Self-shaping materials such as shape memory polymers have recently drawn considerable attention owing to their high shape-changing ability in response to changes in ambient conditions, and thereby have promising appli...Self-shaping materials such as shape memory polymers have recently drawn considerable attention owing to their high shape-changing ability in response to changes in ambient conditions, and thereby have promising applications in the biomedical, biosensing, soft robotics and aerospace fields. Their design is a crucial issue of both theoretical and technological interest. Motivated by the shape-changing ability of Towel Gourd tendril helices during swelling/deswelling, we present a strategy for realizing self-shaping function through the deformation of micro/nanohelices. To guide the design and fabrication of selfshaping materials, the shape equations of bent configurations, twisted belts, and helices of slender chiral composite are developed using the variation method. Furthermore, it is numerically shown that the shape changes of a chiral composite can be tuned by the deformation of micro/nanohelices and the fabricated fiber directions. This work paves a new way to create self-shaping composites.展开更多
A new specially correlated partially coherent beam named nonuniform multi-Gaussian correlated(NMGC) partially coherent beam is introduced. The correlation functions of such beam in x and y directions are different fro...A new specially correlated partially coherent beam named nonuniform multi-Gaussian correlated(NMGC) partially coherent beam is introduced. The correlation functions of such beam in x and y directions are different from each other,i.e., nonuniform correlation function in one direction and multi-Gaussian correlated Schell-model function in the other direction. The propagation properties of an NMGC partially coherent beam in free pace are demonstrated, and we find that the intensity distribution of such beam exhibits self-focusing and self-shifting effect in one direction and self-shaping effect in the other direction on propagation. The correlation-induced self-focusing and self-shaping effect will be useful in some applications, where the high power and shaped laser is required, such as material thermal processing and laser carving.展开更多
基金supported by the National Basic Research Program of China(2012CB937500)Grants-in-Aid for Scientific Research(21226005)from the Japan Society for the Promotion of Science(JSPS)+1 种基金the National Natural Science Foundation of China(11272230 and 11172207)the Basic Application and Advanced Technology Research Project in Tianjin(11JCYBJC09700)
文摘Self-shaping materials such as shape memory polymers have recently drawn considerable attention owing to their high shape-changing ability in response to changes in ambient conditions, and thereby have promising applications in the biomedical, biosensing, soft robotics and aerospace fields. Their design is a crucial issue of both theoretical and technological interest. Motivated by the shape-changing ability of Towel Gourd tendril helices during swelling/deswelling, we present a strategy for realizing self-shaping function through the deformation of micro/nanohelices. To guide the design and fabrication of selfshaping materials, the shape equations of bent configurations, twisted belts, and helices of slender chiral composite are developed using the variation method. Furthermore, it is numerically shown that the shape changes of a chiral composite can be tuned by the deformation of micro/nanohelices and the fabricated fiber directions. This work paves a new way to create self-shaping composites.
基金supported by the National Natural Science Fund for Distinguished Young Scholar under grant no.11525418the National Natural Science Foundation of China under grant no.11274005the project of the Priority Academic Program Development(PAPD) of Jiangsu Higher Education Institutions
文摘A new specially correlated partially coherent beam named nonuniform multi-Gaussian correlated(NMGC) partially coherent beam is introduced. The correlation functions of such beam in x and y directions are different from each other,i.e., nonuniform correlation function in one direction and multi-Gaussian correlated Schell-model function in the other direction. The propagation properties of an NMGC partially coherent beam in free pace are demonstrated, and we find that the intensity distribution of such beam exhibits self-focusing and self-shifting effect in one direction and self-shaping effect in the other direction on propagation. The correlation-induced self-focusing and self-shaping effect will be useful in some applications, where the high power and shaped laser is required, such as material thermal processing and laser carving.