Sr_(0.2)Co_(0.8)Fe_(0.2)O_(3−δ)as a promising air electrode for reversible solid oxide cells 被引量:1
9
作者 LI Ruoyu LI Xiaoyu +2 位作者 ZHANG Jinke GAO Yuan LING Yihan 《燃料化学学报(中英文)》 北大核心 2025年第2期282-290,共9页
Reversible solid oxide cell(RSOC)is a new energy conversion device with significant applications,especially for power grid peaking shaving.However,the reversible conversion process of power generation/energy storage p... Reversible solid oxide cell(RSOC)is a new energy conversion device with significant applications,especially for power grid peaking shaving.However,the reversible conversion process of power generation/energy storage poses challenges for the performance and stability of air electrodes.In this work,a novel high-entropy perovskite oxide La_(0.2)Pr_(0.2)Gd_(0.2)Sm_(0.2)Sr_(0.2)Co_(0.8)Fe_(0.2)O_(3−δ)(HE-LSCF)is proposed and investigated as an air electrode in RSOC.The electrochemical behavior of HE-LSCF was studied as an air electrode in both fuel cell and electrolysis modes.The polarization impedance(Rp)of the HE-LSCF electrode is only 0.25Ω·cm^(2) at 800℃ in an air atmosphere.Notably,at an electrolytic voltage of 2 V and a temperature of 800℃,the current density reaches up to 1.68 A/cm^(2).The HE-LSCF air electrode exhibited excellent reversibility and stability,and its electrochemical performance remains stable after 100 h of reversible operation.With these advantages,HE-LSCF is shown to be an excellent air electrode for RSOC. 展开更多
关键词 reversible solid oxide cell high entropy stabilized perovskite air electrode electrochemical performance
在线阅读 下载PDF
Cross-section design of the flow channels in membrane electrode assembly electrolyzer for CO_(2) reduction reaction through numerical simulations 被引量:1
10
作者 Lili Zhang Hui Gao +7 位作者 Gong Zhang Yuning Dong Kai Huang Zifan Pang Tuo Wang Chunlei Pei Peng Zhang Jinlong Gong 《Chinese Chemical Letters》 2025年第1期332-337,共6页
Membrane electrode assembly(MEA)is widely considered to be the most promising type of electrolyzer for the practical application of electrochemical CO_(2) reduction reaction(CO_(2)RR).In MEAs,a square-shaped cross-sec... Membrane electrode assembly(MEA)is widely considered to be the most promising type of electrolyzer for the practical application of electrochemical CO_(2) reduction reaction(CO_(2)RR).In MEAs,a square-shaped cross-section in the flow channel is normally adopted,the configuration optimization of which could potentially enhance the performance of the electrolyzer.This paper describes the numerical simulation study on the impact of the flow-channel cross-section shapes in the MEA electrolyzer for CO_(2)RR.The results show that wide flow channels with low heights are beneficial to the CO_(2)RR by providing a uniform flow field of CO_(2),especially at high current densities.Moreover,the larger the electrolyzer,the more significant the effect is.This study provides a theoretical basis for the design of high-performance MEA electrolyzers for CO_(2)RR. 展开更多
关键词 Electrochemical reduction of CO_(2) Membrane electrode assembly Mass transfer Gas diffusion electrode Computational fluid dynamics
原文传递
Electrochemical cutting with flexible electrode of controlled online deformation 被引量:1
11
作者 Lin Liu Zhengyang Xu +1 位作者 Yuheng Hao Yunlong Teng 《International Journal of Extreme Manufacturing》 2025年第1期453-480,共28页
Improvements in aero-engine performance have made the structures of the aero-engine components increasingly complex.To better adapt to the processing requirements of narrow twisted channels such as an integral shroude... Improvements in aero-engine performance have made the structures of the aero-engine components increasingly complex.To better adapt to the processing requirements of narrow twisted channels such as an integral shrouded blisk,this study proposes an innovative method of electrochemical cutting in which a flexible tube electrode is controlled by online deformation during processing.In this study,the processing principle of electrochemical cutting with a flexible electrode for controlled online deformation(FECC)was revealed for the first time.The online deformation process of flexible electrodes and the machining process of profiles were analysed in depth,and the corresponding theoretical models were established.Conventional electrochemical machining(ECM)is a multi-physical field-coupled process involving electric and flow fields.In FECC,classical mechanics are introduced into the tool cathode,which must be loaded at all times during the machining process.Therefore,in this study,before and after the deformation of the flexible electrode,a corresponding simulation study was conducted to understand the influence of the online deformation of the flexible electrode on the flow and electric fields.The feasibility of flexible electrodes for online deformation and the validity of the theoretical model were verified by deformation measurements and in situ observation experiments.Finally,the method was successfully applied to the machining of nickel-based high-temperature alloys,and different specifications of flexible electrodes were used to complete the machining of the corresponding complex profiles,thereby verifying the feasibility and versatility of the method.The method proposed in this study breaks the tradition of using a non-deformable cathode for ECM and adopts a flexible electrode that can be deformed during the machining process as the tool cathode,which improves machining flexibility and provides a valuable reference to promote the ECM of complex profiles. 展开更多
关键词 electrochemical machining online deformation flexible electrode
在线阅读 下载PDF
Liquid-metal-electrode-assisted electrolysis for the production of sodium and magnesium 被引量:1
12
作者 Lei Guo Huayi Yin +5 位作者 Wenmiao Li Shiyu Wang Kaifa Du Hao Shi Xu Wang Dihua Wang 《Journal of Magnesium and Alloys》 2025年第4期1579-1591,共13页
Sodium(Na)and magnesium(Mg)are becoming important for making energy-storage batteries and structural materials.Herein,we develop a liquid-metal-electrode-assisted electrolysis route to producing Na and Mg with low-car... Sodium(Na)and magnesium(Mg)are becoming important for making energy-storage batteries and structural materials.Herein,we develop a liquid-metal-electrode-assisted electrolysis route to producing Na and Mg with low-carbon emissions and no chlorine gas evolution.The clean production stems from the choice of a molten NaCl-Na_(2)CO_(3) electrolyte to prevent chlorine gas evolution,an inert nickel-based anode to produce oxygen,and a liquid metal cathode to make the cathodic product sit at the bottom of the electrolytic cell.We achieve a current efficiency of>90%for the electrolytic production of liquid Na-Sn alloy.Later,Mg-Sn alloy is prepared using the obtained Na-Sn alloy to displace Mg from molten NaCl-MgCl_(2) with a displacement efficiency of>96%.Further,Na and Mg are separated from the electrolytic Na-Sn and displaced Mg-Sn alloys by vacuum distillation with a recovery rate of>92%and Sn can be reused.Using this electrolysisdisplacement-distillation(EDD)approach,we prepare Mg from seawater.The CO_(2)emission of the EDD approach is~20.6 kg CO_(2)per kg Mg,which is less than that of the Australian Magnesium(AM)electrolysis process(~25.0 kg CO_(2)per kg Mg)and less than half that of the Pidgeon process(~45.2 kg CO_(2)per kg Mg). 展开更多
关键词 Molten-salt electrolysis Inert anode Liquid metal electrodes SODIUM MAGNESIUM
在线阅读 下载PDF
A review on multi-scale structure engineering of carbon-based electrode materials towards dense energy storage for supercapacitors 被引量:1
13
作者 Dongyang Wu Fei Sun +5 位作者 Min Xie Hua Wang Wei Fan Jihui Gao Guangbo Zhao Shaoqin Liu 《Journal of Energy Chemistry》 2025年第3期768-799,共32页
Improving the volumetric energy density of supercapacitors is essential for practical applications,which highly relies on the dense storage of ions in carbon-based electrodes.The functional units of carbon-based elect... Improving the volumetric energy density of supercapacitors is essential for practical applications,which highly relies on the dense storage of ions in carbon-based electrodes.The functional units of carbon-based electrode exhibit multi-scale structural characteristics including macroscopic electrode morphologies,mesoscopic microcrystals and pores,and microscopic defects and dopants in the carbon basal plane.Therefore,the ordered combination of multi-scale structures of carbon electrode is crucial for achieving dense energy storage and high volumetric performance by leveraging the functions of various scale structu re.Considering that previous reviews have focused more on the discussion of specific scale structu re of carbon electrodes,this review takes a multi-scale perspective in which recent progresses regarding the structureperformance relationship,underlying mechanism and directional design of carbon-based multi-scale structures including carbon morphology,pore structure,carbon basal plane micro-environment and electrode technology on dense energy storage and volumetric property of supercapacitors are systematically discussed.We analyzed in detail the effects of the morphology,pore,and micro-environment of carbon electrode materials on ion dense storage,summarized the specific effects of different scale structures on volumetric property and recent research progress,and proposed the mutual influence and trade-off relationship between various scale structures.In addition,the challenges and outlooks for improving the dense storage and volumetric performance of carbon-based supercapacitors are analyzed,which can provide feasible technical reference and guidance for the design and manufacture of dense carbon-based electrode materials. 展开更多
关键词 SUPERCAPACITORS Carbon-based electrodes Volumetric performances Multi-scale structure Dense energy storage
在线阅读 下载PDF
Armoring hydrophilic wood-structured ultrathick electrode with bimetallic nitride enables high energy-density supercapacitor 被引量:1
14
作者 Nannan Ming Jikun Xu +2 位作者 Jingfang Lei Cankun Hu Kaifu Huo 《Green Energy & Environment》 2025年第2期345-357,共13页
Thick electrodes can reduce the ratio of inactive constituents in a holistic energy storage system while improving energy and power densities.Unfortunately,traditional slurry-casting electrodes induce high-tortuous io... Thick electrodes can reduce the ratio of inactive constituents in a holistic energy storage system while improving energy and power densities.Unfortunately,traditional slurry-casting electrodes induce high-tortuous ionic diffusion routes that directly depress the capacitance with a thickening design.To overcome this,a novel 3D low-tortuosity,self-supporting,wood-structured ultrathick electrode(NiMoN@WC,a thickness of~1400 mm)with hierarchical porosity and artificial array-distributed small holes was constructed via anchoring bimetallic nitrides into the monolithic wood carbons.Accompanying the embedded NiMoN nanoclusters with well-designed geometric and electronic structure,the vertically low-tortuous channels,enlarged specific surface area and pore volume,superhydrophilic interface,and excellent charge conductivities,a superior capacitance of NiMoN@WC thick electrodes(~5350 mF cm^(-2)and 184.5 F g^(-1))is achieved without the structural deformation.In especial,monolithic wood carbons with gradient porous network not only function as the high-flux matrices to ameliorate the NiMoN loading via cell wall engineering but also allow fully-exposed electroactive substance and efficient current collection,thereby deliver an acceptable rate capability over 75%retention even at a high sweep rate of 20 mA cm^(-2).Additionally,an asymmetric NiMoN@WC//WC supercapacitor with an available working voltage of 1.0-1.8 V is assembled to demonstrate a maximum energy density of~2.04 mWh cm^(-2)(17.4 Wh kg^(-1))at a power density of 1620 mW cm^(-2),along with a decent long-term lifespan over 10,000 charging-discharging cycles.As a guideline,the rational design of wood ultrathick electrode with nanostructured transition metal nitrides sketch a promising blueprint for alleviating global energy scarcity while expanding carbon-neutral technologies. 展开更多
关键词 Wood-structured thick electrode Supercapacitors Transition metal nitrides Low tortuosity
在线阅读 下载PDF
High-Performance Supercapacitor Electrodes from Optimized Single-Step Carbonized Michelia Champaca Biomass 被引量:1
15
作者 Dibyashree Shrestha 《Journal of Environmental & Earth Sciences》 2025年第6期1-22,共22页
This study explores the potential of Michelia champaca wood as a sustainable and locally available precursor for the fabrication of high-performance supercapacitor electrodes.Activated carbons were synthesized through... This study explores the potential of Michelia champaca wood as a sustainable and locally available precursor for the fabrication of high-performance supercapacitor electrodes.Activated carbons were synthesized through single-step carbonization at 400℃ and 500℃(SSC-400℃ and SSC-500℃) and double-step carbonization at 400℃(DSC-400℃),with all samples activated using H_(3)PO_(4).The effects of carbonization stratergy on the structural,morphological,and electrochemical characteristics of the resulting carbon materials were systematically evaluated,using techniques such as BET,SEM,TEM,XRD,Raman scattering,FTIR,CV,GCD and EIS.Among the samples,SSC-400℃ exhibited the best electrochemical performance,achieving a specific capacitance of 292.2 Fg^(-1),an energy density of 6.4 Wh kg^(-1),and a power density of 198.4 W kg^(-1).This superior performance is attributed to its optimized pore structure,improved sur-face functionality and enhanced conductivity.SSC-500℃showed marginally lower performance,whereas,DSC-400℃ displayed the least favorable results,indicating that double-step carbonization process may negatively affect material quality by disrupting the pore network.This work highlights a strong correlation between synthesis methodology and electrochemical efficiency,directly reinforcing the importance of process optimization in electrode material develop-ment.The findings contribute to the broader goal of developing cost-effective,renewable and environmentally friendly energy storage systems.By valorizing biomass waste,the study supports global movements toward green energy technologies and circular carbon economies,offering a viable pathway for sustainable supercapacitor development and practical applications in energy storage devices. 展开更多
关键词 Michelia Champaca Wood Activated Carbon Supercapacitor electrodes CARBONIZATION Sustainable Materials
在线阅读 下载PDF
Advances in Graphene‑Based Electrode for Triboelectric Nanogenerator
16
作者 Bin Xie Yuanhui Guo +7 位作者 Yun Chen Hao Zhang Jiawei Xiao Maoxiang Hou Huilong Liu Li Ma Xin Chen Chingping Wong 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期378-403,共26页
With the continuous development of wearable electronics,wireless sensor networks and other micro-electronic devices,there is an increasingly urgent need for miniature,flexible and efficient nanopower generation techno... With the continuous development of wearable electronics,wireless sensor networks and other micro-electronic devices,there is an increasingly urgent need for miniature,flexible and efficient nanopower generation technology.Triboelectric nanogenerator(TENG)technology can convert small mechanical energy into electricity,which is expected to address this problem.As the core component of TENG,the choice of electrode materials significantly affects its performance.Traditional metal electrode materials often suffer from problems such as durability,which limits the further application of TENG.Graphene,as a novel electrode material,shows excellent prospects for application in TENG owing to its unique structure and excellent electrical properties.This review systematically summarizes the recent research progress and application prospects of TENGs based on graphene electrodes.Various precision processing methods of graphene electrodes are introduced,and the applications of graphene electrode-based TENGs in various scenarios as well as the enhancement of graphene electrodes for TENG performance are discussed.In addition,the future development of graphene electrode-based TENGs is also prospectively discussed,aiming to promote the continuous advancement of graphene electrode-based TENGs. 展开更多
关键词 Triboelectric nanogenerator Precision processing Graphene electrode Self-powered sensor
在线阅读 下载PDF
Regulating the mechano-electrochemistry of graphite-silicon hybrid anode through layered electrode structure design 被引量:1
17
作者 Chunhao Li Jing Wang +8 位作者 Xiancheng Wang Zihe Chen Renming Zhan Xiangrui Duan Xuerui Liu Kai Cheng Zhao Cai Li Wang Yongming Sun 《Journal of Energy Chemistry》 2025年第5期176-184,共9页
Graphite-silicon species(Gr-Si)hybrid anodes have merged as potential candidates for high-energy lithium-ion batteries(LIBs),yet long been plagued by rapid capacity fading due to their unstable mechano-electrochemistr... Graphite-silicon species(Gr-Si)hybrid anodes have merged as potential candidates for high-energy lithium-ion batteries(LIBs),yet long been plagued by rapid capacity fading due to their unstable mechano-electrochemistry.The dominant approach to enhance electrochemical stability of the Gr-Si hybrid anodes typically involves the optimization of the electrode material structures and the employment of low active Si species content in electrode(<10 wt%in most instances).However,the electrode structure design,a factor of equal importance in determining the electrochemical performance of Gr-Si hybrid anodes,has received scant attention.In this study,three Gr-Si hybrid anodes with the identical material composition but distinct electrode structures are designed to investigate the mechanoelectrochemistry of the electrodes.It is revealed that the substantial volume change of Si species particles in Gr-Si hybrid anodes led to the local lattice stress of Gr at their contact interface during the charge/discharge processes,thereby increasing thermodynamic and kinetic barrier of Li-ion migration.Furthermore,the huge disparity in volume change of Si species and Gr particles trigger the separate agglomeration of these two materials,resulting in a considerable electrode volume change and increased electrochemical resistance.An advanced Gr/Si hybrid anode with upper Gr and lower Si species layer structure design addresses the above challenges using photovoltaic waste silicon sources under high Si species content(17 wt%)and areal capacity(2.0 mA h cm^(-2))in Ah-level full pouch cells with a low negative/positive(N/P)ratio of 1.09.The cell shows stable cycling for 100 cycles at 0.3 C with an impressively low capacity decay rate of 0.0546%per cycle,outperforming most reported Gr-Si hybrid anodes. 展开更多
关键词 Graphite-silicon hybrid anode electrode structure Mechano-electrochemistry Local interfacial stress Cycling stability
在线阅读 下载PDF
Frequency optimization for electrodes in implantable brain-computer interfaces 被引量:1
18
作者 CHEN Han LIU Xiangyu +2 位作者 CHENG Jiajun QIN Jiangfan ZHANG Xueli 《Journal of Southeast University(English Edition)》 2025年第3期366-374,共9页
Fully implanted brain-computer interfaces(BCIs)are preferred as they eliminate signal degradation caused by interference and absorption in external tissues,a common issue in non-fully implanted systems.To optimize the... Fully implanted brain-computer interfaces(BCIs)are preferred as they eliminate signal degradation caused by interference and absorption in external tissues,a common issue in non-fully implanted systems.To optimize the design of electroencephalography electrodes in fully implanted BCI systems,this study investigates the penetration and absorption characteristics of microwave signals in human brain tissue at different frequencies.Electromagnetic simulations are used to analyze the power density distribution and specific absorption rate(SAR)of signals at various frequen-cies.The results indicate that lower-frequency signals offer advantages in terms of power density and attenuation coeffi-cients.However,SAR-normalized analysis,which considers both power density and electromagnetic radiation hazards,shows that higher-frequency signals perform better at superficial to intermediate depths.Specifically,at a depth of 2 mm beneath the cortex,the power density of a 6.5 GHz signal is 247.83%higher than that of a 0.4 GHz signal.At a depth of 5 mm,the power density of a 3.5 GHz signal exceeds that of a 0.4 GHz signal by 224.16%.The findings suggest that 6.5 GHz is optimal for electrodes at a depth of 2 mm,3.5 GHz for 5 mm,2.45 GHz for depths of 15-20 mm,and 1.8 GHz for 25 mm. 展开更多
关键词 brain-computer interfaces electromagnetic simulation electroencephalography electrodes power den-sity specific absorption rate
在线阅读 下载PDF
Multicomponent Gd_(1−x)Sm_(x)Ba_(0.5)Sr_(0.5)CoCuO_(5+δ) double perovskites as oxygen electrodes for solid oxide cells:Effect of chemical composition and electrospun morphology 被引量:1
19
作者 Jacek Winiarski Piotr Winiarz Konrad Świerczek 《International Journal of Minerals,Metallurgy and Materials》 2025年第11期2628-2638,共11页
Multicomponent Gd_(1−x)Sm_(x)Ba_(0.5)Sr_(0.5)CoCuO_(5+δ)double perovskites are optimized for application in terms of chemical composi-tion and morphology for the use as oxygen electrodes in solid oxide cells.Structur... Multicomponent Gd_(1−x)Sm_(x)Ba_(0.5)Sr_(0.5)CoCuO_(5+δ)double perovskites are optimized for application in terms of chemical composi-tion and morphology for the use as oxygen electrodes in solid oxide cells.Structural studies of other physicochemical properties are con-ducted on a series of materials obtained by the sol-gel method with different ratios of Gd and Sm cations.It is documented that changing the x value,and the resulting adjustment of the average ionic radius,have a significant impact on the crystal structure,stability,as well as on the total conductivity and thermomechanical properties of the materials,with the best results obtained for the Gd_(0.75)Sm_(0.2)5Ba_(0.5)Sr_(0.5)CoCuO_(5+δ)composition.Oxygen electrodes are prepared using the selected compound,allowing to obtain low polarization resistance values,such as 0.086Ω·cm^(2)at 800℃.Systematic studies of electrocatalytic activity are conducted using La_(0.8)Sr_(0.2)Ga_(0.8)Mg_(_(0.2))O_(3−δ)as the electrolyte for all electrodes,and Ce_(0.8)Gd_(0.2)O_(2−δ)electrolyte for the best performing Gd_(0.75)Sm_(0.2)5Ba_(0.5)Sr_(0.5)CoCuO_(5+δ)electrodes.The electrochemical data are analyzed using the distribution of relaxation times method.Also,the influence of the preparation method of the electrode material is in-ve`stigated using the electrospinning technique.Finally,the performance of the Gd_(0.75)Sm_(0.2)5Ba_(0.5)Sr_(0.5)CoCuO_(5+δ)electrodes is tested in a Ni-YSZ(yttria-stabilized zirconia)anode-supported cell with a Ce_(0.8)Gd_(0.2)O_(2−δ)buffer layer,in the fuel cell and electrolyzer operating modes.With the electrospun electrode,a power density of 462 mW·cm^(−2)is obtained at 700℃,with a current density of ca.0.2 A·cm^(−2)at 1.3 V for the electrolysis at the same temperature,indicating better performance compared to the sol-gel-based electrode. 展开更多
关键词 multicomponent oxides double perovskites morphology modification ELECTROSPINNING oxygen electrodes solid oxide cells
在线阅读 下载PDF
Enhanced electrode-level diagnostics for lithium-ion battery degradation using physics-informed neural networks 被引量:1
20
作者 Rui Xiong Yinghao He +2 位作者 Yue Sun Yanbo Jia Weixiang Shen 《Journal of Energy Chemistry》 2025年第5期618-627,共10页
For the diagnostics and health management of lithium-ion batteries,numerous models have been developed to understand their degradation characteristics.These models typically fall into two categories:data-driven models... For the diagnostics and health management of lithium-ion batteries,numerous models have been developed to understand their degradation characteristics.These models typically fall into two categories:data-driven models and physical models,each offering unique advantages but also facing limitations.Physics-informed neural networks(PINNs)provide a robust framework to integrate data-driven models with physical principles,ensuring consistency with underlying physics while enabling generalization across diverse operational conditions.This study introduces a PINN-based approach to reconstruct open circuit voltage(OCV)curves and estimate key ageing parameters at both the cell and electrode levels.These parameters include available capacity,electrode capacities,and lithium inventory capacity.The proposed method integrates OCV reconstruction models as functional components into convolutional neural networks(CNNs)and is validated using a public dataset.The results reveal that the estimated ageing parameters closely align with those obtained through offline OCV tests,with errors in reconstructed OCV curves remaining within 15 mV.This demonstrates the ability of the method to deliver fast and accurate degradation diagnostics at the electrode level,advancing the potential for precise and efficient battery health management. 展开更多
关键词 Lithium-ion batteries electrode level Ageing diagnosis Physics-informed neural network Convolutional neural networks
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部