Detecting target echo in the existence of self-screen jamming is a challenging work for radar system, especially when digital radio frequency memory(DRFM) technique is employed that mixes the jamming and target echo b...Detecting target echo in the existence of self-screen jamming is a challenging work for radar system, especially when digital radio frequency memory(DRFM) technique is employed that mixes the jamming and target echo both in spatial and time-frequency domain. The conventional way to solve this problem would suffer from performance degradation when physical target(PT) and false target(FT) are superposed in time. In this paper, we propose a new spatial filter according to the different correlation characteristic between PT and FT. The filter takes the ratio of expected signal power to expected jamming and noise power as the objective function under the constant filter modulus constraint. The optimal filter coefficients are derived with a generalized rayleigh quotient approach. Moreover, we analytically compute the target detection probability and demonstrate the applicability of the proposed method to the correlation coefficient. Monte Carlo simulations are provided to corroborate the proposed studies. Furthermore, the proposed method has simple architecture and low computation complexity, making it easily applied in modern radar system.展开更多
Nonperiodic interrupted sampling repeater jamming(ISRJ)against inverse synthetic aperture radar(ISAR)can obtain two-dimensional blanket jamming performance by joint fast and slow time domain interrupted modulation,whi...Nonperiodic interrupted sampling repeater jamming(ISRJ)against inverse synthetic aperture radar(ISAR)can obtain two-dimensional blanket jamming performance by joint fast and slow time domain interrupted modulation,which is obviously dif-ferent from the conventional multi-false-target deception jam-ming.In this paper,a suppression method against this kind of novel jamming is proposed based on inter-pulse energy function and compressed sensing theory.By utilizing the discontinuous property of the jamming in slow time domain,the unjammed pulse is separated using the intra-pulse energy function diffe-rence.Based on this,the two-dimensional orthogonal matching pursuit(2D-OMP)algorithm is proposed.Further,it is proposed to reconstruct the ISAR image with the obtained unjammed pulse sequence.The validity of the proposed method is demon-strated via the Yake-42 plane data simulations.展开更多
Jamming suppression is traditionally achieved through the use of spatial filters based on array signal processing theory.In order to achieve better jamming suppression performance,many studies have applied blind sourc...Jamming suppression is traditionally achieved through the use of spatial filters based on array signal processing theory.In order to achieve better jamming suppression performance,many studies have applied blind source separation(BSS)to jamming suppression.BSS can achieve the separation and extraction of the individual source signals from the mixed signal received by the array.This paper proposes a perspective to recognize BSS as spatial band-pass filters(SBPFs)for jamming suppression applications.The theoretical derivation indicates that the processing of mixed signals by BSS can be perceived as the application of a set of SBPFs that gate the source signals at various angles.Simulations are performed using radar jamming suppression as an example.The simulation results suggest that BSS and SBPFs produce approximately the same effects.Simulation results are consistent with theoretical derivation results.展开更多
This paper studies the problem of jamming decision-making for dynamic multiple communication links in wireless communication networks(WCNs).We propose a novel jamming channel allocation and power decision-making(JCAPD...This paper studies the problem of jamming decision-making for dynamic multiple communication links in wireless communication networks(WCNs).We propose a novel jamming channel allocation and power decision-making(JCAPD)approach based on multi-agent deep reinforcement learning(MADRL).In high-dynamic and multi-target aviation communication environments,the rapid changes in channels make it difficult for sensors to accurately capture instantaneous channel state information.This poses a challenge to make centralized jamming decisions with single-agent deep reinforcement learning(DRL)approaches.In response,we design a distributed multi-agent decision architecture(DMADA).We formulate multi-jammer resource allocation as a multiagent Markov decision process(MDP)and propose a fingerprint-based double deep Q-Network(FBDDQN)algorithm for solving it.Each jammer functions as an agent that interacts with the environment in this framework.Through the design of a reasonable reward and training mechanism,our approach enables jammers to achieve distributed cooperation,significantly improving the jamming success rate while considering jamming power cost,and reducing the transmission rate of links.Our experimental results show the FBDDQN algorithm is superior to the baseline methods.展开更多
To overcome the challenges of poor real-time performance,limited scalability,and low intelligence in conventional jamming pattern recognition methods,this paper proposes a method based on Wavelet Packet Decomposition(...To overcome the challenges of poor real-time performance,limited scalability,and low intelligence in conventional jamming pattern recognition methods,this paper proposes a method based on Wavelet Packet Decomposition(WPD)and enhanced deep learning techniques.In the proposed method,an agent at the receiver processes the received signal using WPD to generate an initial Spectrogram Waterfall(SW),which is subsequently segmented using a sliding window to serve as the input for the jamming recognition network.The network employs a bilateral filter to preprocess the input SW,thereby enhancing the edge features of the jamming signals.To extract abstract features,depthwise separable convolution is utilized instead of traditional convolution,thereby reducing the network’s parameter count and enhancing real-time performance.A pyramid pooling layer is integrated before the fully connected layer to enable the network to process input SW of varying sizes,thus enhancing scalability.During network training,adaptive moment estimation is employed as the optimizer,allowing the network to dynamically adjust the learning rate and accelerate convergence.A comprehensive comparison between the proposed jamming recognition network and six other models is conducted,along with Ablation Experiments(AE)based on numerical simulations.Simulation results demonstrate that the proposed method based on WPD and enhanced deep learning achieves high-precision recognition of various jamming patterns while maintaining a favorable balance among prediction accuracy,network complexity,and prediction time.展开更多
In this paper,we examine an illegal wireless communication network consisting of an illegal user receiving illegal signals from an illegal station and propose an active reconfigurable intelligent surface(ARIS)-assiste...In this paper,we examine an illegal wireless communication network consisting of an illegal user receiving illegal signals from an illegal station and propose an active reconfigurable intelligent surface(ARIS)-assisted multi-antenna jamming(MAJ)scheme denoted by ARIS-MAJ to interfere with the illegal signal transmission.In order to strike a balance between the jamming performance and the energy consumption,we consider a so-called jamming energy efficiency(JEE)which is defined as the ratio of achievable rate reduced by the jamming system to the corresponding power consumption.We formulate an optimization problem to maximize the JEE for the proposed ARIS-MAJ scheme by jointly optimizing the jammer’s beamforming vector and ARIS’s reflecting coefficients under the constraint that the jamming power received at the illegal user is lower than the illegal user’s detection threshold.To address the non-convex optimization problem,we propose the Dinkelbach-based alternating optimization(AO)algorithm by applying the semidefinite relaxation(SDR)algorithm with Gaussian randomization method.Numerical results validate that the proposed ARIS-MAJ scheme outperforms the passive reconfigurable intelligent surface(PRIS)-assisted multi-antenna jamming(PRIS-MAJ)scheme and the conventional multiantenna jamming scheme without RIS(NRIS-MAJ)in terms of the JEE.展开更多
The integrated communication and jamming(ICAJ)system recently has been proposed to enable communication and jamming(C&J)to reinforce each other in one system.By exploiting the diversity gain of multiple input mult...The integrated communication and jamming(ICAJ)system recently has been proposed to enable communication and jamming(C&J)to reinforce each other in one system.By exploiting the diversity gain of multiple input multiple output(MIMO)technology,a specific implementation form of ICAJ system,called communication-aided collaborative jamming system,is designed to transmit C&J signals at the same time and frequency.Different from previous studies which overlook the jamming prior information acquisition process and assume that the prior information is perfect or with bounded error,this paper takes the non-cooperative characteristics of jamming and the consequent difficulty in prior information acquisition into consideration.To analyze the tradeoff between C&J,the integration metric is proposed and then the corresponding system design problem is formulated.However,the non-convexity of problem and the lack of jamming prior information make the optimization tricky.In this case,blind channel estimation(BCE)is introduced to obtain an approximate channel state information(CSI)without interacting with jamming targets and then the neural network embedded with system performance calculation model is developed to establish the correspondence between the estimated CSI and optimal beamforming design.Furthermore,a hybrid data-driven and model-based approach,blind channel estimation-deep learning(BCEDL),is proposed to accomplish the beamforming design based on unsupervised learning for ICAJ system in non-cooperative scenarios.The simulation results show that the BCE-DL algorithm outperforms the conventional algorithms in the presence of CSI estimation errors and is a flexible approach which takes the best of both data-driven and model-based methods to design the ICAJ system.展开更多
提出一种基于几何覆盖理论的Jamming攻击定位(GCL,geometry-covering based localization)算法。GCL算法利用计算几何中的凸壳理论,特别是最小包容圆方法,对Jamming攻击者进行定位。理论证明了该算法的正确性和较低的时间复杂度(O(nlogn...提出一种基于几何覆盖理论的Jamming攻击定位(GCL,geometry-covering based localization)算法。GCL算法利用计算几何中的凸壳理论,特别是最小包容圆方法,对Jamming攻击者进行定位。理论证明了该算法的正确性和较低的时间复杂度(O(nlogn));模拟实验表明,该算法在攻击者攻击范围、网络节点密度以及攻击者位置等度量值变化的情况下,比已有算法具有更好的定位准确度。展开更多
Aim To get the theory base of designing FM fuze's jamming signal, its jamming mechanism was studied. Methods A sinusoidal FM fuze was analyzed in time domain and frequency domain and the concept of channel lea...Aim To get the theory base of designing FM fuze's jamming signal, its jamming mechanism was studied. Methods A sinusoidal FM fuze was analyzed in time domain and frequency domain and the concept of channel leak was presented. Results It was proved that information channel leak exists in FM fuze because of the nonlinear property of the mixer. The jamming signal was designed based on the channel leak and the jamming mechanism was analyzed in detail. Conclusion This kind of jamming signal can jam the sinusoidal FM fuzes effectively just depending on the jamming signal's feature itself. It's different from the traditional jamming way of simulating echo. Though the sinusoidal FM fuze was just analyzed, the principle is applicable to all FM fuzes. At the same time, it may be used as the reference for FM radar and communication countermeasures.展开更多
Based on the M-ary spread spectrum (M-ary-SS), direct sequence spread spectrum (DS-SS), and orthogonal frequency division multiplex (OFDM), a novel anti-jamming scheme, named orthogonal code time division multi-...Based on the M-ary spread spectrum (M-ary-SS), direct sequence spread spectrum (DS-SS), and orthogonal frequency division multiplex (OFDM), a novel anti-jamming scheme, named orthogonal code time division multi-subchannels spread spectrum modulation (OC-TDMSCSSM), is proposed to enhance the anti-jamming ability of the unmanned aerial vehicle (UAV) data link. The anti-jamming system with its mathematical model is presented first, and then the signal formats of transmitter and receiver are derived. The receiver's bit error rate (BER) is demonstrated and anti-jamming performance analysis is carded out in an additive white Ganssian noise (AWGN) channel. Theoretical research and simulation results show the anti-jamming performance of the proposed scheme better than that of the hybrid direct sequence frequency hopping spread spectrum (DS/FH SS) system. The jamming margin of the OC-TDMSCSSM system is 5 dB higher than that of DS/FH SS system under the condition of Rician channel and full-band jamming, and 6 dB higher under the condition of Rician channel environment and partial-band jamming.展开更多
The total cross-eye gain of multiple-element retrodirective cross-eye jamming(MRCJ) in the presence of the platform skin return is a distribution rather than a constant value, due to the random variation in the phase ...The total cross-eye gain of multiple-element retrodirective cross-eye jamming(MRCJ) in the presence of the platform skin return is a distribution rather than a constant value, due to the random variation in the phase of the skin return. Although the median value of the total cross-eye gain distribution had been analyzed in previous studies, the extreme values providing useful indications of the upper and lower bounds of the total cross-eye gain have not been analyzed until now. In this paper, the cumulative distribution function and the extreme values of the total cross-eye gain of MRCJ are derived. The angular error induced in threat monopulse radar as a figure of merit is used to analyze the performance of MRCJ system. Simulation results demonstrate the variation of the angular error and discuss the proper value of jamming-to-signal ratio(JSR) making the MRCJ system more effective in consideration of the whole distribution of the total cross-eye gain.展开更多
This paper proposes a suppression method of the deceptive false target(FT) produced by digital radio frequency memory(DRFM) in a multistatic radar system. The simulated deceptive false targets from DRFM cannot be easi...This paper proposes a suppression method of the deceptive false target(FT) produced by digital radio frequency memory(DRFM) in a multistatic radar system. The simulated deceptive false targets from DRFM cannot be easily discriminated and suppressed with traditional radar systems. Therefore, multistatic radar has attracted considerable interest as it provides improved performance against deception jamming due to several separated receivers. This paper first investigates the received signal model in the presence of multiple false targets in all receivers of the multistatic radar. Then, obtain the propagation time delays of the false targets based on the cross-correlation test of the received signals in different receivers. In doing so, local-density-based spatial clustering of applications with noise(LDBSCAN) is proposed to discriminate the FTs from the physical targets(PTs) after compensating the FTs time delays, where the FTs are approximately coincident with one position, while PTs possess small dispersion.Numerical simulations are carried out to demonstrate the feasibility and validness of the proposed method.展开更多
The inherent mathematic principle of active jamming against the wideband linear frequency modulated(LFM) radar is investigated. According to different generation strategies, the active jamming methods are reclassifi...The inherent mathematic principle of active jamming against the wideband linear frequency modulated(LFM) radar is investigated. According to different generation strategies, the active jamming methods are reclassified into three groups, i.e.,non-coherent jamming(NCJ), convolution jamming(CJ) and multiplying jamming(MJ). Based on the classification, the mathematic principles of different active jamming groups are put forward, which describe the relationships between the modulated signals and the jamming results. The advantages and disadvantages of different groups are further analyzed, which provides a new perspective for the study of jamming/anti-jamming methods and a potential for engineers to integrate similar jamming methods into one jammer platform. The analyses and simulation results of some typical active jamming methods prove the validity of the proposed mathematics principle.展开更多
A new polarization measurement algorithm by using the sum and difference beam differential property of mono-pulse radar is given.Based on the generation mechanism differences between the target scattering and multi-fa...A new polarization measurement algorithm by using the sum and difference beam differential property of mono-pulse radar is given.Based on the generation mechanism differences between the target scattering and multi-false-target jamming,the signal models of real targets and digital deceptive false target jamming for sum and delta channel are presented.The polarization discrimination parameters are designed,and the discrimination method and its performance are discussed.This novel method does not need the accurate estimation of the absolute value of full target polarization scattering matrix,but only requires the relative estimation of the orthogonal polarized component of the targets.Without the need to add additional polarization channels,the proposed method is more suitable for engineering realization.The simulation experiment verifies that the correctly identifying probability can be better than 90%.展开更多
This paper focuses on the jamming problem of bistatic synthetic aperture radar (BiSAR), and a jamming method against BiSAR based on modulation theory is proposed. The proposed jamming method modulates the BiSAR signal...This paper focuses on the jamming problem of bistatic synthetic aperture radar (BiSAR), and a jamming method against BiSAR based on modulation theory is proposed. The proposed jamming method modulates the BiSAR signal with the cosinusoidal phase to generate multi-false targets in range, and further rotates the jammer to generate multi-false targets in azimuth. The range multi-false targets and azimuth multi-false targets form the two-dimensional cover jamming or deception jamming, which can protect the important targets efficiently. The number of false targets, the interval of false targets, and the jamming square can be adjusted flexibly by setting different range jamming parameters and azimuth jamming parameters. The jamming performance and the choosing criteria of jamming parameters are also discussed. Finally, the simulated data verify the effectiveness of the jamming method.展开更多
Severe shield jamming events have been reported during excavation of Uluabat tunnel through adverse geological conditions, which resulted in several stoppages at advancing a single shielded tunnel boring machine(TBM)....Severe shield jamming events have been reported during excavation of Uluabat tunnel through adverse geological conditions, which resulted in several stoppages at advancing a single shielded tunnel boring machine(TBM). To study the jamming mechanism, three-dimensional(3D) simulation of the machine and surrounding ground was implemented using the finite difference code FLAC3D. Numerical analyses were performed for three sections along the tunnel with a higher risk for entrapment due to the combination of overburden and geological conditions. The computational results including longitudinal displacement contours and ground pressure profiles around the shield allow a better understanding of ground behavior within the excavation. Furthermore, they allow realistically assessing the impact of adverse geological conditions on shield jamming. The calculated thrust forces, which are required to move the machine forward, are in good agreement with field observations and measurements. It also proves that the numerical analysis can effectively be used for evaluating the effect of adverse geological environment on TBM entrapments and can be applied to prediction of loads on the shield and preestimating of the required thrust force during excavation through adverse ground conditions.展开更多
This paper presents an approach for mitigating the cross-eye jamming using a dual-polarization array. By transmitting a sum beam and a difference beam in two orthogonal polarimetric channels, a synthesized transmitted...This paper presents an approach for mitigating the cross-eye jamming using a dual-polarization array. By transmitting a sum beam and a difference beam in two orthogonal polarimetric channels, a synthesized transmitted beam with spatially varying polarization is produced, such that the polarization of the transmitted radar wave varies in azimuth or elevation. Thus, the phases of the signals received on the two antennas of a cross-eye jammer become unequal, and an additional phase difference is introduced to disrupt the 180? phase shifting in the retrodirective loop of the jammer. By means of beam scanning in a small angular range,the optimal beam steering configuration can be found to maximize the phase error for the mitigation of cross-eye jamming. As a result, the jamming performance of the cross-eye jammer degrades largely. Theoretical analysis and simulation results indicate that the proposed method is valid and feasible.展开更多
The manner and conditions of running the decision-making system with self-defense electronic jamming are given. After proposing the scenario of applying discrete dynamic Bayesian network to the decision making with se...The manner and conditions of running the decision-making system with self-defense electronic jamming are given. After proposing the scenario of applying discrete dynamic Bayesian network to the decision making with self-defense electronic jamming, a decision-making model with self-defense electronic jamming based on the discrete dynamic Bayesian network is established. Then jamming decision inferences by the aid of the algorithm of discrete dynamic Bayesian network are carried on. The simulating result shows that this method is able to synthesize different targets which are not predominant. In this way, various features at the same time, as well as the same feature appearing at different time complement mutually; in addition, the accuracy and reliability of electronic jamming decision making are enhanced significantly.展开更多
文摘Detecting target echo in the existence of self-screen jamming is a challenging work for radar system, especially when digital radio frequency memory(DRFM) technique is employed that mixes the jamming and target echo both in spatial and time-frequency domain. The conventional way to solve this problem would suffer from performance degradation when physical target(PT) and false target(FT) are superposed in time. In this paper, we propose a new spatial filter according to the different correlation characteristic between PT and FT. The filter takes the ratio of expected signal power to expected jamming and noise power as the objective function under the constant filter modulus constraint. The optimal filter coefficients are derived with a generalized rayleigh quotient approach. Moreover, we analytically compute the target detection probability and demonstrate the applicability of the proposed method to the correlation coefficient. Monte Carlo simulations are provided to corroborate the proposed studies. Furthermore, the proposed method has simple architecture and low computation complexity, making it easily applied in modern radar system.
基金supported by the National Natural Science Foundation of China(62001481,61890542,62071475)the Natural Science Foundation of Hunan Province(2022JJ40561)the Research Program of National University of Defense Technology(ZK22-46).
文摘Nonperiodic interrupted sampling repeater jamming(ISRJ)against inverse synthetic aperture radar(ISAR)can obtain two-dimensional blanket jamming performance by joint fast and slow time domain interrupted modulation,which is obviously dif-ferent from the conventional multi-false-target deception jam-ming.In this paper,a suppression method against this kind of novel jamming is proposed based on inter-pulse energy function and compressed sensing theory.By utilizing the discontinuous property of the jamming in slow time domain,the unjammed pulse is separated using the intra-pulse energy function diffe-rence.Based on this,the two-dimensional orthogonal matching pursuit(2D-OMP)algorithm is proposed.Further,it is proposed to reconstruct the ISAR image with the obtained unjammed pulse sequence.The validity of the proposed method is demon-strated via the Yake-42 plane data simulations.
基金supported by the National Natural Science Foundation of China(6237104662201048)the Natural Science Foundation of Chongqing,China(cstc2020jcyj-msxmX0260).
文摘Jamming suppression is traditionally achieved through the use of spatial filters based on array signal processing theory.In order to achieve better jamming suppression performance,many studies have applied blind source separation(BSS)to jamming suppression.BSS can achieve the separation and extraction of the individual source signals from the mixed signal received by the array.This paper proposes a perspective to recognize BSS as spatial band-pass filters(SBPFs)for jamming suppression applications.The theoretical derivation indicates that the processing of mixed signals by BSS can be perceived as the application of a set of SBPFs that gate the source signals at various angles.Simulations are performed using radar jamming suppression as an example.The simulation results suggest that BSS and SBPFs produce approximately the same effects.Simulation results are consistent with theoretical derivation results.
基金supported in part by the National Natural Science Foundation of China(No.61906156).
文摘This paper studies the problem of jamming decision-making for dynamic multiple communication links in wireless communication networks(WCNs).We propose a novel jamming channel allocation and power decision-making(JCAPD)approach based on multi-agent deep reinforcement learning(MADRL).In high-dynamic and multi-target aviation communication environments,the rapid changes in channels make it difficult for sensors to accurately capture instantaneous channel state information.This poses a challenge to make centralized jamming decisions with single-agent deep reinforcement learning(DRL)approaches.In response,we design a distributed multi-agent decision architecture(DMADA).We formulate multi-jammer resource allocation as a multiagent Markov decision process(MDP)and propose a fingerprint-based double deep Q-Network(FBDDQN)algorithm for solving it.Each jammer functions as an agent that interacts with the environment in this framework.Through the design of a reasonable reward and training mechanism,our approach enables jammers to achieve distributed cooperation,significantly improving the jamming success rate while considering jamming power cost,and reducing the transmission rate of links.Our experimental results show the FBDDQN algorithm is superior to the baseline methods.
基金supported by National Natural Science Foundation of China under Grant U23A20279China Electronics Tian’ao Innovation Theory and Technology Group Fund under Grand 20221193-04-04.
文摘To overcome the challenges of poor real-time performance,limited scalability,and low intelligence in conventional jamming pattern recognition methods,this paper proposes a method based on Wavelet Packet Decomposition(WPD)and enhanced deep learning techniques.In the proposed method,an agent at the receiver processes the received signal using WPD to generate an initial Spectrogram Waterfall(SW),which is subsequently segmented using a sliding window to serve as the input for the jamming recognition network.The network employs a bilateral filter to preprocess the input SW,thereby enhancing the edge features of the jamming signals.To extract abstract features,depthwise separable convolution is utilized instead of traditional convolution,thereby reducing the network’s parameter count and enhancing real-time performance.A pyramid pooling layer is integrated before the fully connected layer to enable the network to process input SW of varying sizes,thus enhancing scalability.During network training,adaptive moment estimation is employed as the optimizer,allowing the network to dynamically adjust the learning rate and accelerate convergence.A comprehensive comparison between the proposed jamming recognition network and six other models is conducted,along with Ablation Experiments(AE)based on numerical simulations.Simulation results demonstrate that the proposed method based on WPD and enhanced deep learning achieves high-precision recognition of various jamming patterns while maintaining a favorable balance among prediction accuracy,network complexity,and prediction time.
基金supported in part by the National Natural Science Foundation of China under Grant 62071253,Grant 62371252 and Grant 62271268in part by the Jiangsu Provincial Key Research and Development Program under Grant BE2022800in part by the Jiangsu Provincial 333 Talent Project.
文摘In this paper,we examine an illegal wireless communication network consisting of an illegal user receiving illegal signals from an illegal station and propose an active reconfigurable intelligent surface(ARIS)-assisted multi-antenna jamming(MAJ)scheme denoted by ARIS-MAJ to interfere with the illegal signal transmission.In order to strike a balance between the jamming performance and the energy consumption,we consider a so-called jamming energy efficiency(JEE)which is defined as the ratio of achievable rate reduced by the jamming system to the corresponding power consumption.We formulate an optimization problem to maximize the JEE for the proposed ARIS-MAJ scheme by jointly optimizing the jammer’s beamforming vector and ARIS’s reflecting coefficients under the constraint that the jamming power received at the illegal user is lower than the illegal user’s detection threshold.To address the non-convex optimization problem,we propose the Dinkelbach-based alternating optimization(AO)algorithm by applying the semidefinite relaxation(SDR)algorithm with Gaussian randomization method.Numerical results validate that the proposed ARIS-MAJ scheme outperforms the passive reconfigurable intelligent surface(PRIS)-assisted multi-antenna jamming(PRIS-MAJ)scheme and the conventional multiantenna jamming scheme without RIS(NRIS-MAJ)in terms of the JEE.
基金supported by the National Natural Science Foundation of China(No.62171462,No.62401626,No.62271501)the Key Technologies R&D Program of Jiangsu(Prospective and Key Technologies for Industry)under Grants BE2023022 and BE2023022-4the Natural Science Foundation of Jiangsu Province(No.BK20240200)。
文摘The integrated communication and jamming(ICAJ)system recently has been proposed to enable communication and jamming(C&J)to reinforce each other in one system.By exploiting the diversity gain of multiple input multiple output(MIMO)technology,a specific implementation form of ICAJ system,called communication-aided collaborative jamming system,is designed to transmit C&J signals at the same time and frequency.Different from previous studies which overlook the jamming prior information acquisition process and assume that the prior information is perfect or with bounded error,this paper takes the non-cooperative characteristics of jamming and the consequent difficulty in prior information acquisition into consideration.To analyze the tradeoff between C&J,the integration metric is proposed and then the corresponding system design problem is formulated.However,the non-convexity of problem and the lack of jamming prior information make the optimization tricky.In this case,blind channel estimation(BCE)is introduced to obtain an approximate channel state information(CSI)without interacting with jamming targets and then the neural network embedded with system performance calculation model is developed to establish the correspondence between the estimated CSI and optimal beamforming design.Furthermore,a hybrid data-driven and model-based approach,blind channel estimation-deep learning(BCEDL),is proposed to accomplish the beamforming design based on unsupervised learning for ICAJ system in non-cooperative scenarios.The simulation results show that the BCE-DL algorithm outperforms the conventional algorithms in the presence of CSI estimation errors and is a flexible approach which takes the best of both data-driven and model-based methods to design the ICAJ system.
文摘提出一种基于几何覆盖理论的Jamming攻击定位(GCL,geometry-covering based localization)算法。GCL算法利用计算几何中的凸壳理论,特别是最小包容圆方法,对Jamming攻击者进行定位。理论证明了该算法的正确性和较低的时间复杂度(O(nlogn));模拟实验表明,该算法在攻击者攻击范围、网络节点密度以及攻击者位置等度量值变化的情况下,比已有算法具有更好的定位准确度。
文摘Aim To get the theory base of designing FM fuze's jamming signal, its jamming mechanism was studied. Methods A sinusoidal FM fuze was analyzed in time domain and frequency domain and the concept of channel leak was presented. Results It was proved that information channel leak exists in FM fuze because of the nonlinear property of the mixer. The jamming signal was designed based on the channel leak and the jamming mechanism was analyzed in detail. Conclusion This kind of jamming signal can jam the sinusoidal FM fuzes effectively just depending on the jamming signal's feature itself. It's different from the traditional jamming way of simulating echo. Though the sinusoidal FM fuze was just analyzed, the principle is applicable to all FM fuzes. At the same time, it may be used as the reference for FM radar and communication countermeasures.
基金Aeronautical Science Foundation of China (2007ZC53030)
文摘Based on the M-ary spread spectrum (M-ary-SS), direct sequence spread spectrum (DS-SS), and orthogonal frequency division multiplex (OFDM), a novel anti-jamming scheme, named orthogonal code time division multi-subchannels spread spectrum modulation (OC-TDMSCSSM), is proposed to enhance the anti-jamming ability of the unmanned aerial vehicle (UAV) data link. The anti-jamming system with its mathematical model is presented first, and then the signal formats of transmitter and receiver are derived. The receiver's bit error rate (BER) is demonstrated and anti-jamming performance analysis is carded out in an additive white Ganssian noise (AWGN) channel. Theoretical research and simulation results show the anti-jamming performance of the proposed scheme better than that of the hybrid direct sequence frequency hopping spread spectrum (DS/FH SS) system. The jamming margin of the OC-TDMSCSSM system is 5 dB higher than that of DS/FH SS system under the condition of Rician channel and full-band jamming, and 6 dB higher under the condition of Rician channel environment and partial-band jamming.
基金supported by the Weapons and Equipment Research Foundation of China(304070102)
文摘The total cross-eye gain of multiple-element retrodirective cross-eye jamming(MRCJ) in the presence of the platform skin return is a distribution rather than a constant value, due to the random variation in the phase of the skin return. Although the median value of the total cross-eye gain distribution had been analyzed in previous studies, the extreme values providing useful indications of the upper and lower bounds of the total cross-eye gain have not been analyzed until now. In this paper, the cumulative distribution function and the extreme values of the total cross-eye gain of MRCJ are derived. The angular error induced in threat monopulse radar as a figure of merit is used to analyze the performance of MRCJ system. Simulation results demonstrate the variation of the angular error and discuss the proper value of jamming-to-signal ratio(JSR) making the MRCJ system more effective in consideration of the whole distribution of the total cross-eye gain.
文摘This paper proposes a suppression method of the deceptive false target(FT) produced by digital radio frequency memory(DRFM) in a multistatic radar system. The simulated deceptive false targets from DRFM cannot be easily discriminated and suppressed with traditional radar systems. Therefore, multistatic radar has attracted considerable interest as it provides improved performance against deception jamming due to several separated receivers. This paper first investigates the received signal model in the presence of multiple false targets in all receivers of the multistatic radar. Then, obtain the propagation time delays of the false targets based on the cross-correlation test of the received signals in different receivers. In doing so, local-density-based spatial clustering of applications with noise(LDBSCAN) is proposed to discriminate the FTs from the physical targets(PTs) after compensating the FTs time delays, where the FTs are approximately coincident with one position, while PTs possess small dispersion.Numerical simulations are carried out to demonstrate the feasibility and validness of the proposed method.
基金supported by the National Natural Science Foundation of China(61271442)
文摘The inherent mathematic principle of active jamming against the wideband linear frequency modulated(LFM) radar is investigated. According to different generation strategies, the active jamming methods are reclassified into three groups, i.e.,non-coherent jamming(NCJ), convolution jamming(CJ) and multiplying jamming(MJ). Based on the classification, the mathematic principles of different active jamming groups are put forward, which describe the relationships between the modulated signals and the jamming results. The advantages and disadvantages of different groups are further analyzed, which provides a new perspective for the study of jamming/anti-jamming methods and a potential for engineers to integrate similar jamming methods into one jammer platform. The analyses and simulation results of some typical active jamming methods prove the validity of the proposed mathematics principle.
基金supported by the National Natural Science Foundation of China (6073600660802078)the Hunan Provincial Innovation Foundation for Postgraduate (CX2009B010)
文摘A new polarization measurement algorithm by using the sum and difference beam differential property of mono-pulse radar is given.Based on the generation mechanism differences between the target scattering and multi-false-target jamming,the signal models of real targets and digital deceptive false target jamming for sum and delta channel are presented.The polarization discrimination parameters are designed,and the discrimination method and its performance are discussed.This novel method does not need the accurate estimation of the absolute value of full target polarization scattering matrix,but only requires the relative estimation of the orthogonal polarized component of the targets.Without the need to add additional polarization channels,the proposed method is more suitable for engineering realization.The simulation experiment verifies that the correctly identifying probability can be better than 90%.
基金supported by the National Defense Pre-research Program during the 13th Five-Year Plan(30603050303 301020302)
文摘This paper focuses on the jamming problem of bistatic synthetic aperture radar (BiSAR), and a jamming method against BiSAR based on modulation theory is proposed. The proposed jamming method modulates the BiSAR signal with the cosinusoidal phase to generate multi-false targets in range, and further rotates the jammer to generate multi-false targets in azimuth. The range multi-false targets and azimuth multi-false targets form the two-dimensional cover jamming or deception jamming, which can protect the important targets efficiently. The number of false targets, the interval of false targets, and the jamming square can be adjusted flexibly by setting different range jamming parameters and azimuth jamming parameters. The jamming performance and the choosing criteria of jamming parameters are also discussed. Finally, the simulated data verify the effectiveness of the jamming method.
基金Alexander von Humboldt-Foundation (AvH) for the financial support as a research fellowthe financial support of the Scientific and Technological Research Council of Turkey (TüB_ITAK) under Project No. MAG-114M568
文摘Severe shield jamming events have been reported during excavation of Uluabat tunnel through adverse geological conditions, which resulted in several stoppages at advancing a single shielded tunnel boring machine(TBM). To study the jamming mechanism, three-dimensional(3D) simulation of the machine and surrounding ground was implemented using the finite difference code FLAC3D. Numerical analyses were performed for three sections along the tunnel with a higher risk for entrapment due to the combination of overburden and geological conditions. The computational results including longitudinal displacement contours and ground pressure profiles around the shield allow a better understanding of ground behavior within the excavation. Furthermore, they allow realistically assessing the impact of adverse geological conditions on shield jamming. The calculated thrust forces, which are required to move the machine forward, are in good agreement with field observations and measurements. It also proves that the numerical analysis can effectively be used for evaluating the effect of adverse geological environment on TBM entrapments and can be applied to prediction of loads on the shield and preestimating of the required thrust force during excavation through adverse ground conditions.
基金supported by the National Natural Science Foundation of China(6149069261401488)
文摘This paper presents an approach for mitigating the cross-eye jamming using a dual-polarization array. By transmitting a sum beam and a difference beam in two orthogonal polarimetric channels, a synthesized transmitted beam with spatially varying polarization is produced, such that the polarization of the transmitted radar wave varies in azimuth or elevation. Thus, the phases of the signals received on the two antennas of a cross-eye jammer become unequal, and an additional phase difference is introduced to disrupt the 180? phase shifting in the retrodirective loop of the jammer. By means of beam scanning in a small angular range,the optimal beam steering configuration can be found to maximize the phase error for the mitigation of cross-eye jamming. As a result, the jamming performance of the cross-eye jammer degrades largely. Theoretical analysis and simulation results indicate that the proposed method is valid and feasible.
基金the National Natural Science Fundation of China (10377014).
文摘The manner and conditions of running the decision-making system with self-defense electronic jamming are given. After proposing the scenario of applying discrete dynamic Bayesian network to the decision making with self-defense electronic jamming, a decision-making model with self-defense electronic jamming based on the discrete dynamic Bayesian network is established. Then jamming decision inferences by the aid of the algorithm of discrete dynamic Bayesian network are carried on. The simulating result shows that this method is able to synthesize different targets which are not predominant. In this way, various features at the same time, as well as the same feature appearing at different time complement mutually; in addition, the accuracy and reliability of electronic jamming decision making are enhanced significantly.