期刊文献+
共找到2,596篇文章
< 1 2 130 >
每页显示 20 50 100
A Multi-Objective Deep Reinforcement Learning Algorithm for Computation Offloading in Internet of Vehicles
1
作者 Junjun Ren Guoqiang Chen +1 位作者 Zheng-Yi Chai Dong Yuan 《Computers, Materials & Continua》 2026年第1期2111-2136,共26页
Vehicle Edge Computing(VEC)and Cloud Computing(CC)significantly enhance the processing efficiency of delay-sensitive and computation-intensive applications by offloading compute-intensive tasks from resource-constrain... Vehicle Edge Computing(VEC)and Cloud Computing(CC)significantly enhance the processing efficiency of delay-sensitive and computation-intensive applications by offloading compute-intensive tasks from resource-constrained onboard devices to nearby Roadside Unit(RSU),thereby achieving lower delay and energy consumption.However,due to the limited storage capacity and energy budget of RSUs,it is challenging to meet the demands of the highly dynamic Internet of Vehicles(IoV)environment.Therefore,determining reasonable service caching and computation offloading strategies is crucial.To address this,this paper proposes a joint service caching scheme for cloud-edge collaborative IoV computation offloading.By modeling the dynamic optimization problem using Markov Decision Processes(MDP),the scheme jointly optimizes task delay,energy consumption,load balancing,and privacy entropy to achieve better quality of service.Additionally,a dynamic adaptive multi-objective deep reinforcement learning algorithm is proposed.Each Double Deep Q-Network(DDQN)agent obtains rewards for different objectives based on distinct reward functions and dynamically updates the objective weights by learning the value changes between objectives using Radial Basis Function Networks(RBFN),thereby efficiently approximating the Pareto-optimal decisions for multiple objectives.Extensive experiments demonstrate that the proposed algorithm can better coordinate the three-tier computing resources of cloud,edge,and vehicles.Compared to existing algorithms,the proposed method reduces task delay and energy consumption by 10.64%and 5.1%,respectively. 展开更多
关键词 Deep reinforcement learning internet of vehicles multi-objective optimization cloud-edge computing computation offloading service caching
在线阅读 下载PDF
The Internet of Things under Federated Learning:A Review of the Latest Advances and Applications 被引量:1
2
作者 Jinlong Wang Zhenyu Liu +2 位作者 Xingtao Yang Min Li Zhihan Lyu 《Computers, Materials & Continua》 SCIE EI 2025年第1期1-39,共39页
With the rapid development of artificial intelligence,the Internet of Things(IoT)can deploy various machine learning algorithms for network and application management.In the IoT environment,many sensors and devices ge... With the rapid development of artificial intelligence,the Internet of Things(IoT)can deploy various machine learning algorithms for network and application management.In the IoT environment,many sensors and devices generatemassive data,but data security and privacy protection have become a serious challenge.Federated learning(FL)can achieve many intelligent IoT applications by training models on local devices and allowing AI training on distributed IoT devices without data sharing.This review aims to deeply explore the combination of FL and the IoT,and analyze the application of federated learning in the IoT from the aspects of security and privacy protection.In this paper,we first describe the potential advantages of FL and the challenges faced by current IoT systems in the fields of network burden and privacy security.Next,we focus on exploring and analyzing the advantages of the combination of FL on the Internet,including privacy security,attack detection,efficient communication of the IoT,and enhanced learning quality.We also list various application scenarios of FL on the IoT.Finally,we propose several open research challenges and possible solutions. 展开更多
关键词 Federated learning internet of Things SENSORS machine learning privacy security
在线阅读 下载PDF
The Effectiveness of Self-regulated Learning Strategies on Chinese College Students' English Learning
3
作者 张晓雁 李安玲 《海外英语》 2011年第10X期127-128,共2页
The purpose of this paper is to argue the effectiveness of self-regulated learning in English education in Chinese college classroom instruction. A study is given to show whether the introduction of self-regulated lea... The purpose of this paper is to argue the effectiveness of self-regulated learning in English education in Chinese college classroom instruction. A study is given to show whether the introduction of self-regulated learning can help improve Chinese college students' English learning, and help them perform better in the National English test-CET-4 (College English Test Level-4,). 展开更多
关键词 self-regulated learning GOAL-SETTING self-instructional strategies motivation self-efficacy EXPERIENTIAL GROUP and control GROUP
在线阅读 下载PDF
Towards Decentralized IoT Security: Optimized Detection of Zero-Day Multi-Class Cyber-Attacks Using Deep Federated Learning
4
作者 Misbah Anwer Ghufran Ahmed +3 位作者 Maha Abdelhaq Raed Alsaqour Shahid Hussain Adnan Akhunzada 《Computers, Materials & Continua》 2026年第1期744-758,共15页
The exponential growth of the Internet of Things(IoT)has introduced significant security challenges,with zero-day attacks emerging as one of the most critical and challenging threats.Traditional Machine Learning(ML)an... The exponential growth of the Internet of Things(IoT)has introduced significant security challenges,with zero-day attacks emerging as one of the most critical and challenging threats.Traditional Machine Learning(ML)and Deep Learning(DL)techniques have demonstrated promising early detection capabilities.However,their effectiveness is limited when handling the vast volumes of IoT-generated data due to scalability constraints,high computational costs,and the costly time-intensive process of data labeling.To address these challenges,this study proposes a Federated Learning(FL)framework that leverages collaborative and hybrid supervised learning to enhance cyber threat detection in IoT networks.By employing Deep Neural Networks(DNNs)and decentralized model training,the approach reduces computational complexity while improving detection accuracy.The proposed model demonstrates robust performance,achieving accuracies of 94.34%,99.95%,and 87.94%on the publicly available kitsune,Bot-IoT,and UNSW-NB15 datasets,respectively.Furthermore,its ability to detect zero-day attacks is validated through evaluations on two additional benchmark datasets,TON-IoT and IoT-23,using a Deep Federated Learning(DFL)framework,underscoring the generalization and effectiveness of the model in heterogeneous and decentralized IoT environments.Experimental results demonstrate superior performance over existing methods,establishing the proposed framework as an efficient and scalable solution for IoT security. 展开更多
关键词 Cyber-attack intrusion detection system(IDS) deep federated learning(DFL) zero-day attack distributed denial of services(DDoS) MULTI-CLASS internet of Things(IoT)
在线阅读 下载PDF
Intentional self-regulation and peer relationship in the teacher-student relationship for learning engagement: A moderation–mediation analysis
5
作者 Mengjun Zhu Xing’an Yao Mansor Bin Abu Talib 《Journal of Psychology in Africa》 2025年第1期83-90,共8页
This study investigated the role of intentional self-regulation and the moderating role of peer relationship in the relationship between teacher-student relationship and learning engagement.The study sample comprised ... This study investigated the role of intentional self-regulation and the moderating role of peer relationship in the relationship between teacher-student relationship and learning engagement.The study sample comprised 540 Chinese senior secondary school students between the ages of 15–18(51.67%boys;Mage=16.56 years;SDage=0.90).They completed surveys on the Teacher-Student Relationship Scale,the Selection,Optimization,and Compensation(SOC)Scale,the Peer Relationship Scale for Children and Adolescents,and the Learning Engagement Scale.The results following regression analysis showed that teacher-student relationship predicted higher learning engagement among senior secondary school students.Intentional self-regulation partially mediated the link between teacher-student relationship and learning engagement for higher learning engagement.Peer relationship moderated the relationships between teacher-student relationship and learning engagement and moderated the relationship between teacher-student relationship and intentional self-regulation for higher learning engagement.Thesefindings imply learning engagement can be enhanced by optimizing teacher-student relationship and strengthening intentional self-regulation interventions. 展开更多
关键词 teacher-student relationship intentional self-regulation peer relationship learning engagement
在线阅读 下载PDF
Securing Internet of Things Devices with Federated Learning:A Privacy-Preserving Approach for Distributed Intrusion Detection
6
作者 Sulaiman Al Amro 《Computers, Materials & Continua》 2025年第6期4623-4658,共36页
The rapid proliferation of Internet of Things(IoT)devices has heightened security concerns,making intrusion detection a pivotal challenge in safeguarding these networks.Traditional centralized Intrusion Detection Syst... The rapid proliferation of Internet of Things(IoT)devices has heightened security concerns,making intrusion detection a pivotal challenge in safeguarding these networks.Traditional centralized Intrusion Detection Systems(IDS)often fail to meet the privacy requirements and scalability demands of large-scale IoT ecosystems.To address these challenges,we propose an innovative privacy-preserving approach leveraging Federated Learning(FL)for distributed intrusion detection.Our model eliminates the need for aggregating sensitive data on a central server by training locally on IoT devices and sharing only encrypted model updates,ensuring enhanced privacy and scalability without compromising detection accuracy.Key innovations of this research include the integration of advanced deep learning techniques for real-time threat detection with minimal latency and a novel model to fortify the system’s resilience against diverse cyber-attacks such as Distributed Denial of Service(DDoS)and malware injections.Our evaluation on three benchmark IoT datasets demonstrates significant improvements:achieving 92.78%accuracy on NSL-KDD,91.47%on BoT-IoT,and 92.05%on UNSW-NB15.The precision,recall,and F1-scores for all datasets consistently exceed 91%.Furthermore,the communication overhead was reduced to 85 MB for NSL-KDD,105 MB for BoT-IoT,and 95 MB for UNSW-NB15—substantially lower than traditional centralized IDS approaches.This study contributes to the domain by presenting a scalable,secure,and privacy-preserving solution tailored to the unique characteristics of IoT environments.The proposed framework is adaptable to dynamic and heterogeneous settings,with potential applications extending to other privacy-sensitive domains.Future work will focus on enhancing the system’s efficiency and addressing emerging challenges such as model poisoning attacks in federated environments. 展开更多
关键词 Federated learning internet of things intrusion detection PRIVACY-PRESERVING distributed security
在线阅读 下载PDF
A Novel Clustered Distributed Federated Learning Architecture for Tactile Internet of Things Applications in 6G Environment
7
作者 Omar Alnajar Ahmed Barnawi 《Computer Modeling in Engineering & Sciences》 2025年第6期3861-3897,共37页
The Tactile Internet of Things(TIoT)promises transformative applications—ranging from remote surgery to industrial robotics—by incorporating haptic feedback into traditional IoT systems.Yet TIoT’s stringent require... The Tactile Internet of Things(TIoT)promises transformative applications—ranging from remote surgery to industrial robotics—by incorporating haptic feedback into traditional IoT systems.Yet TIoT’s stringent requirements for ultra-low latency,high reliability,and robust privacy present significant challenges.Conventional centralized Federated Learning(FL)architectures struggle with latency and privacy constraints,while fully distributed FL(DFL)faces scalability and non-IID data issues as client populations expand and datasets become increasingly heterogeneous.To address these limitations,we propose a Clustered Distributed Federated Learning(CDFL)architecture tailored for a 6G-enabled TIoT environment.Clients are grouped into clusters based on data similarity and/or geographical proximity,enabling local intra-cluster aggregation before inter-cluster model sharing.This hierarchical,peer-to-peer approach reduces communication overhead,mitigates non-IID effects,and eliminates single points of failure.By offloading aggregation to the network edge and leveraging dynamic clustering,CDFL enhances both computational and communication efficiency.Extensive analysis and simulation demonstrate that CDFL outperforms both centralized FL and DFL as the number of clients grows.Specifically,CDFL demonstrates up to a 30%reduction in training time under highly heterogeneous data distributions,indicating faster convergence.It also reduces communication overhead by approximately 40%compared to DFL.These improvements and enhanced network performance metrics highlight CDFL’s effectiveness for practical TIoT deployments.These results validate CDFL as a scalable,privacy-preserving solution for next-generation TIoT applications. 展开更多
关键词 Distributed federated learning Tactile internet of Things CLUSTERING PEER-TO-PEER
在线阅读 下载PDF
Personalized Aggregation Strategy for Hierarchical Federated Learning in Internet of Vehicles
8
作者 Shi Yan Liu Yujia +1 位作者 Tong Xiaolu Zhou Shukui 《China Communications》 2025年第8期314-331,共18页
In Internet of Vehicles,VehicleInfrastructure-Cloud cooperation supports diverse intelligent driving and intelligent transportation applications.Federated Learning(FL)is the emerging computation paradigm to provide ef... In Internet of Vehicles,VehicleInfrastructure-Cloud cooperation supports diverse intelligent driving and intelligent transportation applications.Federated Learning(FL)is the emerging computation paradigm to provide efficient and privacypreserving collaborative learning.However,in Io V environment,federated learning faces the challenges introduced by high mobility of vehicles and nonIndependently Identically Distribution(non-IID)of data.High mobility causes FL clients quit and the communication offline.The non-IID data leads to slow and unstable convergence of global model and single global model's weak adaptability to clients with different localization characteristics.Accordingly,this paper proposes a personalized aggregation strategy for hierarchical Federated Learning in Io V environment,including Fed SA(Special Asynchronous Federated Learning with Self-adaptive Aggregation)for low-level FL between a Road Side Unit(RSU)and the vehicles within its coverage,and Fed Att(Federated Learning with Attention Mechanism)for high-level FL between a cloud server and multiple RSUs.Agents self-adaptively obtain model aggregation weight based on Advantage Actor-Critic(A2C)algorithm.Experiments show the proposed strategy encourages vehicles to participate in global aggregation,and outperforms existing methods in training performance. 展开更多
关键词 aggregation strategy internet of Vehicles non-IID personalized federated learning vehicle mobility
在线阅读 下载PDF
Defending Against Jamming and Interference for Internet of UAVs Using Cooperative Multi-Agent Reinforcement Learning with Mutual Information
9
作者 Lin Yan Wu Zhijuan +4 位作者 Peng Nuoheng Zhao Tianyu Zhang Yijin Shu Feng Li Jun 《China Communications》 2025年第5期220-237,共18页
The Internet of Unmanned Aerial Vehicles(I-UAVs)is expected to execute latency-sensitive tasks,but limited by co-channel interference and malicious jamming.In the face of unknown prior environmental knowledge,defendin... The Internet of Unmanned Aerial Vehicles(I-UAVs)is expected to execute latency-sensitive tasks,but limited by co-channel interference and malicious jamming.In the face of unknown prior environmental knowledge,defending against jamming and interference through spectrum allocation becomes challenging,especially when each UAV pair makes decisions independently.In this paper,we propose a cooperative multi-agent reinforcement learning(MARL)-based anti-jamming framework for I-UAVs,enabling UAV pairs to learn their own policies cooperatively.Specifically,we first model the problem as a modelfree multi-agent Markov decision process(MAMDP)to maximize the long-term expected system throughput.Then,for improving the exploration of the optimal policy,we resort to optimizing a MARL objective function with a mutual-information(MI)regularizer between states and actions,which can dynamically assign the probability for actions frequently used by the optimal policy.Next,through sharing their current channel selections and local learning experience(their soft Q-values),the UAV pairs can learn their own policies cooperatively relying on only preceding observed information and predicting others’actions.Our simulation results show that for both sweep jamming and Markov jamming patterns,the proposed scheme outperforms the benchmarkers in terms of throughput,convergence and stability for different numbers of jammers,channels and UAV pairs. 展开更多
关键词 anti-jamming communication internet of UAVs multi-agent reinforcement learning spectrum allocation
在线阅读 下载PDF
Analysis of Internet of Things Intrusion Detection Technology Based on Deep Learning
10
作者 Huijuan Zheng Yongzhou Wang 《Journal of Electronic Research and Application》 2025年第2期233-239,共7页
With the rapid development of modern information technology,the Internet of Things(IoT)has been integrated into various fields such as social life,industrial production,education,and medical care.Through the connectio... With the rapid development of modern information technology,the Internet of Things(IoT)has been integrated into various fields such as social life,industrial production,education,and medical care.Through the connection of various physical devices,sensors,and machines,it realizes information intercommunication and remote control among devices,significantly enhancing the convenience and efficiency of work and life.However,the rapid development of the IoT has also brought serious security problems.IoT devices have limited resources and a complex network environment,making them one of the important targets of network intrusion attacks.Therefore,from the perspective of deep learning,this paper deeply analyzes the characteristics and key points of IoT intrusion detection,summarizes the application advantages of deep learning in IoT intrusion detection,and proposes application strategies of typical deep learning models in IoT intrusion detection so as to improve the security of the IoT architecture and guarantee people’s convenient lives. 展开更多
关键词 Deep learning internet of Things Intrusion detection technology
在线阅读 下载PDF
ANNDRA-IoT:A Deep Learning Approach for Optimal Resource Allocation in Internet of Things Environments
11
作者 Abdullah M.Alqahtani Kamran Ahmad Awan +1 位作者 Abdulaziz Almaleh Osama Aletri 《Computer Modeling in Engineering & Sciences》 2025年第3期3155-3179,共25页
Efficient resource management within Internet of Things(IoT)environments remains a pressing challenge due to the increasing number of devices and their diverse functionalities.This study introduces a neural network-ba... Efficient resource management within Internet of Things(IoT)environments remains a pressing challenge due to the increasing number of devices and their diverse functionalities.This study introduces a neural network-based model that uses Long-Short-Term Memory(LSTM)to optimize resource allocation under dynam-ically changing conditions.Designed to monitor the workload on individual IoT nodes,the model incorporates long-term data dependencies,enabling adaptive resource distribution in real time.The training process utilizes Min-Max normalization and grid search for hyperparameter tuning,ensuring high resource utilization and consistent performance.The simulation results demonstrate the effectiveness of the proposed method,outperforming the state-of-the-art approaches,including Dynamic and Efficient Enhanced Load-Balancing(DEELB),Optimized Scheduling and Collaborative Active Resource-management(OSCAR),Convolutional Neural Network with Monarch Butterfly Optimization(CNN-MBO),and Autonomic Workload Prediction and Resource Allocation for Fog(AWPR-FOG).For example,in scenarios with low system utilization,the model achieved a resource utilization efficiency of 95%while maintaining a latency of just 15 ms,significantly exceeding the performance of comparative methods. 展开更多
关键词 internet of things resource optimization deep learning optimal resource allocation neural network EFFICIENCY
在线阅读 下载PDF
Deep reinforcement learning-based forwarding node selection algorithm in Internet of vehicles
12
作者 Huibin Xu Long Fang 《Digital Communications and Networks》 2025年第6期1983-1993,共11页
Due to open communication environment,Internet of Vehicles(IoV)are vulnerable to many attacks,including the gray hole attack,which can disrupt the process of transmitting messages.And this results in the degradation o... Due to open communication environment,Internet of Vehicles(IoV)are vulnerable to many attacks,including the gray hole attack,which can disrupt the process of transmitting messages.And this results in the degradation of routing performance.To address this issue,a double deep Q-networks-based stable routing for resisting gray hole attack(DOSR)is proposed in this paper.The aim of the DOSR algorithm is to maximize the message delivery ratio as well as to minimize the transmission delay.For this,the distance ratio,message loss ratio,and connection ratio are taken into consideration when choosing a relay node.Then,to choose the relay node is formulated as an optimization problem,and a double deep Q-networks are utilized to solve the optimization problem.Experimental results show that DOSR outperforms QLTR and TLRP by significant margins:in scenarios with 400 vehicles and 10%malicious nodes,the message delivery ratio(MDR)of DOSR is 8.3%higher than that of QLTR and 5.1%higher than that of TLRP;the average transmission delay(ATD)is reduced by 23.3%compared to QLTR and 17.9%compared to TLRP.Additionally,sensitivity analysis of hyperparameters confirms the convergence and stability of DOSR,demonstrating its robustness in dynamic IoV environments. 展开更多
关键词 internet of vehicles Stable routing Deep reinforcement learning Forwarding candidate set
在线阅读 下载PDF
The Relationships between the Short Video Addiction,Self-Regulated Learning,and Learning Well-Being of Chinese Undergraduate Students 被引量:2
13
作者 Jian-Hong Ye Yuting Cui +1 位作者 Li Wang Jhen-Ni Ye 《International Journal of Mental Health Promotion》 2024年第10期805-815,共11页
Background:With the global popularity of short videos,particularly among young people,short video addiction has become a worrying phenomenon that poses significant risks to individual health and adaptability.Self-regu... Background:With the global popularity of short videos,particularly among young people,short video addiction has become a worrying phenomenon that poses significant risks to individual health and adaptability.Self-regulated learning(SRL)strategies are key factors in predicting learning outcomes.This study,based on the SRL theory,uses short video addiction as the independent variable,SRL strategies as the mediating variable,and learning well-being as the outcome variable,aiming to reveal the relationships among short video addiction,self-regulated learning,and learning well-being among Chinese college students.Methods:Using a cross-sectional study design and applying the snowball sampling technique,an online survey was administered to Chinese undergraduate students.A total of 706 valid questionnaires were collected,with an effective response rate of 85.7%.The average age of the participants was 20.5 years.Results:The results of structural equation modeling indicate that 7 hypotheses were supported.Short video addiction was negatively correlated with self-regulated learning strategies(preparatory,performance,and appraisal strategy),while SRL strategies were positively correlated with learning well-being.Additionally,short video addiction had a mediating effect on learning well-being through the three types of SRL strategies.The three types of SRL strategies explained 39%of the variance in learning well-being.Conclusion:Previous research has typically focused on the impact of self-regulated learning strategies on media addiction or problematic media use.This study,based on the SRL model,highlights the negative issues caused by short video addiction and emphasizes the importance of cultivating self-regulation abilities and media literacy.Short video addiction stems from failures in trait self-regulation,which naturally impairs the ability to effectively engage in self-regulation during the learning process.This study confirms and underscores that the SRL model can serve as an effective theoretical framework for helping students prevent short video addiction,engage in high-quality learning,and consequently enhance their learning well-being. 展开更多
关键词 Appraisal strategy learning well-being performance strategy preparatory strategy self-regulated learning strategies short videos
在线阅读 下载PDF
The Model of Speaking in Teaching Indonesian to Foreign Speakers Based on Self-Regulated Learning and Anxiety Reduction Approaches
14
作者 Endry Boeriswati 《Sino-US English Teaching》 2012年第5期1154-1163,共10页
Model for spoken is expected to overcome difficulties in teaching and learning Indonesian language for foreign speakers. Language anxiety is the anxiety that arises when a person learns foreign language. Foreign Langu... Model for spoken is expected to overcome difficulties in teaching and learning Indonesian language for foreign speakers. Language anxiety is the anxiety that arises when a person learns foreign language. Foreign Language Anxiety (anxiety to learn a foreign language) is of concern or negative emotional reactions that arise when studying or using foreign language. Self-regulated learning is an active and constructive process undertaken by learners in setting goals for their learning and trying to monitor, regulate, and control of cognition, motivation, and behavior, then everything is directed and driven by purpose and adapted to the context and environment. The research method used is an R and D (research and development) method with a sample of foreign speakers of Chinese. Variables that receive interference are the ability to speak in Indonesian, while the variables used to interfere with the self-regulated learning and language anxiety as a variable controller. Intrapersonal factors become barriers that cause stuttering speech limited due to the mastering subject content. On the basis of that, this speaking model applies the principle of self-regulated learning in the learning process, using a communicative and contextual approach. This model intended for foreign speakers who learn Indonesian language outside of Indonesia, so to bring the atmosphere mandated in sociolinguistic built through media and relevant teaching methods. 展开更多
关键词 Indonesian for Foreign Foreign Language Anxiety self-regulated learning
在线阅读 下载PDF
The Nature and Use of Technology-Based Self-Regulated Learning Strategies Among EFL Students
15
作者 AN Zhujun 《Sino-US English Teaching》 2024年第11期506-514,共9页
This study explored the nature and use of technology-based self-regulated learning(SRL)strategies among the Chinese university students.A total of 20 undergraduate students in China's Mainland were invited to part... This study explored the nature and use of technology-based self-regulated learning(SRL)strategies among the Chinese university students.A total of 20 undergraduate students in China's Mainland were invited to participate in a focus group interview.The students reported using four types of technology-based SRL strategies including cognitive,meta-cognitive,social behavioral,and motivational regulation strategies.Among the strategies,technology-based vocabulary learning was reported to be a dominant strategy by the students.This study opens a new window to understanding how English as a foreign language(EFL)students utilize different strategies to learn English in technology-based learning context. 展开更多
关键词 self-regulated learning technology-based SRL strategies EFL students language learning
在线阅读 下载PDF
A Deep Learning Based Energy-Efficient Computational Offloading Method in Internet of Vehicles 被引量:15
16
作者 Xiaojie Wang Xiang Wei Lei Wang 《China Communications》 SCIE CSCD 2019年第3期81-91,共11页
With the emergence of advanced vehicular applications, the challenge of satisfying computational and communication demands of vehicles has become increasingly prominent. Fog computing is a potential solution to improv... With the emergence of advanced vehicular applications, the challenge of satisfying computational and communication demands of vehicles has become increasingly prominent. Fog computing is a potential solution to improve advanced vehicular services by enabling computational offloading at the edge of network. In this paper, we propose a fog-cloud computational offloading algorithm in Internet of Vehicles(IoV) to both minimize the power consumption of vehicles and that of the computational facilities. First, we establish the system model, and then formulate the offloading problem as an optimization problem, which is NP-hard. After that, we propose a heuristic algorithm to solve the offloading problem gradually. Specifically, we design a predictive combination transmission mode for vehicles, and establish a deep learning model for computational facilities to obtain the optimal workload allocation. Simulation results demonstrate the superiority of our algorithm in energy efficiency and network latency. 展开更多
关键词 COMPUTATIONAL OFFLOADING FOG computing deep learning internet of VEHICLES
在线阅读 下载PDF
A Federated Bidirectional Connection Broad Learning Scheme for Secure Data Sharing in Internet of Vehicles 被引量:7
17
作者 Xiaoming Yuan Jiahui Chen +2 位作者 Ning Zhang Xiaojie Fang Didi Liu 《China Communications》 SCIE CSCD 2021年第7期117-133,共17页
Data sharing in Internet of Vehicles(IoV)makes it possible to provide personalized services for users by service providers in Intelligent Transportation Systems(ITS).As IoV is a multi-user mobile scenario,the reliabil... Data sharing in Internet of Vehicles(IoV)makes it possible to provide personalized services for users by service providers in Intelligent Transportation Systems(ITS).As IoV is a multi-user mobile scenario,the reliability and efficiency of data sharing need to be further enhanced.Federated learning allows the server to exchange parameters without obtaining private data from clients so that the privacy is protected.Broad learning system is a novel artificial intelligence technology that can improve training efficiency of data set.Thus,we propose a federated bidirectional connection broad learning scheme(FeBBLS)to solve the data sharing issues.Firstly,we adopt the bidirectional connection broad learning system(BiBLS)model to train data set in vehicular nodes.The server aggregates the collected parameters of BiBLS from vehicular nodes through the federated broad learning system(FedBLS)algorithm.Moreover,we propose a clustering FedBLS algorithm to offload the data sharing into clusters for improving the aggregation capability of the model.Some simulation results show our scheme can improve the efficiency and prediction accuracy of data sharing and protect the privacy of data sharing. 展开更多
关键词 federated learning broad learning system deep learning internet of Vehicles data privacy
在线阅读 下载PDF
Federated Learning with Blockchain for Privacy-Preserving Data Sharing in Internet of Vehicles 被引量:6
18
作者 Wenxian Jiang Mengjuan Chen Jun Tao 《China Communications》 SCIE CSCD 2023年第3期69-85,共17页
Data sharing technology in Internet of Vehicles(Io V)has attracted great research interest with the goal of realizing intelligent transportation and traffic management.Meanwhile,the main concerns have been raised abou... Data sharing technology in Internet of Vehicles(Io V)has attracted great research interest with the goal of realizing intelligent transportation and traffic management.Meanwhile,the main concerns have been raised about the security and privacy of vehicle data.The mobility and real-time characteristics of vehicle data make data sharing more difficult in Io V.The emergence of blockchain and federated learning brings new directions.In this paper,a data-sharing model that combines blockchain and federated learning is proposed to solve the security and privacy problems of data sharing in Io V.First,we use federated learning to share data instead of exposing actual data and propose an adaptive differential privacy scheme to further balance the privacy and availability of data.Then,we integrate the verification scheme into the consensus process,so that the consensus computation can filter out low-quality models.Experimental data shows that our data-sharing model can better balance the relationship between data availability and privacy,and also has enhanced security. 展开更多
关键词 blockchain federated learning PRIVACY data sharing internet of Vehicles
在线阅读 下载PDF
Towards asynchronous federated learning for heterogeneous edge-powered internet of things 被引量:8
19
作者 Zheyi Chen Weixian Liao +2 位作者 Kun Hua Chao Lu Wei Yu 《Digital Communications and Networks》 SCIE CSCD 2021年第3期317-326,共10页
The advancement of the Internet of Things(IoT)brings new opportunities for collecting real-time data and deploying machine learning models.Nonetheless,an individual IoT device may not have adequate computing resources... The advancement of the Internet of Things(IoT)brings new opportunities for collecting real-time data and deploying machine learning models.Nonetheless,an individual IoT device may not have adequate computing resources to train and deploy an entire learning model.At the same time,transmitting continuous real-time data to a central server with high computing resource incurs enormous communication costs and raises issues in data security and privacy.Federated learning,a distributed machine learning framework,is a promising solution to train machine learning models with resource-limited devices and edge servers.Yet,the majority of existing works assume an impractically synchronous parameter update manner with homogeneous IoT nodes under stable communication connections.In this paper,we develop an asynchronous federated learning scheme to improve training efficiency for heterogeneous IoT devices under unstable communication network.Particularly,we formulate an asynchronous federated learning model and develop a lightweight node selection algorithm to carry out learning tasks effectively.The proposed algorithm iteratively selects heterogeneous IoT nodes to participate in the global learning aggregation while considering their local computing resource and communication condition.Extensive experimental results demonstrate that our proposed asynchronous federated learning scheme outperforms the state-of-the-art schemes in various settings on independent and identically distributed(i.i.d.)and non-i.i.d.data distribution. 展开更多
关键词 Asynchronous federated learning internet of Things(IoT) Mobile edge computing
在线阅读 下载PDF
上一页 1 2 130 下一页 到第
使用帮助 返回顶部