期刊文献+
共找到2,968篇文章
< 1 2 149 >
每页显示 20 50 100
Impact attenuation mechanism of single/double-layer potting structures of MEMS devices under continuous double-pulse impact
1
作者 Hao'nan Guo Yunbo Shi +4 位作者 Rui Zhao Yu'nan Chen Peng Zhang Liang Chen Tao Guo 《Defence Technology(防务技术)》 2025年第6期104-114,共11页
High-overload shocks are very likely to cause damage to the microstructure of MEMS devices, especially the continuous multiple high-overload shocks generated by the penetration of the multilayer target environment pos... High-overload shocks are very likely to cause damage to the microstructure of MEMS devices, especially the continuous multiple high-overload shocks generated by the penetration of the multilayer target environment pose more stringent challenges to its protective structure. In this study, the kinetic response model of the protective structure under single-pulse and continuous double-pulse impact is established,and a continuous double-pulse high overload impact test impact platform based on the sleeve-type bullet is constructed, and the protective performance of the multi-layer structure under multi-pulse is analyzed based on the acceleration decay ratio, and the results show that the protective performance of the structure has a positive correlation with its thickness, and it is not sensitive to the change of the load of the first impact;the first impact under double-pulse impact will cause damage to the microstructure through the superposition of the second impact. The first impact under double-pulse impact will cause an increase in the overload amplitude of the second impact through superposition;compared with the single-layer structure, the acceleration attenuation ratio of the double-layer structure can be increased by up to 26.13%, among which the epoxy-polyurethane combination has the best protection performance, with an acceleration attenuation ratio of up to 44.68%. This work provides a robust theoretical foundation and experimental basis for the reliable operation of MEMS devices, as well as for the design of protective structures in extreme environments. 展开更多
关键词 Continuous double pulse Protective structure Attenuation ratio MEMS devices
在线阅读 下载PDF
Understanding the Machining Process of Hierarchical Micro/Nanograting Structures Used for Optical Variable Device
2
作者 Yanquan Geng Wenhan Zhu +5 位作者 Xiaosong Zhang Aoxiang Zhang Yongda Yan Hailong Cui Bo Xue Jiqiang Wang 《Chinese Journal of Mechanical Engineering》 2025年第1期161-185,共25页
Hierarchical micro/nanograting structures have attracted increasing attention owing to their significant applications in the fields of structural coloring,anti-counterfeiting,and decoration.Thus,the fabrication of hie... Hierarchical micro/nanograting structures have attracted increasing attention owing to their significant applications in the fields of structural coloring,anti-counterfeiting,and decoration.Thus,the fabrication of hierarchical micro/nanograting structures is important for these applications.In this study,a strategy for machining hierarchical micro/nanograting structures is developed by controlling the tool movement trajectory.A coupling Euler-Lagrange finite element model is established to simulate the machining process.The effect of the machining methods on the nanograting formation is demonstrated,and a suitable machining method for reducing the cutting force is obtained.The height of the nanograting decreases with an increase in the tool edge radius.Furthermore,optical variable devices(OVDs)are machined using an array overlap machining approach.Coding schemes for the parallel column unit crossover and column unit in the groove crossover are designed to achieve high-quality machining of OVDs.The coloring of the logo of the Harbin Institute of Technology and the logo of the centennial anniversary of the Harbin Institute of Technology on the surface of metal samples,such as aluminum alloys,is realized.The findings of this study provide a method for the fabrication of hierarchical micro/nanograting structures that can be used to prepare OVDs. 展开更多
关键词 Hierarchical micro/nanograting structures Optical variable devices Finite element simulation Tool trajectory controlling
在线阅读 下载PDF
Multi-Scale Design and Optimization of Composite Material Structure for Heavy-Duty Truck Protection Device
3
作者 Yanhui Zhang Lianhua Ma +3 位作者 Hailiang Su Jirong Qin Zhining Chen Kaibiao Deng 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期1961-1980,共20页
In this paper,to present a lightweight-developed front underrun protection device(FUPD)for heavy-duty trucks,plain weave carbon fiber reinforced plastic(CFRP)is used instead of the original high-strength steel.First,t... In this paper,to present a lightweight-developed front underrun protection device(FUPD)for heavy-duty trucks,plain weave carbon fiber reinforced plastic(CFRP)is used instead of the original high-strength steel.First,the mechanical and structural properties of plain carbon fiber composite anti-collision beams are comparatively analyzed from a multi-scale perspective.For studying the design capability of carbon fiber composite materials,we investigate the effects of TC-33 carbon fiber diameter(D),fiber yarn width(W)and height(H),and fiber yarn density(N)on the front underrun protective beam of carbon fiber compositematerials.Based on the investigation,a material-structure matching strategy suitable for the front underrun protective beam of heavy-duty trucks is proposed.Next,the composite material structure is optimized by applying size optimization and stack sequence optimization methods to obtain the higher performance carbon fiber composite front underrun protection beam of commercial vehicles.The results show that the fiber yarn height(H)has the greatest influence on the protective beam,and theH1matching scheme for the front underrun protective beamwith a carbon fiber composite structure exhibits superior performance.The proposed method achieves a weight reduction of 55.21% while still meeting regulatory requirements,which demonstrates its remarkable weight reduction effect. 展开更多
关键词 structural optimization front underrun protection device carbon fiber reinforced plastic multi-scale model lightweight design
在线阅读 下载PDF
Cement-Based Thermoelectric Materials, Devices and Applications
4
作者 Wanqiang Li Chunyu Du +1 位作者 Lirong Liang Guangming Chen 《Nano-Micro Letters》 2026年第1期750-781,共32页
Cement stands as a dominant contributor to global energy consumption and carbon emissions in the construction industry.With the upgrading of infrastructure and the improvement of building standards,traditional cement ... Cement stands as a dominant contributor to global energy consumption and carbon emissions in the construction industry.With the upgrading of infrastructure and the improvement of building standards,traditional cement fails to reconcile ecological responsibility with advanced functional performance.By incorporating tailored fillers into cement matrices,the resulting composites achieve enhanced thermoelectric(TE)conversion capabilities.These materials can harness solar radiation from building envelopes and recover waste heat from indoor thermal gradients,facilitating bidirectional energy conversion.This review offers a comprehensive and timely overview of cementbased thermoelectric materials(CTEMs),integrating material design,device fabrication,and diverse applications into a holistic perspective.It summarizes recent advancements in TE performance enhancement,encompassing fillers optimization and matrices innovation.Additionally,the review consolidates fabrication strategies and performance evaluations of cement-based thermoelectric devices(CTEDs),providing detailed discussions on their roles in monitoring and protection,energy harvesting,and smart building.We also address sustainability,durability,and lifecycle considerations of CTEMs,which are essential for real-world deployment.Finally,we outline future research directions in materials design,device engineering,and scalable manufacturing to foster the practical application of CTEMs in sustainable and intelligent infrastructure. 展开更多
关键词 Functional cement Thermoelectric materials device structure Smart building
在线阅读 下载PDF
Kirkendall effect induced hollow structured materials for energy storage application
5
作者 LING Dandan WANG Qi +1 位作者 ZHANG Daohong WANG Qiufan 《中南民族大学学报(自然科学版)》 2025年第6期721-737,共17页
Materials engineering plays a key role in the field of electrochemical energy storage,and considerable efforts have been made in recent years to fulfill the future requirements of electrochemical energy storage using ... Materials engineering plays a key role in the field of electrochemical energy storage,and considerable efforts have been made in recent years to fulfill the future requirements of electrochemical energy storage using novel functional electrode materials.Materials with hollow structures are of particular interests due to their low density,large specific surface area and high porosity,making them promising candidates for energy conversion and storage.The Kirkendall effect has been widely applied for the synthesis of nanoscale hollow structures,which involves an unbalanced counter diffusion through a reaction interface.Herein,the recent progress on the use of the nanoscale Kirkendall effect to synthesize hollow nanostructures,including nanoparticles,one-dimensional(1-D),two-dimensional(2-D),and three-dimensional(3-D)nanostructures,and their potential applications in energy storage devices are summarized and discussed.And prospects is made for the future development of this research field. 展开更多
关键词 Kirkendall effect hollow structure energy storage devices
在线阅读 下载PDF
Biomaterial-based Flexible Stretchable Sensor Devices:Classification,Composition and Their Multifunctional Integrated Applications
6
作者 Lu Wang Langyuan Cao +3 位作者 Jianhua Fan Junqiu Zhang Cheng Ma Zhiwu Han 《Journal of Bionic Engineering》 2025年第1期12-46,共35页
Flexible sensors,a class of devices that can convert external mechanical or physical signals into changes in resistance,capacitance,or current,have developed rapidly since the concept was first proposed.Due to the spe... Flexible sensors,a class of devices that can convert external mechanical or physical signals into changes in resistance,capacitance,or current,have developed rapidly since the concept was first proposed.Due to the special properties and naturally occurring excellent microstructures of biomaterials,it can provide more desirable properties to flexible devices.This paper systematically discusses the commonly used biomaterials for bio-based flexible devices in current research applications and their deployment in preparing flexible sensors with different mechanisms.According to the characteristics of other properties and application requirements of biomaterials,the mechanisms of their functional group properties,special microstructures,and bonding interactions in the context of various sensing applications are presented in detail.The practical application scenarios of biomaterial-based flexible devices are highlighted,including human-computer interactions,energy harvesting,wound healing,and related biomedical applications.Finally,this paper also reviews in detail the limitations of biobased materials in the construction of flexible devices and presents challenges and trends in the development of biobased flexible sensors,as well as to better explore the properties of biomaterials to ensure functional synergy within the composite materials. 展开更多
关键词 BIOMATERIALS Flexible devices Sensing properties Bonding of groups Electromechanical properties structural properties
在线阅读 下载PDF
Efficient flexible perovskite solar cells:From materials to buried structure revealed by synchrotron radiation GIWAXS
7
作者 Xiaoxi Li Tingting Wang +7 位作者 Lifeng Yang Bitao Dong Yuchun Li Laixi Li Lina Li Shanglei Feng Gengsheng Chen Yingguo Yang 《Journal of Energy Chemistry》 2025年第5期254-267,共14页
Perovskite solar cells(PSC)are considered as a promising photovoltaic technology due to their low cost and high efficiency exceeding 26.8%.Ultra-lightweight flexible perovskite solar cells(FPSCs)can be applied to many... Perovskite solar cells(PSC)are considered as a promising photovoltaic technology due to their low cost and high efficiency exceeding 26.8%.Ultra-lightweight flexible perovskite solar cells(FPSCs)can be applied to many fields such as architecture and portable devices.Although the photovoltaic conversion efficiency(PCE)of FPSC has exceeded 24%in the past few years,further application of FPSC is constrained by the challenges posed by limitation of critical material components.Here,we discussed recent research progress of key FPSC materials,mechanical endurance,low-temperature fabrication,etc.With the advantages of high brightness,collimation and resolution,we specially introduced the application of synchrotron radiation grazing incidence wide-angle X-ray scattering(GIWAXS)to directly observe the perovskite buried interface structure and corresponding mechanical stability of FPSCs without any damage.Finally,we summarize the challenges and propose an outlook about the large-scale preparation of efficient and stable FPSC modules. 展开更多
关键词 Flexible perovskite solar cells device materials Buried structure Synchrotron radiation GIWAXS
在线阅读 下载PDF
Review of blue perovskite light emitting diodes with optimization strategies for perovskite film and device structure 被引量:6
8
作者 Zongtao Li Kai Cao +3 位作者 Jiasheng Li Yong Tang Xinrui Ding Binhai Yu 《Opto-Electronic Advances》 SCIE 2021年第2期19-47,共29页
Perovskite light emitting diodes(PeLEDs)have attracted considerable research attention because of their external quantum efficiency(EQE)of>20%and have potential scope for further improvement.However,compared to red... Perovskite light emitting diodes(PeLEDs)have attracted considerable research attention because of their external quantum efficiency(EQE)of>20%and have potential scope for further improvement.However,compared to red and green PeLEDs,blue PeLEDs have not been extensively investigated,which limits their commercial applications in the fields of luminance and full-color displays.In this review,blue-PeLED-related research is categorized by the composition of perovskite.The main challenges and corresponding optimization strategies for perovskite films are summarized.Next,the novel strategies for the design of device structures of blue PeLEDs are reviewed from the perspective of transport layers and interfacial layers.Accordingly,future directions for blue PeLEDs are discussed.This review can be a guideline for optimizing perovskite film and device structure of blue PeLEDs,thereby enhancing their development and application scope. 展开更多
关键词 perovskite light emitting diodes perovskite film device structure blue LEDs
在线阅读 下载PDF
Development of hybrid optimization algorithm for structures furnished with seismic damper devices using the particle swarm optimization method and gravitational search algorithm 被引量:2
9
作者 Najad Ayyash Farzad Hejazi 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2022年第2期455-474,共20页
Previous studies about optimizing earthquake structural energy dissipation systems indicated that most existing techniques employ merely one or a few parameters as design variables in the optimization process,and ther... Previous studies about optimizing earthquake structural energy dissipation systems indicated that most existing techniques employ merely one or a few parameters as design variables in the optimization process,and thereby are only applicable only to simple,single,or multiple degree-of-freedom structures.The current approaches to optimization procedures take a specific damper with its properties and observe the effect of applying time history data to the building;however,there are many different dampers and isolators that can be used.Furthermore,there is a lack of studies regarding the optimum location for various viscous and wall dampers.The main aim of this study is hybridization of the particle swarm optimization(PSO) and gravitational search algorithm(GSA) to optimize the performance of earthquake energy dissipation systems(i.e.,damper devices) simultaneously with optimizing the characteristics of the structure.Four types of structural dampers device are considered in this study:(ⅰ) variable stiffness bracing(VSB) system,(ⅱ) rubber wall damper(RWD),(ⅲ) nonlinear conical spring bracing(NCSB) device,(iv) and multi-action stiffener(MAS) device.Since many parameters may affect the design of seismic resistant structures,this study proposes a hybrid of PSO and GSA to develop a hybrid,multi-objective optimization method to resolve the aforementioned problems.The characteristics of the above-mentioned damper devices as well as the section size for structural beams and columns are considered as variables for development of the PSO-GSA optimization algorithm to minimize structural seismic response in terms of nodal displacement(in three directions) as well as plastic hinge formation in structural members simultaneously with the weight of the structure.After that,the optimization algorithm is implemented to identify the best position of the damper device in the structural frame to have the maximum effect and minimize the seismic structure response.To examine the performance of the proposed PSO-GSA optimization method,it has been applied to a three-story reinforced structure equipped with a seismic damper device.The results revealed that the method successfully optimized the earthquake energy dissipation systems and reduced the effects of earthquakes on structures,which significantly increase the building’s stability and safety during seismic excitation.The analysis results showed a reduction in the seismic response of the structure regarding the formation of plastic hinges in structural members as well as the displacement of each story to approximately 99.63%,60.5%,79.13% and 57.42% for the VSB device,RWD,NCSB device,and MAS device,respectively.This shows that using the PSO-GSA optimization algorithm and optimized damper devices in the structure resulted in no structural damage due to earthquake vibration. 展开更多
关键词 hybrid optimization algorithm structureS EARTHQUAKE seismic damper devices particle swarm optimization method gravitational search algorithm
在线阅读 下载PDF
Impact of cooling condition on the crystal structure and surface quality of preferred c-axis-oriented AlN films for SAW devices 被引量:2
10
作者 张庚宇 杨保和 +2 位作者 赵健 李翠平 李明吉 《Optoelectronics Letters》 EI 2011年第4期273-276,共4页
AlN films with preferred c-axis orientation are deposited on Si substrates using the radio frequency(RF) magnetron sputtering method.The post-processing is carried out under the cooling conditions including high vacuu... AlN films with preferred c-axis orientation are deposited on Si substrates using the radio frequency(RF) magnetron sputtering method.The post-processing is carried out under the cooling conditions including high vacuum,low vacuum under deposition gas ambient and low vacuum under dynamic N2 ambient.Structures and morphologies of the films are analyzed by X-ray diffraction(XRD) and atomic force microscopy(AFM).The hardness and Young's modulus are investigated by the nanoindenter.The experimental results indicate that the(100) and(110) peak intensities decrease in the XRD spectra and the root-mean-square of roughness(Rrms) of the film decreases gradually with the increase of the cooling rate.The maximum values of the hardness and Young modulus are obtained by cooling in low vacuum under deposition gas ambient.The reason for orientation variation of the films is explained from the perspective of the Al-N bond formation. 展开更多
关键词 Acoustic surface wave devices Atomic force microscopy Crystal atomic structure Crystal orientation Elastic moduli ELASTICITY HARDNESS Magnetron sputtering Surface structure Vacuum X ray diffraction
原文传递
Fringe optimization for structured illumination super-resolution microscope with digital micromirror device 被引量:1
11
作者 Xibin Yang Qian Zhu +6 位作者 Zhenglong Sun Gang Wen Xin Jin Linbo Wang Jialin Liu Daxi Xiong Hui Li 《Journal of Innovative Optical Health Sciences》 SCIE EI CAS 2019年第3期78-86,共9页
Structured illumination microscopy(SIM)is a promising super-resolution technique for imaging subcellular structures and dynamics due to its compatibility with most commonly usedffuorescent labeling methods.Structured ... Structured illumination microscopy(SIM)is a promising super-resolution technique for imaging subcellular structures and dynamics due to its compatibility with most commonly usedffuorescent labeling methods.Structured illumination can be obtained by either laser interference or projection of fringe patterns.Here,we proposed a fringe projector composed of a compact multiwavelength LEDs module and a digital micromirror device(DMD)which can be directly attached to most commercial invertedffuorescent microscopes and update it into a SIM system.The effects of the period and duty cycle of fringe patterns on the modulation depth of the structured lightfield were studied.With the optimized fringe pattern,1:6×resolution improvement could be obtained with high-end oil objectives.Multicolor imaging and dynamics of subcellular organelles in live cells were also demonstrated.Our method provides a low-cost solution for SIM setup to expand its wide range of applications to most research labs in thefield of life science and medicine. 展开更多
关键词 structured illumination SUPER-RESOLUTION digital micromirror device fringe pattern modulation depth
原文传递
Numerical investigation on seismic performance of a shallow buried underground structure with isolation devices 被引量:1
12
作者 Jianning Wang Guangyu Zhang +2 位作者 Haiyang Zhuang Jing Yang Chen Li 《Earthquake Research Advances》 CSCD 2022年第4期11-21,共11页
A design procedure for improving the seismic performance of unequal-span underground structures by installing isolation devices at the top end of columns is proposed based on the seismic failure mode of frame-type und... A design procedure for improving the seismic performance of unequal-span underground structures by installing isolation devices at the top end of columns is proposed based on the seismic failure mode of frame-type underground structures and the design concept of critical support columns.A two-dimensional finite element model(FEM)for a soil-underground structure with an unequal-span interaction system was established to shed light on the effects of a complex subway station with elastic sliding bearings(ESB)and lead rubber bearings(LRB)on seismic mitigation.It was found that the stiffness and internal force distribution of the underground structure changed remarkably with the installation of isolation devices at the top end of the columns.The constraints of the beam-column joints were significantly weakened,resulting in a decrease in the overall lateral stiffness and an increase in the structural lateral displacement.The introduction of the isolation device effectively reduces the internal force and seismic damage of the frame column;however,the tensile damage to the isolation structure,such as the roof,bottom plate,and sidewall,significantly increased compared to those of the non-isolation structure.Although the relative slip of the ESB remains within a controllable range under strong earthquake excitation as well as frame columns with stable vertical support and self-restoration functions,the LRB shows a better performance during seismic failure and better lateral displacement response of the unequal-span underground structure.The analysis results provide new ideas and references for promoting the application of seismic isolation technology in underground structures. 展开更多
关键词 Underground structure Seismic performance Isolation device Elastic sliding bearing Lead rubber bearing Soil-structure interaction
在线阅读 下载PDF
Wavy structures for stretchable energy storage devices:Structural design and implementation
13
作者 闻雷 石颖 +2 位作者 陈静 严彬 李峰 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第1期88-96,共9页
The application of wavy structures in stretchable electrochemical energy storage devices is reviewed. First, the mechanical anaJysis of wavy structures, specific to flexible electronics, is introduced. Second, stretch... The application of wavy structures in stretchable electrochemical energy storage devices is reviewed. First, the mechanical anaJysis of wavy structures, specific to flexible electronics, is introduced. Second, stretchable electrochemical energy storage devices with wavy structures are discussed. Finally, the present problems and challenges are reviewed, and possible directions for future research are outlined. 展开更多
关键词 stretchable devices lithium ion batteries SUPERCAPACITORS wavy structure
原文传递
Structure optimization of organic light-emitting devices 被引量:1
14
作者 王洪 于军胜 +2 位作者 李璐 唐晓庆 蒋亚东 《Optoelectronics Letters》 EI 2009年第2期93-96,共4页
A triple layer organic light-emitting diode (OLED) with two heterostructure of indium-tin oxide (ITO)/N,N’-diphenyl-N, N’-bis(1-naphthyl) (1,1’-biphenyl)-4,4’-diamine (NPB)/2,9-dimethyl-4,7-diphenyl-1,10-phenanthr... A triple layer organic light-emitting diode (OLED) with two heterostructure of indium-tin oxide (ITO)/N,N’-diphenyl-N, N’-bis(1-naphthyl) (1,1’-biphenyl)-4,4’-diamine (NPB)/2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP)/ 8-Hydrox- yquinoline aluminum (Alq3)/Mg:Ag has been fabricated by using the vacuum deposition method. The influence of different film thickness of BCP layer on the performance of the OLEDs has been investigated. The results show that when the thickness of the BCP layer film gradually r... 展开更多
关键词 ALUMINA AMINES Current density ELECTROLUMINESCENCE Light Light emission Light emitting diodes Power spectrum SILVER structural optimization Tin Vacuum deposition
原文传递
Shrinking device realized by using layered structures of homogeneous isotropic materials
15
作者 郭亚楠 刘少斌 +2 位作者 赵鑫 王身云 陈忱 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第6期179-182,共4页
We propose the practical realization of a shrinking device by using layered structures of homogeneous isotropic materials.By mimicking the shrinking device with concentric alternating thin layers of isotropic dielectr... We propose the practical realization of a shrinking device by using layered structures of homogeneous isotropic materials.By mimicking the shrinking device with concentric alternating thin layers of isotropic dielectrics,the permittivity and the permeability in each isotropic layer can be properly determined from the effective medium theory in order to achieve the shrinking effect.The device realized by multilayer coating with dielectrics is validated by TE wave simulation,and good shrinking performance is demonstrated with only a few layers of homogeneous isotropic materials. 展开更多
关键词 shrinking device effective medium theory multilayered structure
原文传递
New Traveling-Wave Antenna Resonating at 6 GHz Based on Artificial Transmission Line Metamaterial Structures for RF Portable Devices
16
作者 Mohammad Alibakhshi Kenari 《Open Journal of Antennas and Propagation》 2013年第2期5-10,共6页
Design of new metamaterial (MTM) traveling-wave antenna with “d-formed” left-handed structure is proposed. The proposed MTM structure is designed at a height of 0.8 mm from the ground plane with almost 2 GHz bandwid... Design of new metamaterial (MTM) traveling-wave antenna with “d-formed” left-handed structure is proposed. The proposed MTM structure is designed at a height of 0.8 mm from the ground plane with almost 2 GHz bandwidth. The most interesting feature of the design is the ability of enhancing the gain and total efficiency of the antenna without negative effects of the other important parameters like bandwidth. By using the “d-shaped” MTM structure and printed planar technique, the bandwidth of the MTM traveling-wave antenna is significantly increased at a resonant frequency of 6 GHz and also a foot print area reduction of the antenna structure is provided. Antenna size is 7.2 × 5 × 0.8 mm3. The proposed antenna is suitable for RF portable devices operating at 6 GHz. 展开更多
关键词 Small BROAD Band ANTENNA METAMATERIAL (MTM) d-Shaped ANTENNA structure RF Portable devices TRAVELING-WAVE ANTENNA
在线阅读 下载PDF
High-Efficiency Green Phosphorescent Organic Light-Emitting Diode Based on Simplified Device Structures
17
作者 张宏梅 王丹蓓 +1 位作者 曾文进 闫敏楠 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第9期140-144,共5页
A high-efficiency green phosphorescent organic light emitting diode with a simplified structure is achieved that is free of a hole transport layer. The design of this kind of device structure not only saves the consum... A high-efficiency green phosphorescent organic light emitting diode with a simplified structure is achieved that is free of a hole transport layer. The design of this kind of device structure not only saves the consumption of organic materials but also greatly reduces the structural heterogeneities and effectively facilitates the charge injection into the emissive layer. The resulting green phosphorescent organic light-emitting diodes (PHOLEDs) exhibit higher electroluminescent efficiency. The maximum external quantum efficiency and current efficiency reach 23.7% and 88 cd/A, respectively. Moreover the device demonstrates satisfactory stability, keeping 23.7% and 88cd/A, 22% and 82cd/A, respectively, at a luminance of 100 and 1000cd/m2. The working mechanism for achieving high efficiency based on such a simple device structure is discussed correspondingly. The improved charge carrier injection and transport balance are proved to prominently contribute to achieve the high efficiency and great stability at high luminance in the green PHOLEDs. 展开更多
关键词 HTL NPB High-Efficiency Green Phosphorescent Organic Light-Emitting Diode Based on Simplified device structures OLEDS PEDOT
原文传递
Finite Element Analysis on the Pre-load Structures of the Central Solenoid for the HT-7U Device
18
作者 曹云露 吴维越 +1 位作者 翁佩德 武松涛 《Plasma Science and Technology》 SCIE EI CAS CSCD 2001年第3期813-820,共8页
The central solenoid is an important part of the HT-7U device. In this paper, the computational analysis of the stress and the displacement on the pre-load structures of the central solenoid have been made by the fin... The central solenoid is an important part of the HT-7U device. In this paper, the computational analysis of the stress and the displacement on the pre-load structures of the central solenoid have been made by the finite element analysis system COSMOS/M2.0 under room and/or operating temperature. According to the analytical results, the clip aprons and compression plates are all satisfied with safety design criteria. 展开更多
关键词 Finite Element Analysis on the Pre-load structures of the Central Solenoid for the HT-7U device HT LOAD
在线阅读 下载PDF
A Slip-Force Device for Maintaining Constant Lateral Pressure on Retaining Structures in Expansive Soils
19
作者 Yi Wu 《Open Journal of Civil Engineering》 2021年第3期342-357,共16页
Expansive soils can pose tough issues to civil engineering applications. In a typical year, expansive soils can cause a greater financial loss than earthquakes, floods, hurricanes and tornadoes combined. Various means... Expansive soils can pose tough issues to civil engineering applications. In a typical year, expansive soils can cause a greater financial loss than earthquakes, floods, hurricanes and tornadoes combined. Various means have been studied to tackle problems associated with expansive soils. The majority of the methods are based on treatment of the soils. While the methods may be effective in some cases, their limitations are also obvious: The treatment normally involves complex processes and may not be eco-friendly in the long run. In many cases, the effectiveness of the treatment is uncertain. A retaining system that maintains a constant lateral pressure is proposed, which consists of three components: the retaining sheet, the slip-force device and the bracing column. The retaining sheet bears the pressure exerted by expansive backfills and is not embedded into the soils. Placed between the retaining sheet and bracing column, the slip-force device permits displacement of the retaining sheet but keeps the force on the sheet and the bracing column constant. The governing equation of the motion of the piston in the slip-force device is derived and a numerical simulation of a practical case is conducted based on the derived governing equation. Numerical results show that as the expansive soil swell, the spring force will increase and the piston will move accordingly. When the pressure of the oil in chamber reach<span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">es</span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;"> the open threshold of the unidirectional relief valve, the valve will open and the spring force and the oil pressure in the chamber will keep constant. The results also show that some parameters, such as damping ratio, have very slight influences on the device behavior, say 2 × 10</span><sup><span style="font-family:Verdana;">-6</span></sup><span style="font-family:Verdana;"> or even 4.8 × 10</span><sup><span style="font-family:Verdana;">-9</span></sup><span style="font-family:Verdana;">. Theoretical and numerical studies prove the effectiveness of the proposed retaining system.</span></span></span></span> 展开更多
关键词 Expansive Soils Retaining structures Slip-Force device SWELL Shrink BRACING
在线阅读 下载PDF
Estimation-free spatial-domain image reconstruction of structured illumination microscopy 被引量:1
20
作者 Xiaoyan Li Shijie Tu +4 位作者 Yile Sun Yubing Han Xiang Hao Cuifang kuang Xu Liu 《Journal of Innovative Optical Health Sciences》 SCIE EI CSCD 2024年第2期45-58,共14页
Structured illumination microscopy(SIM)achieves super-resolution(SR)by modulating the high-frequency information of the sample into the passband of the optical system and subsequent image reconstruction.The traditiona... Structured illumination microscopy(SIM)achieves super-resolution(SR)by modulating the high-frequency information of the sample into the passband of the optical system and subsequent image reconstruction.The traditional Wiener-filtering-based reconstruction algorithm operates in the Fourier domain,it requires prior knowledge of the sinusoidal illumination patterns which makes the time-consuming procedure of parameter estimation to raw datasets necessary,besides,the parameter estimation is sensitive to noise or aberration-induced pattern distortion which leads to reconstruction artifacts.Here,we propose a spatial-domain image reconstruction method that does not require parameter estimation but calculates patterns from raw datasets,and a reconstructed image can be obtained just by calculating the spatial covariance of differential calculated patterns and differential filtered datasets(the notch filtering operation is performed to the raw datasets for attenuating and compensating the optical transfer function(OTF)).Experiments on reconstructing raw datasets including nonbiological,biological,and simulated samples demonstrate that our method has SR capability,high reconstruction speed,and high robustness to aberration and noise. 展开更多
关键词 structured illumination microscopy image reconstruction spatial domain digital micromirror device(DMD)
原文传递
上一页 1 2 149 下一页 到第
使用帮助 返回顶部