期刊文献+
共找到246,801篇文章
< 1 2 250 >
每页显示 20 50 100
The Relationships between the Short Video Addiction,Self-Regulated Learning,and Learning Well-Being of Chinese Undergraduate Students 被引量:1
1
作者 Jian-Hong Ye Yuting Cui +1 位作者 Li Wang Jhen-Ni Ye 《International Journal of Mental Health Promotion》 2024年第10期805-815,共11页
Background:With the global popularity of short videos,particularly among young people,short video addiction has become a worrying phenomenon that poses significant risks to individual health and adaptability.Self-regu... Background:With the global popularity of short videos,particularly among young people,short video addiction has become a worrying phenomenon that poses significant risks to individual health and adaptability.Self-regulated learning(SRL)strategies are key factors in predicting learning outcomes.This study,based on the SRL theory,uses short video addiction as the independent variable,SRL strategies as the mediating variable,and learning well-being as the outcome variable,aiming to reveal the relationships among short video addiction,self-regulated learning,and learning well-being among Chinese college students.Methods:Using a cross-sectional study design and applying the snowball sampling technique,an online survey was administered to Chinese undergraduate students.A total of 706 valid questionnaires were collected,with an effective response rate of 85.7%.The average age of the participants was 20.5 years.Results:The results of structural equation modeling indicate that 7 hypotheses were supported.Short video addiction was negatively correlated with self-regulated learning strategies(preparatory,performance,and appraisal strategy),while SRL strategies were positively correlated with learning well-being.Additionally,short video addiction had a mediating effect on learning well-being through the three types of SRL strategies.The three types of SRL strategies explained 39%of the variance in learning well-being.Conclusion:Previous research has typically focused on the impact of self-regulated learning strategies on media addiction or problematic media use.This study,based on the SRL model,highlights the negative issues caused by short video addiction and emphasizes the importance of cultivating self-regulation abilities and media literacy.Short video addiction stems from failures in trait self-regulation,which naturally impairs the ability to effectively engage in self-regulation during the learning process.This study confirms and underscores that the SRL model can serve as an effective theoretical framework for helping students prevent short video addiction,engage in high-quality learning,and consequently enhance their learning well-being. 展开更多
关键词 Appraisal strategy learning well-being performance strategy preparatory strategy self-regulated learning strategies short videos
在线阅读 下载PDF
The Model of Speaking in Teaching Indonesian to Foreign Speakers Based on Self-Regulated Learning and Anxiety Reduction Approaches
2
作者 Endry Boeriswati 《Sino-US English Teaching》 2012年第5期1154-1163,共10页
Model for spoken is expected to overcome difficulties in teaching and learning Indonesian language for foreign speakers. Language anxiety is the anxiety that arises when a person learns foreign language. Foreign Langu... Model for spoken is expected to overcome difficulties in teaching and learning Indonesian language for foreign speakers. Language anxiety is the anxiety that arises when a person learns foreign language. Foreign Language Anxiety (anxiety to learn a foreign language) is of concern or negative emotional reactions that arise when studying or using foreign language. Self-regulated learning is an active and constructive process undertaken by learners in setting goals for their learning and trying to monitor, regulate, and control of cognition, motivation, and behavior, then everything is directed and driven by purpose and adapted to the context and environment. The research method used is an R and D (research and development) method with a sample of foreign speakers of Chinese. Variables that receive interference are the ability to speak in Indonesian, while the variables used to interfere with the self-regulated learning and language anxiety as a variable controller. Intrapersonal factors become barriers that cause stuttering speech limited due to the mastering subject content. On the basis of that, this speaking model applies the principle of self-regulated learning in the learning process, using a communicative and contextual approach. This model intended for foreign speakers who learn Indonesian language outside of Indonesia, so to bring the atmosphere mandated in sociolinguistic built through media and relevant teaching methods. 展开更多
关键词 Indonesian for Foreign Foreign Language Anxiety self-regulated learning
在线阅读 下载PDF
The Nature and Use of Technology-Based Self-Regulated Learning Strategies Among EFL Students
3
作者 AN Zhujun 《Sino-US English Teaching》 2024年第11期506-514,共9页
This study explored the nature and use of technology-based self-regulated learning(SRL)strategies among the Chinese university students.A total of 20 undergraduate students in China's Mainland were invited to part... This study explored the nature and use of technology-based self-regulated learning(SRL)strategies among the Chinese university students.A total of 20 undergraduate students in China's Mainland were invited to participate in a focus group interview.The students reported using four types of technology-based SRL strategies including cognitive,meta-cognitive,social behavioral,and motivational regulation strategies.Among the strategies,technology-based vocabulary learning was reported to be a dominant strategy by the students.This study opens a new window to understanding how English as a foreign language(EFL)students utilize different strategies to learn English in technology-based learning context. 展开更多
关键词 self-regulated learning technology-based SRL strategies EFL students language learning
在线阅读 下载PDF
The Effectiveness of Self-regulated Learning Strategies on Chinese College Students' English Learning
4
作者 张晓雁 李安玲 《海外英语》 2011年第10X期127-128,共2页
The purpose of this paper is to argue the effectiveness of self-regulated learning in English education in Chinese college classroom instruction. A study is given to show whether the introduction of self-regulated lea... The purpose of this paper is to argue the effectiveness of self-regulated learning in English education in Chinese college classroom instruction. A study is given to show whether the introduction of self-regulated learning can help improve Chinese college students' English learning, and help them perform better in the National English test-CET-4 (College English Test Level-4,). 展开更多
关键词 self-regulated learning GOAL-SETTING self-instructional strategies motivation self-efficacy EXPERIENTIAL GROUP and control GROUP
在线阅读 下载PDF
Using Classroom Assessment to Promote Self-Regulated Learning and the Factors Influencing Its(In)Effectiveness 被引量:1
5
作者 ZHANG Wenxiao 《Frontiers of Education in China》 2017年第2期261-295,共35页
The present study adopts a mixed method design to investigate the effect of seven classroom assessment(CA)features on student self-regulated learning(SRL)and further explored factors that influenced the effect.Twelve ... The present study adopts a mixed method design to investigate the effect of seven classroom assessment(CA)features on student self-regulated learning(SRL)and further explored factors that influenced the effect.Twelve teachers and their students(valid data points tallying 630)from three Chinese high schools participated in the study.Structural equational modelling results showed that the CA features had varied impacts.Specifically,self-assessment most effectively enhanced SRL,followed by teacher instruction and structured guidance,then teacher feedback;assessment task and student choice had mixed impacts.Peer-assessment and CA environment reduced SRL.Five influencing factors were revealed through both teacher and student interviews,namely,student engagement with the assessment task,student dependence on authority,prospective gains in the gaokao,intractable motivation and learning approach,and student-teacher relationship.The research has practical implications for SRL promotion. 展开更多
关键词 Chinese high school classroom assessment influencing factor self-regulated learning
原文传递
Effects of Intervention on Self-Regulated Learning for Second Language Learners
6
作者 于璐 罗文倬 Felicia Lincoln 《Chinese Journal of Applied Linguistics》 SCIE 2017年第3期233-260,349,共29页
The study investigated the effects of an intervention program on self-regulated learning designed for second language learners. One hundred and twenty participants who were sophomore English majors at a university in ... The study investigated the effects of an intervention program on self-regulated learning designed for second language learners. One hundred and twenty participants who were sophomore English majors at a university in China were randomly assigned to either the treatment or the control group. The intervention was composed of six weekly two-hour training sessions that focus on five main variables of self-regulatory processes: goal setting, self-efficacy, time and study environment management, language learning strategies, and attribution. The evaluation of the effectiveness of the intervention included mukiple outcome variables, which were grouped into three categories: students' motivational beliefs, students' strategy use, and students' academic performance. The results of the immediate training effects on goal setting, self-efficacy, attribution, time and study environment management, memory strategy, compensation strategy, metacognitive strategy and second language proficiency confirmed that academic self-regulation is a trainable student characteristic and self-regulation training can be used effectively in a second language classroom setting. The feature of the current study design allows for systematically examining and evaluating both motivational variables and learning strategies in the context of second language learning. 展开更多
关键词 self-regulated learning second language learning learning strategies second language proficiency
原文传递
A Qualitative Examination of Classroom Assessment in Chinese High Schools from the Perspective of Self-Regulated Learning
7
作者 ZHANG Wenxiao LI Yanqing 《Frontiers of Education in China》 2019年第3期387-421,共35页
The present study is set in the context of ongoing educational reform that advocates fostering self-regulated learners and using assessment to improve learning.Drawing on existent research on classroom assessment(CA)a... The present study is set in the context of ongoing educational reform that advocates fostering self-regulated learners and using assessment to improve learning.Drawing on existent research on classroom assessment(CA)and self-regulated learning(SRL),the authors have formulated a conceptual framework outlining the CA features that promote SRL among students.Guided by this framework,the 12 high school teachers’CA practice was scrutinized to find out to what extent their CA was pro-SRL.Based on interview data and classroom observation,gaps were found in Chinese high school teachers’CA.First,CA tasks are primarily low-level closed-end problems,with rare exceptions.Second,students are not allowed much autonomy in CA.Third,self-assessment practice is mostly self-grading.Fourth,peer-assessment is uncommon and mainly involves simply marking peers’work.Fifth,teacher feedback is focused on task and process levels;regulation-level feedback is less common.Sixth,despite teachers’encouragement,most students feel threatened by CA. 展开更多
关键词 classroom assessment(CA) self-regulated learning(SRL) assessment for learning formative assessment(FA) Chinese high schools
原文传递
A Chinese Learner and Her Self-Regulated Learning:An Autoethnography
8
作者 JIANG Heng 《Frontiers of Education in China》 2015年第1期132-152,共21页
In this paper,I use an autoethnographical approach,coupled with existing research literature on Chinese learners and learning,to reflect upon my own experiences as a junior high school student in order to explore how ... In this paper,I use an autoethnographical approach,coupled with existing research literature on Chinese learners and learning,to reflect upon my own experiences as a junior high school student in order to explore how Chinese students perceive their learning,and how they establish and justify their own sense of self-regulation in learning.It is found there is a hybrid of nuanced cultural meanings underneath the self-regulated learning experiences in the Chinese context. 展开更多
关键词 self-regulated learning Chinese learner autoethnography
原文传递
An Improved Reinforcement Learning-Based 6G UAV Communication for Smart Cities
9
作者 Vi Hoai Nam Chu Thi Minh Hue Dang Van Anh 《Computers, Materials & Continua》 2026年第1期2030-2044,共15页
Unmanned Aerial Vehicles(UAVs)have become integral components in smart city infrastructures,supporting applications such as emergency response,surveillance,and data collection.However,the high mobility and dynamic top... Unmanned Aerial Vehicles(UAVs)have become integral components in smart city infrastructures,supporting applications such as emergency response,surveillance,and data collection.However,the high mobility and dynamic topology of Flying Ad Hoc Networks(FANETs)present significant challenges for maintaining reliable,low-latency communication.Conventional geographic routing protocols often struggle in situations where link quality varies and mobility patterns are unpredictable.To overcome these limitations,this paper proposes an improved routing protocol based on reinforcement learning.This new approach integrates Q-learning with mechanisms that are both link-aware and mobility-aware.The proposed method optimizes the selection of relay nodes by using an adaptive reward function that takes into account energy consumption,delay,and link quality.Additionally,a Kalman filter is integrated to predict UAV mobility,improving the stability of communication links under dynamic network conditions.Simulation experiments were conducted using realistic scenarios,varying the number of UAVs to assess scalability.An analysis was conducted on key performance metrics,including the packet delivery ratio,end-to-end delay,and total energy consumption.The results demonstrate that the proposed approach significantly improves the packet delivery ratio by 12%–15%and reduces delay by up to 25.5%when compared to conventional GEO and QGEO protocols.However,this improvement comes at the cost of higher energy consumption due to additional computations and control overhead.Despite this trade-off,the proposed solution ensures reliable and efficient communication,making it well-suited for large-scale UAV networks operating in complex urban environments. 展开更多
关键词 UAV FANET smart cities reinforcement learning Q-learning
在线阅读 下载PDF
GFL-SAR: Graph Federated Collaborative Learning Framework Based on Structural Amplification and Attention Refinement
10
作者 Hefei Wang Ruichun Gu +2 位作者 Jingyu Wang Xiaolin Zhang Hui Wei 《Computers, Materials & Continua》 2026年第1期1683-1702,共20页
Graph Federated Learning(GFL)has shown great potential in privacy protection and distributed intelligence through distributed collaborative training of graph-structured data without sharing raw information.However,exi... Graph Federated Learning(GFL)has shown great potential in privacy protection and distributed intelligence through distributed collaborative training of graph-structured data without sharing raw information.However,existing GFL approaches often lack the capability for comprehensive feature extraction and adaptive optimization,particularly in non-independent and identically distributed(NON-IID)scenarios where balancing global structural understanding and local node-level detail remains a challenge.To this end,this paper proposes a novel framework called GFL-SAR(Graph Federated Collaborative Learning Framework Based on Structural Amplification and Attention Refinement),which enhances the representation learning capability of graph data through a dual-branch collaborative design.Specifically,we propose the Structural Insight Amplifier(SIA),which utilizes an improved Graph Convolutional Network(GCN)to strengthen structural awareness and improve modeling of topological patterns.In parallel,we propose the Attentive Relational Refiner(ARR),which employs an enhanced Graph Attention Network(GAT)to perform fine-grained modeling of node relationships and neighborhood features,thereby improving the expressiveness of local interactions and preserving critical contextual information.GFL-SAR effectively integrates multi-scale features from every branch via feature fusion and federated optimization,thereby addressing existing GFL limitations in structural modeling and feature representation.Experiments on standard benchmark datasets including Cora,Citeseer,Polblogs,and Cora_ML demonstrate that GFL-SAR achieves superior performance in classification accuracy,convergence speed,and robustness compared to existing methods,confirming its effectiveness and generalizability in GFL tasks. 展开更多
关键词 Graph federated learning GCN GNNs attention mechanism
在线阅读 下载PDF
FedCW: Client Selection with Adaptive Weight in Heterogeneous Federated Learning
11
作者 Haotian Wu Jiaming Pei Jinhai Li 《Computers, Materials & Continua》 2026年第1期1551-1570,共20页
With the increasing complexity of vehicular networks and the proliferation of connected vehicles,Federated Learning(FL)has emerged as a critical framework for decentralized model training while preserving data privacy... With the increasing complexity of vehicular networks and the proliferation of connected vehicles,Federated Learning(FL)has emerged as a critical framework for decentralized model training while preserving data privacy.However,efficient client selection and adaptive weight allocation in heterogeneous and non-IID environments remain challenging.To address these issues,we propose Federated Learning with Client Selection and Adaptive Weighting(FedCW),a novel algorithm that leverages adaptive client selection and dynamic weight allocation for optimizing model convergence in real-time vehicular networks.FedCW selects clients based on their Euclidean distance from the global model and dynamically adjusts aggregation weights to optimize both data diversity and model convergence.Experimental results show that FedCW significantly outperforms existing FL algorithms such as FedAvg,FedProx,and SCAFFOLD,particularly in non-IID settings,achieving faster convergence,higher accuracy,and reduced communication overhead.These findings demonstrate that FedCW provides an effective solution for enhancing the performance of FL in heterogeneous,edge-based computing environments. 展开更多
关键词 Federated learning non-IID client selection weight allocation vehicular networks
在线阅读 下载PDF
DPIL-Traj: Differential Privacy Trajectory Generation Framework with Imitation Learning
12
作者 Huaxiong Liao Xiangxuan Zhong +4 位作者 Xueqi Chen Yirui Huang Yuwei Lin Jing Zhang Bruce Gu 《Computers, Materials & Continua》 2026年第1期1530-1550,共21页
The generation of synthetic trajectories has become essential in various fields for analyzing complex movement patterns.However,the use of real-world trajectory data poses significant privacy risks,such as location re... The generation of synthetic trajectories has become essential in various fields for analyzing complex movement patterns.However,the use of real-world trajectory data poses significant privacy risks,such as location reidentification and correlation attacks.To address these challenges,privacy-preserving trajectory generation methods are critical for applications relying on sensitive location data.This paper introduces DPIL-Traj,an advanced framework designed to generate synthetic trajectories while achieving a superior balance between data utility and privacy preservation.Firstly,the framework incorporates Differential Privacy Clustering,which anonymizes trajectory data by applying differential privacy techniques that add noise,ensuring the protection of sensitive user information.Secondly,Imitation Learning is used to replicate decision-making behaviors observed in real-world trajectories.By learning from expert trajectories,this component generates synthetic data that closely mimics real-world decision-making processes while optimizing the quality of the generated trajectories.Finally,Markov-based Trajectory Generation is employed to capture and maintain the inherent temporal dynamics of movement patterns.Extensive experiments conducted on the GeoLife trajectory dataset show that DPIL-Traj improves utility performance by an average of 19.85%,and in terms of privacy performance by an average of 12.51%,compared to state-of-the-art approaches.Ablation studies further reveal that DP clustering effectively safeguards privacy,imitation learning enhances utility under noise,and the Markov module strengthens temporal coherence. 展开更多
关键词 PRIVACY-PRESERVING trajectory generation differential privacy imitation learning Markov chain
在线阅读 下载PDF
Advances in Machine Learning for Explainable Intrusion Detection Using Imbalance Datasets in Cybersecurity with Harris Hawks Optimization
13
作者 Amjad Rehman Tanzila Saba +2 位作者 Mona M.Jamjoom Shaha Al-Otaibi Muhammad I.Khan 《Computers, Materials & Continua》 2026年第1期1804-1818,共15页
Modern intrusion detection systems(MIDS)face persistent challenges in coping with the rapid evolution of cyber threats,high-volume network traffic,and imbalanced datasets.Traditional models often lack the robustness a... Modern intrusion detection systems(MIDS)face persistent challenges in coping with the rapid evolution of cyber threats,high-volume network traffic,and imbalanced datasets.Traditional models often lack the robustness and explainability required to detect novel and sophisticated attacks effectively.This study introduces an advanced,explainable machine learning framework for multi-class IDS using the KDD99 and IDS datasets,which reflects real-world network behavior through a blend of normal and diverse attack classes.The methodology begins with sophisticated data preprocessing,incorporating both RobustScaler and QuantileTransformer to address outliers and skewed feature distributions,ensuring standardized and model-ready inputs.Critical dimensionality reduction is achieved via the Harris Hawks Optimization(HHO)algorithm—a nature-inspired metaheuristic modeled on hawks’hunting strategies.HHO efficiently identifies the most informative features by optimizing a fitness function based on classification performance.Following feature selection,the SMOTE is applied to the training data to resolve class imbalance by synthetically augmenting underrepresented attack types.The stacked architecture is then employed,combining the strengths of XGBoost,SVM,and RF as base learners.This layered approach improves prediction robustness and generalization by balancing bias and variance across diverse classifiers.The model was evaluated using standard classification metrics:precision,recall,F1-score,and overall accuracy.The best overall performance was recorded with an accuracy of 99.44%for UNSW-NB15,demonstrating the model’s effectiveness.After balancing,the model demonstrated a clear improvement in detecting the attacks.We tested the model on four datasets to show the effectiveness of the proposed approach and performed the ablation study to check the effect of each parameter.Also,the proposed model is computationaly efficient.To support transparency and trust in decision-making,explainable AI(XAI)techniques are incorporated that provides both global and local insight into feature contributions,and offers intuitive visualizations for individual predictions.This makes it suitable for practical deployment in cybersecurity environments that demand both precision and accountability. 展开更多
关键词 Intrusion detection XAI machine learning ensemble method CYBERSECURITY imbalance data
在线阅读 下载PDF
A Q-Learning Improved Particle Swarm Optimization for Aircraft Pulsating Assembly Line Scheduling Problem Considering Skilled Operator Allocation
14
作者 Xiaoyu Wen Haohao Liu +6 位作者 Xinyu Zhang Haoqi Wang Yuyan Zhang Guoyong Ye Hongwen Xing Siren Liu Hao Li 《Computers, Materials & Continua》 2026年第1期1503-1529,共27页
Aircraft assembly is characterized by stringent precedence constraints,limited resource availability,spatial restrictions,and a high degree of manual intervention.These factors lead to considerable variability in oper... Aircraft assembly is characterized by stringent precedence constraints,limited resource availability,spatial restrictions,and a high degree of manual intervention.These factors lead to considerable variability in operator workloads and significantly increase the complexity of scheduling.To address this challenge,this study investigates the Aircraft Pulsating Assembly Line Scheduling Problem(APALSP)under skilled operator allocation,with the objective of minimizing assembly completion time.A mathematical model considering skilled operator allocation is developed,and a Q-Learning improved Particle Swarm Optimization algorithm(QLPSO)is proposed.In the algorithm design,a reverse scheduling strategy is adopted to effectively manage large-scale precedence constraints.Moreover,a reverse sequence encoding method is introduced to generate operation sequences,while a time decoding mechanism is employed to determine completion times.The problem is further reformulated as a Markov Decision Process(MDP)with explicitly defined state and action spaces.Within QLPSO,the Q-learning mechanism adaptively adjusts inertia weights and learning factors,thereby achieving a balance between exploration capability and convergence performance.To validate the effectiveness of the proposed approach,extensive computational experiments are conducted on benchmark instances of different scales,including small,medium,large,and ultra-large cases.The results demonstrate that QLPSO consistently delivers stable and high-quality solutions across all scenarios.In ultra-large-scale instances,it improves the best solution by 25.2%compared with the Genetic Algorithm(GA)and enhances the average solution by 16.9%over the Q-learning algorithm,showing clear advantages over the comparative methods.These findings not only confirm the effectiveness of the proposed algorithm but also provide valuable theoretical references and practical guidance for the intelligent scheduling optimization of aircraft pulsating assembly lines. 展开更多
关键词 Aircraft pulsating assembly lines skilled operator reinforcement learning PSO reverse scheduling
在线阅读 下载PDF
Deep Learning for Brain Tumor Segmentation and Classification: A Systematic Review of Methods and Trends
15
作者 Ameer Hamza Robertas Damaševicius 《Computers, Materials & Continua》 2026年第1期132-172,共41页
This systematic review aims to comprehensively examine and compare deep learning methods for brain tumor segmentation and classification using MRI and other imaging modalities,focusing on recent trends from 2022 to 20... This systematic review aims to comprehensively examine and compare deep learning methods for brain tumor segmentation and classification using MRI and other imaging modalities,focusing on recent trends from 2022 to 2025.The primary objective is to evaluate methodological advancements,model performance,dataset usage,and existing challenges in developing clinically robust AI systems.We included peer-reviewed journal articles and highimpact conference papers published between 2022 and 2025,written in English,that proposed or evaluated deep learning methods for brain tumor segmentation and/or classification.Excluded were non-open-access publications,books,and non-English articles.A structured search was conducted across Scopus,Google Scholar,Wiley,and Taylor&Francis,with the last search performed in August 2025.Risk of bias was not formally quantified but considered during full-text screening based on dataset diversity,validation methods,and availability of performance metrics.We used narrative synthesis and tabular benchmarking to compare performance metrics(e.g.,accuracy,Dice score)across model types(CNN,Transformer,Hybrid),imaging modalities,and datasets.A total of 49 studies were included(43 journal articles and 6 conference papers).These studies spanned over 9 public datasets(e.g.,BraTS,Figshare,REMBRANDT,MOLAB)and utilized a range of imaging modalities,predominantly MRI.Hybrid models,especially ResViT and UNetFormer,consistently achieved high performance,with classification accuracy exceeding 98%and segmentation Dice scores above 0.90 across multiple studies.Transformers and hybrid architectures showed increasing adoption post2023.Many studies lacked external validation and were evaluated only on a few benchmark datasets,raising concerns about generalizability and dataset bias.Few studies addressed clinical interpretability or uncertainty quantification.Despite promising results,particularly for hybrid deep learning models,widespread clinical adoption remains limited due to lack of validation,interpretability concerns,and real-world deployment barriers. 展开更多
关键词 Brain tumor segmentation brain tumor classification deep learning vision transformers hybrid models
在线阅读 下载PDF
Deep Learning-Enhanced Human Sensing with Channel State Information: A Survey
16
作者 Binglei Yue Aili Jiang +3 位作者 Chun Yang Junwei Lei Heng Liu Yin Zhang 《Computers, Materials & Continua》 2026年第1期1-28,共28页
With the growing advancement of wireless communication technologies,WiFi-based human sensing has gained increasing attention as a non-intrusive and device-free solution.Among the available signal types,Channel State I... With the growing advancement of wireless communication technologies,WiFi-based human sensing has gained increasing attention as a non-intrusive and device-free solution.Among the available signal types,Channel State Information(CSI)offers fine-grained temporal,frequency,and spatial insights into multipath propagation,making it a crucial data source for human-centric sensing.Recently,the integration of deep learning has significantly improved the robustness and automation of feature extraction from CSI in complex environments.This paper provides a comprehensive review of deep learning-enhanced human sensing based on CSI.We first outline mainstream CSI acquisition tools and their hardware specifications,then provide a detailed discussion of preprocessing methods such as denoising,time–frequency transformation,data segmentation,and augmentation.Subsequently,we categorize deep learning approaches according to sensing tasks—namely detection,localization,and recognition—and highlight representative models across application scenarios.Finally,we examine key challenges including domain generalization,multi-user interference,and limited data availability,and we propose future research directions involving lightweight model deployment,multimodal data fusion,and semantic-level sensing. 展开更多
关键词 Channel State Information(CSI) human sensing human activity recognition deep learning
在线阅读 下载PDF
HCL Net: Deep Learning for Accurate Classification of Honeycombing Lung and Ground Glass Opacity in CT Images
17
作者 Hairul Aysa Abdul Halim Sithiq Liyana Shuib +1 位作者 Muneer Ahmad Chermaine Deepa Antony 《Computers, Materials & Continua》 2026年第1期999-1023,共25页
Honeycombing Lung(HCL)is a chronic lung condition marked by advanced fibrosis,resulting in enlarged air spaces with thick fibrotic walls,which are visible on Computed Tomography(CT)scans.Differentiating between normal... Honeycombing Lung(HCL)is a chronic lung condition marked by advanced fibrosis,resulting in enlarged air spaces with thick fibrotic walls,which are visible on Computed Tomography(CT)scans.Differentiating between normal lung tissue,honeycombing lungs,and Ground Glass Opacity(GGO)in CT images is often challenging for radiologists and may lead to misinterpretations.Although earlier studies have proposed models to detect and classify HCL,many faced limitations such as high computational demands,lower accuracy,and difficulty distinguishing between HCL and GGO.CT images are highly effective for lung classification due to their high resolution,3D visualization,and sensitivity to tissue density variations.This study introduces Honeycombing Lungs Network(HCL Net),a novel classification algorithm inspired by ResNet50V2 and enhanced to overcome the shortcomings of previous approaches.HCL Net incorporates additional residual blocks,refined preprocessing techniques,and selective parameter tuning to improve classification performance.The dataset,sourced from the University Malaya Medical Centre(UMMC)and verified by expert radiologists,consists of CT images of normal,honeycombing,and GGO lungs.Experimental evaluations across five assessments demonstrated that HCL Net achieved an outstanding classification accuracy of approximately 99.97%.It also recorded strong performance in other metrics,achieving 93%precision,100%sensitivity,89%specificity,and an AUC-ROC score of 97%.Comparative analysis with baseline feature engineering methods confirmed the superior efficacy of HCL Net.The model significantly reduces misclassification,particularly between honeycombing and GGO lungs,enhancing diagnostic precision and reliability in lung image analysis. 展开更多
关键词 Deep learning honeycombing lung ground glass opacity Resnet50v2 multiclass classification
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部