Seismic data denoising is a critical process usually applied at various stages of the seismic processing workflow,as our ability to mitigate noise in seismic data affects the quality of our subsequent analyses.However...Seismic data denoising is a critical process usually applied at various stages of the seismic processing workflow,as our ability to mitigate noise in seismic data affects the quality of our subsequent analyses.However,finding an optimal balance between preserving seismic signals and effectively reducing seismic noise presents a substantial challenge.In this study,we introduce a multi-stage deep learning model,trained in a self-supervised manner,designed specifically to suppress seismic noise while minimizing signal leakage.This model operates as a patch-based approach,extracting overlapping patches from the noisy data and converting them into 1D vectors for input.It consists of two identical sub-networks,each configured differently.Inspired by the transformer architecture,each sub-network features an embedded block that comprises two fully connected layers,which are utilized for feature extraction from the input patches.After reshaping,a multi-head attention module enhances the model’s focus on significant features by assigning higher attention weights to them.The key difference between the two sub-networks lies in the number of neurons within their fully connected layers.The first sub-network serves as a strong denoiser with a small number of neurons,effectively attenuating seismic noise;in contrast,the second sub-network functions as a signal-add-back model,using a larger number of neurons to retrieve some of the signal that was not preserved in the output of the first sub-network.The proposed model produces two outputs,each corresponding to one of the sub-networks,and both sub-networks are optimized simultaneously using the noisy data as the label for both outputs.Evaluations conducted on both synthetic and field data demonstrate the model’s effectiveness in suppressing seismic noise with minimal signal leakage,outperforming some benchmark methods.展开更多
Wearable sensors integrated with deep learning techniques have the potential to revolutionize seamless human-machine interfaces for real-time health monitoring,clinical diagnosis,and robotic applications.Nevertheless,...Wearable sensors integrated with deep learning techniques have the potential to revolutionize seamless human-machine interfaces for real-time health monitoring,clinical diagnosis,and robotic applications.Nevertheless,it remains a critical challenge to simultaneously achieve desirable mechanical and electrical performance along with biocompatibility,adhesion,self-healing,and environmental robustness with excellent sensing metrics.Herein,we report a multifunctional,anti-freezing,selfadhesive,and self-healable organogel pressure sensor composed of cobalt nanoparticle encapsulated nitrogen-doped carbon nanotubes(CoN CNT)embedded in a polyvinyl alcohol-gelatin(PVA/GLE)matrix.Fabricated using a binary solvent system of water and ethylene glycol(EG),the CoN CNT/PVA/GLE organogel exhibits excellent flexibility,biocompatibility,and temperature tolerance with remarkable environmental stability.Electrochemical impedance spectroscopy confirms near-stable performance across a broad humidity range(40%-95%RH).Freeze-tolerant conductivity under sub-zero conditions(-20℃)is attributed to the synergistic role of CoN CNT and EG,preserving mobility and network integrity.The Co N CNT/PVA/GLE organogel sensor exhibits high sensitivity of 5.75 k Pa^(-1)in the detection range from 0 to 20 k Pa,ideal for subtle biomechanical motion detection.A smart human-machine interface for English letter recognition using deep learning achieved 98%accuracy.The organogel sensor utility was extended to detect human gestures like finger bending,wrist motion,and throat vibration during speech.展开更多
Underwater pipeline inspection plays a vital role in the proactive maintenance and management of critical marine infrastructure and subaquatic systems.However,the inspection of underwater pipelines presents a challeng...Underwater pipeline inspection plays a vital role in the proactive maintenance and management of critical marine infrastructure and subaquatic systems.However,the inspection of underwater pipelines presents a challenge due to factors such as light scattering,absorption,restricted visibility,and ambient noise.The advancement of deep learning has introduced powerful techniques for processing large amounts of unstructured and imperfect data collected from underwater environments.This study evaluated the efficacy of the You Only Look Once(YOLO)algorithm,a real-time object detection and localization model based on convolutional neural networks,in identifying and classifying various types of pipeline defects in underwater settings.YOLOv8,the latest evolution in the YOLO family,integrates advanced capabilities,such as anchor-free detection,a cross-stage partial network backbone for efficient feature extraction,and a feature pyramid network+path aggregation network neck for robust multi-scale object detection,which make it particularly well-suited for complex underwater environments.Due to the lack of suitable open-access datasets for underwater pipeline defects,a custom dataset was captured using a remotely operated vehicle in a controlled environment.This application has the following assets available for use.Extensive experimentation demonstrated that YOLOv8 X-Large consistently outperformed other models in terms of pipe defect detection and classification and achieved a strong balance between precision and recall in identifying pipeline cracks,rust,corners,defective welds,flanges,tapes,and holes.This research establishes the baseline performance of YOLOv8 for underwater defect detection and showcases its potential to enhance the reliability and efficiency of pipeline inspection tasks in challenging underwater environments.展开更多
Deep learning-based methods have become alternatives to traditional numerical weather prediction systems,offering faster computation and the ability to utilize large historical datasets.However,the application of deep...Deep learning-based methods have become alternatives to traditional numerical weather prediction systems,offering faster computation and the ability to utilize large historical datasets.However,the application of deep learning to medium-range regional weather forecasting with limited data remains a significant challenge.In this work,three key solutions are proposed:(1)motivated by the need to improve model performance in data-scarce regional forecasting scenarios,the authors innovatively apply semantic segmentation models,to better capture spatiotemporal features and improve prediction accuracy;(2)recognizing the challenge of overfitting and the inability of traditional noise-based data augmentation methods to effectively enhance model robustness,a novel learnable Gaussian noise mechanism is introduced that allows the model to adaptively optimize perturbations for different locations,ensuring more effective learning;and(3)to address the issue of error accumulation in autoregressive prediction,as well as the challenge of learning difficulty and the lack of intermediate data utilization in one-shot prediction,the authors propose a cascade prediction approach that effectively resolves these problems while significantly improving model forecasting performance.The method achieves a competitive result in The East China Regional AI Medium Range Weather Forecasting Competition.Ablation experiments further validate the effectiveness of each component,highlighting their contributions to enhancing prediction performance.展开更多
An image processing and deep learning method for identifying different types of rock images was proposed.Preprocessing,such as rock image acquisition,gray scaling,Gaussian blurring,and feature dimensionality reduction...An image processing and deep learning method for identifying different types of rock images was proposed.Preprocessing,such as rock image acquisition,gray scaling,Gaussian blurring,and feature dimensionality reduction,was conducted to extract useful feature information and recognize and classify rock images using Tensor Flow-based convolutional neural network(CNN)and Py Qt5.A rock image dataset was established and separated into workouts,confirmation sets,and test sets.The framework was subsequently compiled and trained.The categorization approach was evaluated using image data from the validation and test datasets,and key metrics,such as accuracy,precision,and recall,were analyzed.Finally,the classification model conducted a probabilistic analysis of the measured data to determine the equivalent lithological type for each image.The experimental results indicated that the method combining deep learning,Tensor Flow-based CNN,and Py Qt5 to recognize and classify rock images has an accuracy rate of up to 98.8%,and can be successfully utilized for rock image recognition.The system can be extended to geological exploration,mine engineering,and other rock and mineral resource development to more efficiently and accurately recognize rock samples.Moreover,it can match them with the intelligent support design system to effectively improve the reliability and economy of the support scheme.The system can serve as a reference for supporting the design of other mining and underground space projects.展开更多
The rapid growth of biomedical data,particularly multi-omics data including genomes,transcriptomics,proteomics,metabolomics,and epigenomics,medical research and clinical decision-making confront both new opportunities...The rapid growth of biomedical data,particularly multi-omics data including genomes,transcriptomics,proteomics,metabolomics,and epigenomics,medical research and clinical decision-making confront both new opportunities and obstacles.The huge and diversified nature of these datasets cannot always be managed using traditional data analysis methods.As a consequence,deep learning has emerged as a strong tool for analysing numerous omics data due to its ability to handle complex and non-linear relationships.This paper explores the fundamental concepts of deep learning and how they are used in multi-omics medical data mining.We demonstrate how autoencoders,variational autoencoders,multimodal models,attention mechanisms,transformers,and graph neural networks enable pattern analysis and recognition across all omics data.Deep learning has been found to be effective in illness classification,biomarker identification,gene network learning,and therapeutic efficacy prediction.We also consider critical problems like as data quality,model explainability,whether findings can be repeated,and computational power requirements.We now consider future elements of combining omics with clinical and imaging data,explainable AI,federated learning,and real-time diagnostics.Overall,this study emphasises the need of collaborating across disciplines to advance deep learning-based multi-omics research for precision medicine and comprehending complicated disorders.展开更多
Two-dimensional endoscopic images are susceptible to interferences such as specular reflections and monotonous texture illumination,hindering accurate three-dimensional lesion reconstruction by surgical robots.This st...Two-dimensional endoscopic images are susceptible to interferences such as specular reflections and monotonous texture illumination,hindering accurate three-dimensional lesion reconstruction by surgical robots.This study proposes a novel end-to-end disparity estimation model to address these challenges.Our approach combines a Pseudo-Siamese neural network architecture with pyramid dilated convolutions,integrating multi-scale image information to enhance robustness against lighting interferences.This study introduces a Pseudo-Siamese structure-based disparity regression model that simplifies left-right image comparison,improving accuracy and efficiency.The model was evaluated using a dataset of stereo endoscopic videos captured by the Da Vinci surgical robot,comprising simulated silicone heart sequences and real heart video data.Experimental results demonstrate significant improvement in the network’s resistance to lighting interference without substantially increasing parameters.Moreover,the model exhibited faster convergence during training,contributing to overall performance enhancement.This study advances endoscopic image processing accuracy and has potential implications for surgical robot applications in complex environments.展开更多
Intelligent Transportation Systems(ITS)leverage Integrated Sensing and Communications(ISAC)to enhance data exchange between vehicles and infrastructure in the Internet of Vehicles(IoV).This integration inevitably incr...Intelligent Transportation Systems(ITS)leverage Integrated Sensing and Communications(ISAC)to enhance data exchange between vehicles and infrastructure in the Internet of Vehicles(IoV).This integration inevitably increases computing demands,risking real-time system stability.Vehicle Edge Computing(VEC)addresses this by offloading tasks to Road Side Units(RSUs),ensuring timely services.Our previous work,the FLSimCo algorithm,which uses local resources for federated Self-Supervised Learning(SSL),has a limitation:vehicles often can’t complete all iteration tasks.Our improved algorithm offloads partial tasks to RSUs and optimizes energy consumption by adjusting transmission power,CPU frequency,and task assignment ratios,balancing local and RSU-based training.Meanwhile,setting an offloading threshold further prevents inefficiencies.Simulation results show that the enhanced algorithm reduces energy consumption and improves offloading efficiency and accuracy of federated SSL.展开更多
With its tremendous success in many machine learning and pattern recognition tasks,deep learning,as one type of data-driven models,has also led to many breakthroughs in other disciplines including physics,chemistry an...With its tremendous success in many machine learning and pattern recognition tasks,deep learning,as one type of data-driven models,has also led to many breakthroughs in other disciplines including physics,chemistry and material science.Nevertheless,the supremacy of deep learning over conventional optimization approaches heavily depends on the huge amount of data collected in advance to train the model,which is a common bottleneck of such a data-driven technique.In this work,we present a comprehensive deep learning model for the design and characterization of nanophotonic structures,where a self-supervised learning mechanism is introduced to alleviate the burden of data acquisition.Taking reflective metasurfaces as an example,we demonstrate that the self-supervised deep learning model can effectively utilize randomly generated unlabeled data during training,with the total test loss and prediction accuracy improved by about 15%compared with the fully supervised counterpart.The proposed self-supervised learning scheme provides an efficient solution for deep learning models in some physics-related tasks where labeled data are limited or expensive to collect.展开更多
By automatically learning the priors embedded in images with powerful modelling ca-pabilities,deep learning-based algorithms have recently made considerable progress in reconstructing the high-resolution hyperspectral...By automatically learning the priors embedded in images with powerful modelling ca-pabilities,deep learning-based algorithms have recently made considerable progress in reconstructing the high-resolution hyperspectral(HR-HS)image.With previously collected large-amount of external data,these methods are intuitively realised under the full supervision of the ground-truth data.Thus,the database construction in merging the low-resolution(LR)HS(LR-HS)and HR multispectral(MS)or RGB image research paradigm,commonly named as HSI SR,requires collecting corresponding training triplets:HR-MS(RGB),LR-HS and HR-HS image simultaneously,and often faces dif-ficulties in reality.The learned models with the training datasets collected simultaneously under controlled conditions may significantly degrade the HSI super-resolved perfor-mance to the real images captured under diverse environments.To handle the above-mentioned limitations,the authors propose to leverage the deep internal and self-supervised learning to solve the HSI SR problem.The authors advocate that it is possible to train a specific CNN model at test time,called as deep internal learning(DIL),by on-line preparing the training triplet samples from the observed LR-HS/HR-MS(or RGB)images and the down-sampled LR-HS version.However,the number of the training triplets extracted solely from the transformed data of the observation itself is extremely few particularly for the HSI SR tasks with large spatial upscale factors,which would result in limited reconstruction performance.To solve this problem,the authors further exploit deep self-supervised learning(DSL)by considering the observations as the unlabelled training samples.Specifically,the degradation modules inside the network were elaborated to realise the spatial and spectral down-sampling procedures for transforming the generated HR-HS estimation to the high-resolution RGB/LR-HS approximation,and then the reconstruction errors of the observations were formulated for measuring the network modelling performance.By consolidating the DIL and DSL into a unified deep framework,the authors construct a more robust HSI SR method without any prior training and have great potential of flexible adaptation to different settings per obser-vation.To verify the effectiveness of the proposed approach,extensive experiments have been conducted on two benchmark HS datasets,including the CAVE and Harvard datasets,and demonstrate the great performance gain of the proposed method over the state-of-the-art methods.展开更多
Early identification and treatment of stroke can greatly improve patient outcomes and quality of life.Although clinical tests such as the Cincinnati Pre-hospital Stroke Scale(CPSS)and the Face Arm Speech Test(FAST)are...Early identification and treatment of stroke can greatly improve patient outcomes and quality of life.Although clinical tests such as the Cincinnati Pre-hospital Stroke Scale(CPSS)and the Face Arm Speech Test(FAST)are commonly used for stroke screening,accurate administration is dependent on specialized training.In this study,we proposed a novel multimodal deep learning approach,based on the FAST,for assessing suspected stroke patients exhibiting symptoms such as limb weakness,facial paresis,and speech disorders in acute settings.We collected a dataset comprising videos and audio recordings of emergency room patients performing designated limb movements,facial expressions,and speech tests based on the FAST.We compared the constructed deep learning model,which was designed to process multi-modal datasets,with six prior models that achieved good action classification performance,including the I3D,SlowFast,X3D,TPN,TimeSformer,and MViT.We found that the findings of our deep learning model had a higher clinical value compared with the other approaches.Moreover,the multi-modal model outperformed its single-module variants,highlighting the benefit of utilizing multiple types of patient data,such as action videos and speech audio.These results indicate that a multi-modal deep learning model combined with the FAST could greatly improve the accuracy and sensitivity of early stroke identification of stroke,thus providing a practical and powerful tool for assessing stroke patients in an emergency clinical setting.展开更多
Deep neural networks(DNNs)are effective in solving both forward and inverse problems for nonlinear partial differential equations(PDEs).However,conventional DNNs are not effective in handling problems such as delay di...Deep neural networks(DNNs)are effective in solving both forward and inverse problems for nonlinear partial differential equations(PDEs).However,conventional DNNs are not effective in handling problems such as delay differential equations(DDEs)and delay integrodifferential equations(DIDEs)with constant delays,primarily due to their low regularity at delayinduced breaking points.In this paper,a DNN method that combines multi-task learning(MTL)which is proposed to solve both the forward and inverse problems of DIDEs.The core idea of this approach is to divide the original equation into multiple tasks based on the delay,using auxiliary outputs to represent the integral terms,followed by the use of MTL to seamlessly incorporate the properties at the breaking points into the loss function.Furthermore,given the increased training dificulty associated with multiple tasks and outputs,we employ a sequential training scheme to reduce training complexity and provide reference solutions for subsequent tasks.This approach significantly enhances the approximation accuracy of solving DIDEs with DNNs,as demonstrated by comparisons with traditional DNN methods.We validate the effectiveness of this method through several numerical experiments,test various parameter sharing structures in MTL and compare the testing results of these structures.Finally,this method is implemented to solve the inverse problem of nonlinear DIDE and the results show that the unknown parameters of DIDE can be discovered with sparse or noisy data.展开更多
BACKGROUND The accurate prediction of lymph node metastasis(LNM)is crucial for managing locally advanced(T3/T4)colorectal cancer(CRC).However,both traditional histopathology and standard slide-level deep learning ofte...BACKGROUND The accurate prediction of lymph node metastasis(LNM)is crucial for managing locally advanced(T3/T4)colorectal cancer(CRC).However,both traditional histopathology and standard slide-level deep learning often fail to capture the sparse and diagnostically critical features of metastatic potential.AIM To develop and validate a case-level multiple-instance learning(MIL)framework mimicking a pathologist's comprehensive review and improve T3/T4 CRC LNM prediction.METHODS The whole-slide images of 130 patients with T3/T4 CRC were retrospectively collected.A case-level MIL framework utilising the CONCH v1.5 and UNI2-h deep learning models was trained on features from all haematoxylin and eosinstained primary tumour slides for each patient.These pathological features were subsequently integrated with clinical data,and model performance was evaluated using the area under the curve(AUC).RESULTS The case-level framework demonstrated superior LNM prediction over slide-level training,with the CONCH v1.5 model achieving a mean AUC(±SD)of 0.899±0.033 vs 0.814±0.083,respectively.Integrating pathology features with clinical data further enhanced performance,yielding a top model with a mean AUC of 0.904±0.047,in sharp contrast to a clinical-only model(mean AUC 0.584±0.084).Crucially,a pathologist’s review confirmed that the model-identified high-attention regions correspond to known high-risk histopathological features.CONCLUSION A case-level MIL framework provides a superior approach for predicting LNM in advanced CRC.This method shows promise for risk stratification and therapy decisions,requiring further validation.展开更多
Deep learning algorithms have been rapidly incorporated into many different applications due to the increase in computational power and the availability of massive amounts of data.Recently,both deep learning and ensem...Deep learning algorithms have been rapidly incorporated into many different applications due to the increase in computational power and the availability of massive amounts of data.Recently,both deep learning and ensemble learning have been used to recognize underlying structures and patterns from high-level features to make predictions/decisions.With the growth in popularity of deep learning and ensemble learning algorithms,they have received significant attention from both scientists and the industrial community due to their superior ability to learn features from big data.Ensemble deep learning has exhibited significant performance in enhancing learning generalization through the use of multiple deep learning algorithms.Although ensemble deep learning has large quantities of training parameters,which results in time and space overheads,it performs much better than traditional ensemble learning.Ensemble deep learning has been successfully used in several areas,such as bioinformatics,finance,and health care.In this paper,we review and investigate recent ensemble deep learning algorithms and techniques in health care domains,medical imaging,health care data analytics,genomics,diagnosis,disease prevention,and drug discovery.We cover several widely used deep learning algorithms along with their architectures,including deep neural networks(DNNs),convolutional neural networks(CNNs),recurrent neural networks(RNNs),and generative adversarial networks(GANs).Common healthcare tasks,such as medical imaging,electronic health records,and genomics,are also demonstrated.Furthermore,in this review,the challenges inherent in reducing the burden on the healthcare system are discussed and explored.Finally,future directions and opportunities for enhancing healthcare model performance are discussed.展开更多
Computational solid mechanics has become an indispensable approach in engineering,and numerical investigation of fracturing in composites is essential,as composites are widely used in structural applications.Crack evo...Computational solid mechanics has become an indispensable approach in engineering,and numerical investigation of fracturing in composites is essential,as composites are widely used in structural applications.Crack evolution in composites is the path to elucidating the relationship between microstructures and fracture performance,but crack-based finite-element methods are computationally expensive and time-consuming,which limits their application in computation-intensive scenarios.Consequently,this study proposes a deep learning framework called Crack-Net for instant prediction of the dynamic crack growth process,as well as its strain-stress curve.Specifically,Crack-Net introduces an implicit constraint technique,which incorporates the relationship between crack evolution and stress response into the network architecture.This technique substantially reduces data requirements while improving predictive accuracy.The transfer learning technique enables Crack-Net to handle composite materials with reinforcements of different strengths.Trained on high-accuracy fracture development datasets from phase field simulations,the proposed framework is capable of tackling intricate scenarios,involving materials with diverse interfaces,varying initial conditions,and the intricate elastoplastic fracture process.The proposed Crack-Net holds great promise for practical applications in engineering and materials science,in which accurate and efficient fracture prediction is crucial for optimizing material performance and microstructural design.展开更多
The precise identification of quartz minerals is crucial in mineralogy and geology due to their widespread occurrence and industrial significance.Traditional methods of quartz identification in thin sections are labor...The precise identification of quartz minerals is crucial in mineralogy and geology due to their widespread occurrence and industrial significance.Traditional methods of quartz identification in thin sections are labor-intensive and require significant expertise,often complicated by the coexistence of other minerals.This study presents a novel approach leveraging deep learning techniques combined with hyperspectral imaging to automate the identification process of quartz minerals.The utilizied four advanced deep learning models—PSPNet,U-Net,FPN,and LinkNet—has significant advancements in efficiency and accuracy.Among these models,PSPNet exhibited superior performance,achieving the highest intersection over union(IoU)scores and demonstrating exceptional reliability in segmenting quartz minerals,even in complex scenarios.The study involved a comprehensive dataset of 120 thin sections,encompassing 2470 hyperspectral images prepared from 20 rock samples.Expert-reviewed masks were used for model training,ensuring robust segmentation results.This automated approach not only expedites the recognition process but also enhances reliability,providing a valuable tool for geologists and advancing the field of mineralogical analysis.展开更多
Automatic detection of Leukemia or blood cancer is one of the most challenging tasks that need to be addressed in the healthcare system.Analysis of white blood cells(WBCs)in the blood or bone marrow microscopic slide ...Automatic detection of Leukemia or blood cancer is one of the most challenging tasks that need to be addressed in the healthcare system.Analysis of white blood cells(WBCs)in the blood or bone marrow microscopic slide images play a crucial part in early identification to facilitate medical experts.For Acute Lymphocytic Leukemia(ALL),the most preferred part of the blood or marrow is to be analyzed by the experts before it spreads in the whole body and the condition becomes worse.The researchers have done a lot of work in this field,to demonstrate a comprehensive analysis few literature reviews have been published focusing on various artificial intelligence-based techniques like machine and deep learning detection of ALL.The systematic review has been done in this article under the PRISMA guidelines which presents the most recent advancements in this field.Different image segmentation techniques were broadly studied and categorized from various online databases like Google Scholar,Science Direct,and PubMed as image processing-based,traditional machine and deep learning-based,and advanced deep learning-based models were presented.Convolutional Neural Networks(CNN)based on traditional models and then the recent advancements in CNN used for the classification of ALL into its subtypes.A critical analysis of the existing methods is provided to offer clarity on the current state of the field.Finally,the paper concludes with insights and suggestions for future research,aiming to guide new researchers in the development of advanced automated systems for detecting life-threatening diseases.展开更多
The current deep learning models for braced excavation cannot predict deformation from the beginning of excavation due to the need for a substantial corpus of sufficient historical data for training purposes.To addres...The current deep learning models for braced excavation cannot predict deformation from the beginning of excavation due to the need for a substantial corpus of sufficient historical data for training purposes.To address this issue,this study proposes a transfer learning model based on a sequence-to-sequence twodimensional(2D)convolutional long short-term memory neural network(S2SCL2D).The model can use the existing data from other adjacent similar excavations to achieve wall deflection prediction once a limited amount of monitoring data from the target excavation has been recorded.In the absence of adjacent excavation data,numerical simulation data from the target project can be employed instead.A weight update strategy is proposed to improve the prediction accuracy by integrating the stochastic gradient masking with an early stopping mechanism.To illustrate the proposed methodology,an excavation project in Hangzhou,China is adopted.The proposed deep transfer learning model,which uses either adjacent excavation data or numerical simulation data as the source domain,shows a significant improvement in performance when compared to the non-transfer learning model.Using the simulation data from the target project even leads to better prediction performance than using the actual monitoring data from other adjacent excavations.The results demonstrate that the proposed model can reasonably predict the deformation with limited data from the target project.展开更多
Activity cliffs(ACs)are generally defined as pairs of similar compounds that only differ by a minor structural modification but exhibit a large difference in their binding affinity for a given target.ACs offer crucial...Activity cliffs(ACs)are generally defined as pairs of similar compounds that only differ by a minor structural modification but exhibit a large difference in their binding affinity for a given target.ACs offer crucial insights that aid medicinal chemists in optimizing molecular structures.Nonetheless,they also form a major source of prediction error in structure-activity relationship(SAR)models.To date,several studies have demonstrated that deep neural networks based on molecular images or graphs might need to be improved further in predicting the potency of ACs.In this paper,we integrated the triplet loss in face recognition with pre-training strategy to develop a prediction model ACtriplet,tailored for ACs.Through extensive comparison with multiple baseline models on 30 benchmark datasets,the results showed that ACtriplet was significantly better than those deep learning(DL)models without pretraining.In addition,we explored the effect of pre-training on data representation.Finally,the case study demonstrated that our model's interpretability module could explain the prediction results reasonably.In the dilemma that the amount of data could not be increased rapidly,this innovative framework would better make use of the existing data,which would propel the potential of DL in the early stage of drug discovery and optimization.展开更多
Forecasting landslide deformation is challenging due to influence of various internal and external factors on the occurrence of systemic and localized heterogeneities.Despite the potential to improve landslide predict...Forecasting landslide deformation is challenging due to influence of various internal and external factors on the occurrence of systemic and localized heterogeneities.Despite the potential to improve landslide predictability,deep learning has yet to be sufficiently explored for complex deformation patterns associated with landslides and is inherently opaque.Herein,we developed a holistic landslide deformation forecasting method that considers spatiotemporal correlations of landslide deformation by integrating domain knowledge into interpretable deep learning.By spatially capturing the interconnections between multiple deformations from different observation points,our method contributes to the understanding and forecasting of landslide systematic behavior.By integrating specific domain knowledge relevant to each observation point and merging internal properties with external variables,the local heterogeneity is considered in our method,identifying deformation temporal patterns in different landslide zones.Case studies involving reservoir-induced landslides and creeping landslides demonstrated that our approach(1)enhances the accuracy of landslide deformation forecasting,(2)identifies significant contributing factors and their influence on spatiotemporal deformation characteristics,and(3)demonstrates how identifying these factors and patterns facilitates landslide forecasting.Our research offers a promising and pragmatic pathway toward a deeper understanding and forecasting of complex landslide behaviors.展开更多
基金supported by the King Abdullah University of Science and Technology(KAUST)。
文摘Seismic data denoising is a critical process usually applied at various stages of the seismic processing workflow,as our ability to mitigate noise in seismic data affects the quality of our subsequent analyses.However,finding an optimal balance between preserving seismic signals and effectively reducing seismic noise presents a substantial challenge.In this study,we introduce a multi-stage deep learning model,trained in a self-supervised manner,designed specifically to suppress seismic noise while minimizing signal leakage.This model operates as a patch-based approach,extracting overlapping patches from the noisy data and converting them into 1D vectors for input.It consists of two identical sub-networks,each configured differently.Inspired by the transformer architecture,each sub-network features an embedded block that comprises two fully connected layers,which are utilized for feature extraction from the input patches.After reshaping,a multi-head attention module enhances the model’s focus on significant features by assigning higher attention weights to them.The key difference between the two sub-networks lies in the number of neurons within their fully connected layers.The first sub-network serves as a strong denoiser with a small number of neurons,effectively attenuating seismic noise;in contrast,the second sub-network functions as a signal-add-back model,using a larger number of neurons to retrieve some of the signal that was not preserved in the output of the first sub-network.The proposed model produces two outputs,each corresponding to one of the sub-networks,and both sub-networks are optimized simultaneously using the noisy data as the label for both outputs.Evaluations conducted on both synthetic and field data demonstrate the model’s effectiveness in suppressing seismic noise with minimal signal leakage,outperforming some benchmark methods.
基金supported by the Basic Science Research Program(2023R1A2C3004336,RS-202300243807)&Regional Leading Research Center(RS-202400405278)through the National Research Foundation of Korea(NRF)grant funded by the Korea Government(MSIT)。
文摘Wearable sensors integrated with deep learning techniques have the potential to revolutionize seamless human-machine interfaces for real-time health monitoring,clinical diagnosis,and robotic applications.Nevertheless,it remains a critical challenge to simultaneously achieve desirable mechanical and electrical performance along with biocompatibility,adhesion,self-healing,and environmental robustness with excellent sensing metrics.Herein,we report a multifunctional,anti-freezing,selfadhesive,and self-healable organogel pressure sensor composed of cobalt nanoparticle encapsulated nitrogen-doped carbon nanotubes(CoN CNT)embedded in a polyvinyl alcohol-gelatin(PVA/GLE)matrix.Fabricated using a binary solvent system of water and ethylene glycol(EG),the CoN CNT/PVA/GLE organogel exhibits excellent flexibility,biocompatibility,and temperature tolerance with remarkable environmental stability.Electrochemical impedance spectroscopy confirms near-stable performance across a broad humidity range(40%-95%RH).Freeze-tolerant conductivity under sub-zero conditions(-20℃)is attributed to the synergistic role of CoN CNT and EG,preserving mobility and network integrity.The Co N CNT/PVA/GLE organogel sensor exhibits high sensitivity of 5.75 k Pa^(-1)in the detection range from 0 to 20 k Pa,ideal for subtle biomechanical motion detection.A smart human-machine interface for English letter recognition using deep learning achieved 98%accuracy.The organogel sensor utility was extended to detect human gestures like finger bending,wrist motion,and throat vibration during speech.
文摘Underwater pipeline inspection plays a vital role in the proactive maintenance and management of critical marine infrastructure and subaquatic systems.However,the inspection of underwater pipelines presents a challenge due to factors such as light scattering,absorption,restricted visibility,and ambient noise.The advancement of deep learning has introduced powerful techniques for processing large amounts of unstructured and imperfect data collected from underwater environments.This study evaluated the efficacy of the You Only Look Once(YOLO)algorithm,a real-time object detection and localization model based on convolutional neural networks,in identifying and classifying various types of pipeline defects in underwater settings.YOLOv8,the latest evolution in the YOLO family,integrates advanced capabilities,such as anchor-free detection,a cross-stage partial network backbone for efficient feature extraction,and a feature pyramid network+path aggregation network neck for robust multi-scale object detection,which make it particularly well-suited for complex underwater environments.Due to the lack of suitable open-access datasets for underwater pipeline defects,a custom dataset was captured using a remotely operated vehicle in a controlled environment.This application has the following assets available for use.Extensive experimentation demonstrated that YOLOv8 X-Large consistently outperformed other models in terms of pipe defect detection and classification and achieved a strong balance between precision and recall in identifying pipeline cracks,rust,corners,defective welds,flanges,tapes,and holes.This research establishes the baseline performance of YOLOv8 for underwater defect detection and showcases its potential to enhance the reliability and efficiency of pipeline inspection tasks in challenging underwater environments.
基金supported by the National Natural Science Foundation of China[grant number 62376217]the Young Elite Scientists Sponsorship Program by CAST[grant number 2023QNRC001]the Joint Research Project for Meteorological Capacity Improvement[grant number 24NLTSZ003]。
文摘Deep learning-based methods have become alternatives to traditional numerical weather prediction systems,offering faster computation and the ability to utilize large historical datasets.However,the application of deep learning to medium-range regional weather forecasting with limited data remains a significant challenge.In this work,three key solutions are proposed:(1)motivated by the need to improve model performance in data-scarce regional forecasting scenarios,the authors innovatively apply semantic segmentation models,to better capture spatiotemporal features and improve prediction accuracy;(2)recognizing the challenge of overfitting and the inability of traditional noise-based data augmentation methods to effectively enhance model robustness,a novel learnable Gaussian noise mechanism is introduced that allows the model to adaptively optimize perturbations for different locations,ensuring more effective learning;and(3)to address the issue of error accumulation in autoregressive prediction,as well as the challenge of learning difficulty and the lack of intermediate data utilization in one-shot prediction,the authors propose a cascade prediction approach that effectively resolves these problems while significantly improving model forecasting performance.The method achieves a competitive result in The East China Regional AI Medium Range Weather Forecasting Competition.Ablation experiments further validate the effectiveness of each component,highlighting their contributions to enhancing prediction performance.
基金financially supported by the National Science and Technology Major Project——Deep Earth Probe and Mineral Resources Exploration(No.2024ZD1003701)the National Key R&D Program of China(No.2022YFC2905004)。
文摘An image processing and deep learning method for identifying different types of rock images was proposed.Preprocessing,such as rock image acquisition,gray scaling,Gaussian blurring,and feature dimensionality reduction,was conducted to extract useful feature information and recognize and classify rock images using Tensor Flow-based convolutional neural network(CNN)and Py Qt5.A rock image dataset was established and separated into workouts,confirmation sets,and test sets.The framework was subsequently compiled and trained.The categorization approach was evaluated using image data from the validation and test datasets,and key metrics,such as accuracy,precision,and recall,were analyzed.Finally,the classification model conducted a probabilistic analysis of the measured data to determine the equivalent lithological type for each image.The experimental results indicated that the method combining deep learning,Tensor Flow-based CNN,and Py Qt5 to recognize and classify rock images has an accuracy rate of up to 98.8%,and can be successfully utilized for rock image recognition.The system can be extended to geological exploration,mine engineering,and other rock and mineral resource development to more efficiently and accurately recognize rock samples.Moreover,it can match them with the intelligent support design system to effectively improve the reliability and economy of the support scheme.The system can serve as a reference for supporting the design of other mining and underground space projects.
文摘The rapid growth of biomedical data,particularly multi-omics data including genomes,transcriptomics,proteomics,metabolomics,and epigenomics,medical research and clinical decision-making confront both new opportunities and obstacles.The huge and diversified nature of these datasets cannot always be managed using traditional data analysis methods.As a consequence,deep learning has emerged as a strong tool for analysing numerous omics data due to its ability to handle complex and non-linear relationships.This paper explores the fundamental concepts of deep learning and how they are used in multi-omics medical data mining.We demonstrate how autoencoders,variational autoencoders,multimodal models,attention mechanisms,transformers,and graph neural networks enable pattern analysis and recognition across all omics data.Deep learning has been found to be effective in illness classification,biomarker identification,gene network learning,and therapeutic efficacy prediction.We also consider critical problems like as data quality,model explainability,whether findings can be repeated,and computational power requirements.We now consider future elements of combining omics with clinical and imaging data,explainable AI,federated learning,and real-time diagnostics.Overall,this study emphasises the need of collaborating across disciplines to advance deep learning-based multi-omics research for precision medicine and comprehending complicated disorders.
基金Supported by Sichuan Science and Technology Program(2023YFSY0026,2023YFH0004)Supported by the Institute of Information&Communications Technology Planning&Evaluation(IITP)grant funded by the Korean government(MSIT)(No.RS-2022-00155885,Artificial Intelligence Convergence Innovation Human Resources Development(Hanyang University ERICA)).
文摘Two-dimensional endoscopic images are susceptible to interferences such as specular reflections and monotonous texture illumination,hindering accurate three-dimensional lesion reconstruction by surgical robots.This study proposes a novel end-to-end disparity estimation model to address these challenges.Our approach combines a Pseudo-Siamese neural network architecture with pyramid dilated convolutions,integrating multi-scale image information to enhance robustness against lighting interferences.This study introduces a Pseudo-Siamese structure-based disparity regression model that simplifies left-right image comparison,improving accuracy and efficiency.The model was evaluated using a dataset of stereo endoscopic videos captured by the Da Vinci surgical robot,comprising simulated silicone heart sequences and real heart video data.Experimental results demonstrate significant improvement in the network’s resistance to lighting interference without substantially increasing parameters.Moreover,the model exhibited faster convergence during training,contributing to overall performance enhancement.This study advances endoscopic image processing accuracy and has potential implications for surgical robot applications in complex environments.
文摘Intelligent Transportation Systems(ITS)leverage Integrated Sensing and Communications(ISAC)to enhance data exchange between vehicles and infrastructure in the Internet of Vehicles(IoV).This integration inevitably increases computing demands,risking real-time system stability.Vehicle Edge Computing(VEC)addresses this by offloading tasks to Road Side Units(RSUs),ensuring timely services.Our previous work,the FLSimCo algorithm,which uses local resources for federated Self-Supervised Learning(SSL),has a limitation:vehicles often can’t complete all iteration tasks.Our improved algorithm offloads partial tasks to RSUs and optimizes energy consumption by adjusting transmission power,CPU frequency,and task assignment ratios,balancing local and RSU-based training.Meanwhile,setting an offloading threshold further prevents inefficiencies.Simulation results show that the enhanced algorithm reduces energy consumption and improves offloading efficiency and accuracy of federated SSL.
基金supported by the National Science Foundation(Grant No.ECCS-1916839)。
文摘With its tremendous success in many machine learning and pattern recognition tasks,deep learning,as one type of data-driven models,has also led to many breakthroughs in other disciplines including physics,chemistry and material science.Nevertheless,the supremacy of deep learning over conventional optimization approaches heavily depends on the huge amount of data collected in advance to train the model,which is a common bottleneck of such a data-driven technique.In this work,we present a comprehensive deep learning model for the design and characterization of nanophotonic structures,where a self-supervised learning mechanism is introduced to alleviate the burden of data acquisition.Taking reflective metasurfaces as an example,we demonstrate that the self-supervised deep learning model can effectively utilize randomly generated unlabeled data during training,with the total test loss and prediction accuracy improved by about 15%compared with the fully supervised counterpart.The proposed self-supervised learning scheme provides an efficient solution for deep learning models in some physics-related tasks where labeled data are limited or expensive to collect.
基金Ministry of Education,Culture,Sports,Science and Technology,Grant/Award Number:20K11867。
文摘By automatically learning the priors embedded in images with powerful modelling ca-pabilities,deep learning-based algorithms have recently made considerable progress in reconstructing the high-resolution hyperspectral(HR-HS)image.With previously collected large-amount of external data,these methods are intuitively realised under the full supervision of the ground-truth data.Thus,the database construction in merging the low-resolution(LR)HS(LR-HS)and HR multispectral(MS)or RGB image research paradigm,commonly named as HSI SR,requires collecting corresponding training triplets:HR-MS(RGB),LR-HS and HR-HS image simultaneously,and often faces dif-ficulties in reality.The learned models with the training datasets collected simultaneously under controlled conditions may significantly degrade the HSI super-resolved perfor-mance to the real images captured under diverse environments.To handle the above-mentioned limitations,the authors propose to leverage the deep internal and self-supervised learning to solve the HSI SR problem.The authors advocate that it is possible to train a specific CNN model at test time,called as deep internal learning(DIL),by on-line preparing the training triplet samples from the observed LR-HS/HR-MS(or RGB)images and the down-sampled LR-HS version.However,the number of the training triplets extracted solely from the transformed data of the observation itself is extremely few particularly for the HSI SR tasks with large spatial upscale factors,which would result in limited reconstruction performance.To solve this problem,the authors further exploit deep self-supervised learning(DSL)by considering the observations as the unlabelled training samples.Specifically,the degradation modules inside the network were elaborated to realise the spatial and spectral down-sampling procedures for transforming the generated HR-HS estimation to the high-resolution RGB/LR-HS approximation,and then the reconstruction errors of the observations were formulated for measuring the network modelling performance.By consolidating the DIL and DSL into a unified deep framework,the authors construct a more robust HSI SR method without any prior training and have great potential of flexible adaptation to different settings per obser-vation.To verify the effectiveness of the proposed approach,extensive experiments have been conducted on two benchmark HS datasets,including the CAVE and Harvard datasets,and demonstrate the great performance gain of the proposed method over the state-of-the-art methods.
基金supported by the Ministry of Science and Technology of China,No.2020AAA0109605(to XL)Meizhou Major Scientific and Technological Innovation PlatformsProjects of Guangdong Provincial Science & Technology Plan Projects,No.2019A0102005(to HW).
文摘Early identification and treatment of stroke can greatly improve patient outcomes and quality of life.Although clinical tests such as the Cincinnati Pre-hospital Stroke Scale(CPSS)and the Face Arm Speech Test(FAST)are commonly used for stroke screening,accurate administration is dependent on specialized training.In this study,we proposed a novel multimodal deep learning approach,based on the FAST,for assessing suspected stroke patients exhibiting symptoms such as limb weakness,facial paresis,and speech disorders in acute settings.We collected a dataset comprising videos and audio recordings of emergency room patients performing designated limb movements,facial expressions,and speech tests based on the FAST.We compared the constructed deep learning model,which was designed to process multi-modal datasets,with six prior models that achieved good action classification performance,including the I3D,SlowFast,X3D,TPN,TimeSformer,and MViT.We found that the findings of our deep learning model had a higher clinical value compared with the other approaches.Moreover,the multi-modal model outperformed its single-module variants,highlighting the benefit of utilizing multiple types of patient data,such as action videos and speech audio.These results indicate that a multi-modal deep learning model combined with the FAST could greatly improve the accuracy and sensitivity of early stroke identification of stroke,thus providing a practical and powerful tool for assessing stroke patients in an emergency clinical setting.
文摘Deep neural networks(DNNs)are effective in solving both forward and inverse problems for nonlinear partial differential equations(PDEs).However,conventional DNNs are not effective in handling problems such as delay differential equations(DDEs)and delay integrodifferential equations(DIDEs)with constant delays,primarily due to their low regularity at delayinduced breaking points.In this paper,a DNN method that combines multi-task learning(MTL)which is proposed to solve both the forward and inverse problems of DIDEs.The core idea of this approach is to divide the original equation into multiple tasks based on the delay,using auxiliary outputs to represent the integral terms,followed by the use of MTL to seamlessly incorporate the properties at the breaking points into the loss function.Furthermore,given the increased training dificulty associated with multiple tasks and outputs,we employ a sequential training scheme to reduce training complexity and provide reference solutions for subsequent tasks.This approach significantly enhances the approximation accuracy of solving DIDEs with DNNs,as demonstrated by comparisons with traditional DNN methods.We validate the effectiveness of this method through several numerical experiments,test various parameter sharing structures in MTL and compare the testing results of these structures.Finally,this method is implemented to solve the inverse problem of nonlinear DIDE and the results show that the unknown parameters of DIDE can be discovered with sparse or noisy data.
基金Supported by Chongqing Medical Scientific Research Project(Joint Project of Chongqing Health Commission and Science and Technology Bureau),No.2023MSXM060.
文摘BACKGROUND The accurate prediction of lymph node metastasis(LNM)is crucial for managing locally advanced(T3/T4)colorectal cancer(CRC).However,both traditional histopathology and standard slide-level deep learning often fail to capture the sparse and diagnostically critical features of metastatic potential.AIM To develop and validate a case-level multiple-instance learning(MIL)framework mimicking a pathologist's comprehensive review and improve T3/T4 CRC LNM prediction.METHODS The whole-slide images of 130 patients with T3/T4 CRC were retrospectively collected.A case-level MIL framework utilising the CONCH v1.5 and UNI2-h deep learning models was trained on features from all haematoxylin and eosinstained primary tumour slides for each patient.These pathological features were subsequently integrated with clinical data,and model performance was evaluated using the area under the curve(AUC).RESULTS The case-level framework demonstrated superior LNM prediction over slide-level training,with the CONCH v1.5 model achieving a mean AUC(±SD)of 0.899±0.033 vs 0.814±0.083,respectively.Integrating pathology features with clinical data further enhanced performance,yielding a top model with a mean AUC of 0.904±0.047,in sharp contrast to a clinical-only model(mean AUC 0.584±0.084).Crucially,a pathologist’s review confirmed that the model-identified high-attention regions correspond to known high-risk histopathological features.CONCLUSION A case-level MIL framework provides a superior approach for predicting LNM in advanced CRC.This method shows promise for risk stratification and therapy decisions,requiring further validation.
基金funded by Taif University,Saudi Arabia,project No.(TU-DSPP-2024-263).
文摘Deep learning algorithms have been rapidly incorporated into many different applications due to the increase in computational power and the availability of massive amounts of data.Recently,both deep learning and ensemble learning have been used to recognize underlying structures and patterns from high-level features to make predictions/decisions.With the growth in popularity of deep learning and ensemble learning algorithms,they have received significant attention from both scientists and the industrial community due to their superior ability to learn features from big data.Ensemble deep learning has exhibited significant performance in enhancing learning generalization through the use of multiple deep learning algorithms.Although ensemble deep learning has large quantities of training parameters,which results in time and space overheads,it performs much better than traditional ensemble learning.Ensemble deep learning has been successfully used in several areas,such as bioinformatics,finance,and health care.In this paper,we review and investigate recent ensemble deep learning algorithms and techniques in health care domains,medical imaging,health care data analytics,genomics,diagnosis,disease prevention,and drug discovery.We cover several widely used deep learning algorithms along with their architectures,including deep neural networks(DNNs),convolutional neural networks(CNNs),recurrent neural networks(RNNs),and generative adversarial networks(GANs).Common healthcare tasks,such as medical imaging,electronic health records,and genomics,are also demonstrated.Furthermore,in this review,the challenges inherent in reducing the burden on the healthcare system are discussed and explored.Finally,future directions and opportunities for enhancing healthcare model performance are discussed.
基金supported and partially funded by the National Natural Science Foundation of China(52288101)the China Postdoctoral Science Foundation(2024M761535)supported by the High Performance Computing Centers at Eastern Institute of Technology,Ningbo,and Ningbo Institute of Digital Twin.
文摘Computational solid mechanics has become an indispensable approach in engineering,and numerical investigation of fracturing in composites is essential,as composites are widely used in structural applications.Crack evolution in composites is the path to elucidating the relationship between microstructures and fracture performance,but crack-based finite-element methods are computationally expensive and time-consuming,which limits their application in computation-intensive scenarios.Consequently,this study proposes a deep learning framework called Crack-Net for instant prediction of the dynamic crack growth process,as well as its strain-stress curve.Specifically,Crack-Net introduces an implicit constraint technique,which incorporates the relationship between crack evolution and stress response into the network architecture.This technique substantially reduces data requirements while improving predictive accuracy.The transfer learning technique enables Crack-Net to handle composite materials with reinforcements of different strengths.Trained on high-accuracy fracture development datasets from phase field simulations,the proposed framework is capable of tackling intricate scenarios,involving materials with diverse interfaces,varying initial conditions,and the intricate elastoplastic fracture process.The proposed Crack-Net holds great promise for practical applications in engineering and materials science,in which accurate and efficient fracture prediction is crucial for optimizing material performance and microstructural design.
文摘The precise identification of quartz minerals is crucial in mineralogy and geology due to their widespread occurrence and industrial significance.Traditional methods of quartz identification in thin sections are labor-intensive and require significant expertise,often complicated by the coexistence of other minerals.This study presents a novel approach leveraging deep learning techniques combined with hyperspectral imaging to automate the identification process of quartz minerals.The utilizied four advanced deep learning models—PSPNet,U-Net,FPN,and LinkNet—has significant advancements in efficiency and accuracy.Among these models,PSPNet exhibited superior performance,achieving the highest intersection over union(IoU)scores and demonstrating exceptional reliability in segmenting quartz minerals,even in complex scenarios.The study involved a comprehensive dataset of 120 thin sections,encompassing 2470 hyperspectral images prepared from 20 rock samples.Expert-reviewed masks were used for model training,ensuring robust segmentation results.This automated approach not only expedites the recognition process but also enhances reliability,providing a valuable tool for geologists and advancing the field of mineralogical analysis.
基金supported by Institute of Information&Communications Technology Planning&Evaluation(IITP)grant funded by the Korea government(MSIT)(RS-2024-00460621,Developing BCI-Based Digital Health Technologies for Mental Illness and Pain Management).
文摘Automatic detection of Leukemia or blood cancer is one of the most challenging tasks that need to be addressed in the healthcare system.Analysis of white blood cells(WBCs)in the blood or bone marrow microscopic slide images play a crucial part in early identification to facilitate medical experts.For Acute Lymphocytic Leukemia(ALL),the most preferred part of the blood or marrow is to be analyzed by the experts before it spreads in the whole body and the condition becomes worse.The researchers have done a lot of work in this field,to demonstrate a comprehensive analysis few literature reviews have been published focusing on various artificial intelligence-based techniques like machine and deep learning detection of ALL.The systematic review has been done in this article under the PRISMA guidelines which presents the most recent advancements in this field.Different image segmentation techniques were broadly studied and categorized from various online databases like Google Scholar,Science Direct,and PubMed as image processing-based,traditional machine and deep learning-based,and advanced deep learning-based models were presented.Convolutional Neural Networks(CNN)based on traditional models and then the recent advancements in CNN used for the classification of ALL into its subtypes.A critical analysis of the existing methods is provided to offer clarity on the current state of the field.Finally,the paper concludes with insights and suggestions for future research,aiming to guide new researchers in the development of advanced automated systems for detecting life-threatening diseases.
基金supported by the National Key Research and Development Program of China(Grant No.2023YFC3009400)the National Natural Science Foundation of China(Grant Nos.42307218 and U2239251).
文摘The current deep learning models for braced excavation cannot predict deformation from the beginning of excavation due to the need for a substantial corpus of sufficient historical data for training purposes.To address this issue,this study proposes a transfer learning model based on a sequence-to-sequence twodimensional(2D)convolutional long short-term memory neural network(S2SCL2D).The model can use the existing data from other adjacent similar excavations to achieve wall deflection prediction once a limited amount of monitoring data from the target excavation has been recorded.In the absence of adjacent excavation data,numerical simulation data from the target project can be employed instead.A weight update strategy is proposed to improve the prediction accuracy by integrating the stochastic gradient masking with an early stopping mechanism.To illustrate the proposed methodology,an excavation project in Hangzhou,China is adopted.The proposed deep transfer learning model,which uses either adjacent excavation data or numerical simulation data as the source domain,shows a significant improvement in performance when compared to the non-transfer learning model.Using the simulation data from the target project even leads to better prediction performance than using the actual monitoring data from other adjacent excavations.The results demonstrate that the proposed model can reasonably predict the deformation with limited data from the target project.
基金supported by the National Natural Science Foundation of China(Grant Nos.:U23A20530,82273858,and 82173746)the National Key Research and Development Programof China(Grant No.:2023YFF1204904)Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism(Shanghai Municipal Education Commission,China).
文摘Activity cliffs(ACs)are generally defined as pairs of similar compounds that only differ by a minor structural modification but exhibit a large difference in their binding affinity for a given target.ACs offer crucial insights that aid medicinal chemists in optimizing molecular structures.Nonetheless,they also form a major source of prediction error in structure-activity relationship(SAR)models.To date,several studies have demonstrated that deep neural networks based on molecular images or graphs might need to be improved further in predicting the potency of ACs.In this paper,we integrated the triplet loss in face recognition with pre-training strategy to develop a prediction model ACtriplet,tailored for ACs.Through extensive comparison with multiple baseline models on 30 benchmark datasets,the results showed that ACtriplet was significantly better than those deep learning(DL)models without pretraining.In addition,we explored the effect of pre-training on data representation.Finally,the case study demonstrated that our model's interpretability module could explain the prediction results reasonably.In the dilemma that the amount of data could not be increased rapidly,this innovative framework would better make use of the existing data,which would propel the potential of DL in the early stage of drug discovery and optimization.
基金supported by the Postdoctoral Fellowship Program of CPSF(Grant No.GZB20230685)the National Science Foundation of China(Grant No.42277161).
文摘Forecasting landslide deformation is challenging due to influence of various internal and external factors on the occurrence of systemic and localized heterogeneities.Despite the potential to improve landslide predictability,deep learning has yet to be sufficiently explored for complex deformation patterns associated with landslides and is inherently opaque.Herein,we developed a holistic landslide deformation forecasting method that considers spatiotemporal correlations of landslide deformation by integrating domain knowledge into interpretable deep learning.By spatially capturing the interconnections between multiple deformations from different observation points,our method contributes to the understanding and forecasting of landslide systematic behavior.By integrating specific domain knowledge relevant to each observation point and merging internal properties with external variables,the local heterogeneity is considered in our method,identifying deformation temporal patterns in different landslide zones.Case studies involving reservoir-induced landslides and creeping landslides demonstrated that our approach(1)enhances the accuracy of landslide deformation forecasting,(2)identifies significant contributing factors and their influence on spatiotemporal deformation characteristics,and(3)demonstrates how identifying these factors and patterns facilitates landslide forecasting.Our research offers a promising and pragmatic pathway toward a deeper understanding and forecasting of complex landslide behaviors.